
Probabilistic robot planning under model uncertainty: an active
learning approach

Robin JAULMES, Joelle PINEAU and Doina PRECUP
School of Computer Science
McGill University
Montreal, QC CANADA H3A 2A7

Editor: Greg Grudic and Jane Mulligan

Abstract

While recent POMDP techniques have been successfully applied to the problem of robot control
under uncertainty, they typically assume a known (and stationary) model of the environment. In
this paper, we study the problem of finding an optimal policy for controlling a robot in a partially
observable domain, where the model is not perfectly known, and may change over time. We present
an algorithm called MEDUSA which incrementally learns a POMDP model using oracle queries,
while still optimizing a reward function. We demonstrate effectiveness of the approach for realistic
robot planning scenarios, with minimala priori knowledge of the model.

1. Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a sound decision-theoretic
framework for planning under uncertainty. Due to recent advances in algorithmic techniques,
POMDPs have recently been applied in large domains where the state of the robot and other agents
in the environment is only partially observable (12; 13; 14; 18). Techniques currently applicable
in large-scale problems however consistently require a known and stable model of the robot’s sen-
sors, as well as of the dynamics of the robot itself, the other agents and the environment. This
is a severe limitation for many practical applications, where writing down an exact model can be
time-consuming and error-prone. Experience-based approaches have been proposed, which learn a
model from direct experience with the environment (3; 10; 15; 17; 2; 16). However these typically
require very large amounts of data, and assume a stationary model. Both of these assumptions may
be hard to guarantee in many realistic robotic task scenarios.

In reality, there are many applications where it is relatively easy to provide a rough model,
but much harder to provide an exact one. We would like to have planning techniques which offer
a better compromise between model-based or experience-based, to effectively combine whatever
information is available. Furthermore, because models may change over time (e.g. non-stationary
environments), we would like to use experimentation to automatically track these changes, and
adapt our model accordingly.

The goal of this work is to combine a partial model of the environment with direct experimenta-
tion, in order to produce solutions that are robust to model uncertainty and evolution, while scaling
to large robotics domains. To do this, we assume that uncertainty is part of the model and design
our agent to take it into account when making decisions.

1

The technique we propose in this paper is an algorithm called MEDUSA. It is based onactive
learning (4), which is a well-known problem formulation in machine learning for classification
tasks with sparsely labelled data. In traditional active learning, the goal is to select which examples
should be labelled by considering the expected information gain. More recently, others have shown
that these ideas extend nicely to dynamical systems such as HMMs and MDPs (1);(5).

In MEDUSA, we assume that prior knowledge about the model, as well as the level of un-
certainty in the model, can be represented by a Dirichlet distribution over possible models. The
parameters of the Dirichlet are then updated whenever new experience is acquired, thus allowing
a simple framework to combinea priori knowledge of the model, with direct experience with the
environment.

MEDUSA assumes availability of an oracle, which upon request can provide the agent with
exact information about the current state. For example while a robot experiments with a new envi-
ronment, it can query the oracle to obtain exact state information whenever this is deemed necessary.
The state information is used only to improve the model, not in the action selection process. This
means that there can be delays between the query request and the query processing. It also means
that the answer to the query can be noisy. Furthermore, in some cases, the (Dirichlet) parameters
over model uncertainty can also be updated directly from experience, without resorting to the oracle.
All of these factors make the assumption of an oracle more realistic for practical application.

The original MEDUSA algorithm was presented in (6). We discussed in (7) the conditions under
which MEDUSA converges to the correct model. We now present a new and improved version of
MEDUSA, featuring better techniques for combining query and non-query learning, and online
adaptation for non-stationary environments. We perform the first large-scale empirical validation
of MEDUSA, and present results stemming from the application of MEDUSA to a simulated robot
planning scenario where an indoor mobile robot must with unknown sensor model navigate to find
a human user with unknown motion behavior.

2. Partially Observable Markov Decision Processes

We assume the standard POMDP formulation (8); namely, a POMDP consists of a discrete and
finite set of statesS, a similar set of actionsA, and a similar set of observationsZ. The POMDP
model is defined by state-to-state transition probabilities{Pa

s,s′}= {p(st+1 = s′|st = s,st = a)},∀s∈
S,∀a∈ A,∀s′ ∈ Sand observation emission probabilities{Oa

s,z}= {p(zt = z|st = s,at−1 = a)},∀z∈
Z,∀s∈ S,∀a∈ A. It assumes a known discount factorγ ∈ [0;1] and a deterministic reward function
R : S×A×S×Z→ℜ, such thatR(st ,at ,st+1,zt+1) is the reward for the corresponding transition.

At each time step, the agent is in an unknown statest ∈ S. It executes an actionat ∈ A, arrives
in an unknown statest+1 ∈ S and gets an observationzt+1 ∈ Z. Agents using POMDP planning
algorithms typically keep track of the belief stateb∈ ℜ|S|, which is a probability distribution over
all states given the history experienced so far. A policy is a function that associates an action to
each possible belief state. Solving a POMDP means finding the policy that maximizes the expected
discounted returnE(∑T

t=1 γ tR(st ,at ,st+1,zt+1)).
While finding an exact solution to a POMDP is computationally intractable, many methods

exist for finding approximate solutions. In this paper, we use a point-based algorithm (12), in order
to compute POMDP solutions. However, the algorithms that we propose can be used with other
approximation methods.

2

We assume the learner knows the reward function, since it is directly linked to the task that it
wants to execute. We focus instead on learning{Pa

s,s′} and{Oa
s,z}. These probability distributions

are typically harder to specify correctly by hand. They may also be changing over time. For instance
in robotics, the sensor noise and motion error are often unknown and may vary with the amount of
light, the wetness of the floor, or other parameters that might not be fixed in advance. To learn the
transition and observation models, we assume that our agent can occasionally make a query, the
answer to which will correctly identify the current state. This is a strong assumption. In many tasks
it is possible (but very costly) to have access to the full state information. It can require asking a
human to label the state, or using a high-precision sensor to recover the information. However the
assumption of an oracle is not entirely unrealistic, since in practice we do not need to know the
query result immediately, or exactly. Nonetheless the agent should strive to make as few queries as
possible, and carefully select when to make them.

3. The MEDUSA algorithm

In this section we describe the MEDUSA algorithm. Its main idea is to represent the model uncer-
tainty with a Dirichlet distribution over possible models, and to update directly the parameters of
this distribution as new experience is acquired. It is also built so that it can cope with non-stationary
environments, where the parameters evolve with time. Furthermore, MEDUSA makes sparse (and
efficient) use of queries, by learning model uncertainty parameters from interaction with the envi-
ronment, using bothqueryupdates andnon-queryupdates.

This approach scales nicely: we need one Dirichlet parameter for each uncertain POMDP pa-
rameter, but the size of the underlying POMDP representation remains unchanged, which means
that the complexity of the planning problem does not increase. However this approach requires the
agent to repeatedly sample POMDPs from the Dirichlet distribution and solve the sampled models,
to best select the next query.

3.1 Dirichlet Distributions

Consider aN-dimensional multinomial distribution with parameters(θ1, . . .θN). A Dirichlet distri-
bution is a probabilistic distribution over these parameters. The Dirichlet itself is parameterized by
hyper-parameters(α1, . . .αN). The likelihood of the multinomial parameters is defined by:

p(θ1 . . .θN|D) = ∏N
i=1 θαi−1

i

Z(D)
, whereZ(D) = ∏N

i=1 Γ(αi)
Γ(∑N

i=1 αi)

And the maximum likelihood multinomial parametersθ∗1 . . .θ∗N can be easily computed:θ∗i =
αi

∑N
k=1 αk

,∀i = 1, . . .N. The Dirichlet distribution is convenient because its hyper-parameters can be

updated directly from data. For example, if instanceX = i is encountered,αi should be increased
by 1. Also, we can sample from a Dirichlet distribution conveniently using Gamma distributions.

In the context of POMDPs, model parameters are typically specified according to multinomial
distributions. Therefore, we use a Dirichlet distribution to represent the uncertainty over these. We
use Dirichlet distributions for each state-action pair where either the transition probabilities or the
observation probabilities are uncertain. Note that instead of using increments of 1 we use a learning
rate,λ, which measures the importance we want to give to one query.

3

3.2 MEDUSA

The name MEDUSA comes fromMarkovian Exploration with Decision based on the Use of Sam-
pled models Algorithm. The algorithm is as follows. First, we assume that initial Dirichlet param-
eters are given, representing botha priori knowledge of the model, and uncertainty over model
parameters. Next, our agent samples a number of POMDP models according to this Dirichlet dis-
tribution. The agent then computes an (approximately) optimal policy for each of these models. At
each time step, one of the models is chosen at random (with probability equal to the weight of each
model under the current Dirichlet distribution) and the corresponding optimal action is applied. This
allows us to obtain reasonable execution performance throughout the active learning process. This
also allows the agent to focus the active learning in regions of the state space most often visited by
good policies.

Each time an action is made and an observation is received, the agent can decide to query the
oracle for the true identity of the hidden state1 If we do a query, the Dirichlet distributions are
updated according to the outcome of that query. Note that with MEDUSA, we need not specify
a separate Dirichlet parameter for each unknown POMDP parameter. It is often the case that a
small number of hyper-parameters suffice to characterize the model uncertainty. For example, noise
in the sensors may be highly correlated over all states and therefore we could use a single set of
hyper-parameters for all states. In this setup, the corresponding hyper-parameter would be updated
whenever actiona is taken and observationz is received, regardless of the state.2 This results in a
very expressive framework to represent model uncertainty. As we showed in our previous work, we
can vary the number of hyper-parameters to trade-off the number of queries versus model accuracy
and performance (6). In (7), we study the theoretical properties of MEDUSA, and show that under
certain conditions (in the limit of infinite exploration, and infinite number of sampled models), the
algorithm is guaranteed to converge to the correct model.

3.3 Non-Query Learning

MEDUSA is premised on the rather strong assumption that an oracle is available to reveal full state
information at any time. In reality, it is not necessary to make a query at every step, rather it is
possible to update the model based solely on evidence, usingnon-query learning. This requires
(1) deciding when to query and (2) if we don’t query (or if the query isn’t answered), then using
the information we have from the action-observation sequence and knowledge extracted from the
previous queries to update the Dirichlet parameters.

To do an efficient non-query learning we introduce the concept of an alternate beliefβ. For
each modeli = 1, . . . ,n, we keep track of such an alternate belief, (denotedβi) in addition to the
standard belief (denotedbi). The alternate belief is updated in the same way as the standard one,
with each action and observation. The only difference is that when a query is done,βi is updated
to reflect the fully known state information, whereasbi tracks belief uncertainty according to model
i’s parameters (ignoring the state information). The alternate belief allows us to keep track of the
information available from the latest query, when applying non-query learning.

1. In practice there can be a time delay between the query and the answer, since we don’t redraw models after every
step.

2. As a matter of fact, we have a function that maps any possible transition or observation parameters to either a hyper
parameter or to acertainparameter.

4

The decision of when to make a query or not can be based on the use of different indicators3:

• Variance = ∑i(Q(mi ,Π(h,mi))− Q̂)2

measures the variance over values computed by each model for the optimal action. Experiments show that this
indicator captures efficiently how much learning remains to be done.

• InfoGain = ∑n
k=1[wk ∑i, j∈S2[Bt(i, j)(1

∑k′∈Sαt
A,i,k′

+ 1
∑k′∈Z αz

A, j,k′
)]

measures the quantity of information that a query could bring4: It is equal to zero whenever a query won’t provide
new information (e.g. whenever the model is already sufficiently certain). Generally very useful to reject queries
in these situations.

• AltStateEntropy = ∑s∈S−[∑N
i=1 βi(s)] log(∑N

i=1 βi(s))

measures the entropy in the mean alternate belief. It is a good indicator of how much knowledge has been lost
since the last query. Whenever the state is still well identified, non-query learning is appropriate, however when
the alternate belief has high entropy, a query is called for.

• NumberOfQueries counts the number of queries already answered.

We combine these heuristics to decide when to performqueryversusnon-querylearning, using
a simple decision-rule. We do a query iff:

(AltStateEntropy> ε1) AND (InfoGain> ε2) AND ((Variance> ε3) OR (NumberOfQueries< Nmin))
The first condition ensures that no query should be done if enough information about the state is
possessed because of previous queries. The second condition ensures that a query will not be made
if it does not bring direct information about the model, which is the case if we are in a subpart of
the model we know very well. The third condition ensures that we will stop doing queries when
our model uncertainty does not have any influence on the expected return. Note for this term,
considering the number of queries already done in necessary in some cases (especially in a learning
setup with a completely uninformed prior) since at the beginning all the models can be equally bad,
which can give a very low value for the Variance heuristic.

To do the non-query update of the transition alpha-parameters, we use thealternate transition
belief Bt(s,s′) which is computed according to Equation 1: it is the distribution over the transitions
that could have occurred in the last time step. Thenon-query learningthen updates the correspond-
ing state transition alpha-parameters according to Equation 25. On the other hand the observation
alpha-parameters are updated proportionally to the new alternate mean belief stateβ̃′ defined by
Equation 3 according to Equation 4.

∀s,s′Bt(s,s′) =
n

∑
i=1

wi
[Oi]zs′,A [Pi]s

′
s,A βi(s)

∑σ∈S[Oi]zσ,A [Pi]σs,A
(1)

∀i ∈ [1. . .n]∀(s,s′)αt(s,A,s′) ← αt(s,A,s′)+λBt(s,s′) (2)

∀s β̃′(s) =
n

∑
i=1

wiβ′i(s) (3)

∀i ∈ [1. . .n]∀s′ ∈ Sαz(s′,A,Z) ← αz(s′,A,Z)+λβ′i(s
′)wi (4)

3. Other heuristics were considered, includingPolicyEntropy (entropy of the policy over models - biased indicated)
andBeliefVariance (variance on the belief state - typically more noisy than Variance).

4. Bt is defined in Equation 1. Furthermore, we consider that1
∑k′∈Sαt

A,i,k′
= 0 (1

∑k′∈Z αz
A, j,k′

= 0) when the parameters

corresponding to transitions (observations) in state i, action A, arecertain.
5. There is an alternative to this procedure. We can also sample a query result from the alternate transition belief

distribution and thus update only one parameter. However, experimental results shows that this alternative is as
efficient as the belief-weighted method.

5

1. Let λ ∈ (0,1) be the learning rate. Initialize the necessary Dirichlet distributions. For any uncertain transi-
tion probability, Ta

s,·, defineDir ∼ {α1, . . .α|S|}. For any uncertain observation parameterOa
s,·, defineDir ∼

{α1, . . .α|Z|}.
2. Samplen POMDPsP1, . . .Pn from these distributions. (We typically usen = 20).

3. Compute the likelihood of each model:{p01, . . . p0n}.
4. Solve each modelPi → πi , i = 1, . . .n. We use a finite point-based approximation(12).

5. Initialize the historyh = {}.
6. Initialize the belief for each modelb1 = . . . = bn = b0 and thealternatebelief β1 = . . . = βn = b0.

7. Repeat:

(a) Compute the optimal actions for each model:a1 = π1(b1), . . .an = πn(bn).

(b) Randomly pick and apply an action to execute, according to the model weights:

ai = πi(bi) is chosen with probabilitywi where∀i wi = pi
p0i

. pi is the current likelihood modeli has
according to the Dirichlet distribution.

(c) Receive the observationz.

(d) Update the historyh = {h,a,z}
(e) Update the belief state for each model:b′i = ba,z

i , i = 1..n. Also update the alternate belief.

(f) Determine if any learning should be done by using the InformationGain heuristic.

• When it is the case, use the Variance heuristic and the NumberOfQueries heuristic to determine if a
learning of good quality is required.

– When it is the case, determine if a query has to be done by using the AlternateStateEntropy
heuristic.

∗ If we have to make a query, make it, receive the query outcome, and update the Dirichlet
parameters according to it.α(s,a,s′)← α(s,a,s′)+λ
α(s′,a,z)← α(s′,a,z)+λ

∗ Otherwise update the alpha-parameters using non-query learning according to equations 2
and 4.

– Otherwise, use non-query learning according to equations 2 and 4 with a lower learning rate (we
useλ′ = 0.01λ).

(g) When the Dirichlet structure has been modified, re-compute the model likelihoodspi .

(h) If we are in the non-stationary case, decay all the parameters concerned by the update by the parameterν.

(i) At regular intervals, draw another modelP′i according to the current Dirichlet distribution and add it to the
set of models. Solve it:P′i → π′i update its beliefb′i = bh

0, wherebh
0 is the belief resulting when staring in

b0 and seeing historyh and its alternate belief, which takes into account what the latest query result was.
The quality of the policy of the models sampled (the horizon considered and the number of belief points
considered) is increased each time a model is sampled.

(j) If the numberNmax of models is reached, remove from the set of models the modelPi with the lowest
likelihood.

Table 1:The MEDUSA algorithm

3.4 Handling non-stationarity

There are many interesting robotics domains where the model parameters may change over time.
For example, slow decay in the wheel alignments may change the robot motion model, or a person
interacting with the robot may change preferences over time. We would like our learning algorithm

6

Figure 1: Map of the environment used for the robot simulation experiment.

to be able to handle such non-stationarity in the model parameters. This is not typically possible in
the standard POMDP formulation.

In MEDUSA, however, non-stationarity can easily be accommodated by simply allowing recent
experience to be weighed more heavily than older experience. To do this, each time we update one
of the hyper-parameter, we multiply all the hyper-parameters corresponding to the associated multi-
nomial distribution byν∈]0;1[, themodel discount factor. This can be thought of as a decay weight
over model certainty. It does not change the most likely value of any of the updated parameters
(Section refsec:dirichlet), but does diminish confidence over the parameters. Note that theequilib-
rium confidenceis defined as:Cmax= λ 1

1−ν , which is attained after an infinite number of samples,
and is an indicator of our confidence in past experience. This is high when we believe the model
is stable. This concludes our description of the MEDUSA algorithm. Table 1 provides a detailed
description of MEDUSA, including implementation details. We now proceed with a description of
experimental validation.

4. Experimental results

In previous work, we validated the performance of MEDUSA on standard problems from the
POMDP literature (6). We now turn our attention to the application of MEDUSA in a realistic
robot simulation domain. In order to do this, we combined MEDUSA with the Carmen robot simu-
lator (11). The Carmen toolbox has been widely used in the robotics community for the control of
indoor mobile robots. Its simulator is known to be highly reliable and policies with good simula-
tion performance can typically be ported without modification to the corresponding robot platform.
When linking MEDUSA to Carmen, in effect, we require that all data and model priors used by
MEDUSA be generated by Carmen.

Our experiments thus far have focused on a scenario where the robot must navigate in an en-
vironment, with the goal of finding a person who is hiding in this environment. This problem has
been studied before under various names (Hide, Tag, Find-the-patient). Previous work considered
at a fully modeled version of this problem, where the person’s location is unknown, but the person’s
motion model is precisely modeled, as are the robot’s sensor and motion models. We now consider
the case where in addition to not knowing the person’s position, we are also uncertain about the per-
son’s motion model and the robot’s sensor model. In total, MEDUSA is trying to learn 52 distinct
parameters. We consider the environment shown in Figure 1. Planning and learning are done over a
discretized version; the associated POMDP has 362 states, 24 observations and 5 actions.

As we can see from Figure 2, MEDUSA converges within roughly 12,000 time steps, after
having received answers to approximately 9,000 queries. This is orders of magnitude faster than

7

experience-based approaches, which can require millions of steps to learn problems with less than
a dozen states. We note however that experience-based approaches do not require an oracle. The
high number of queries required by MEDUSA for this problem is in large part a consequence of
the fact that the initial model prior is completely uninformed. Using a more informed prior would
lead to faster learning, but would require more knowledge engineering (we are currently conducting
experiments to demonstrate this empirically). In the end, it’s debatable whether it’s preferable
to provide more precise priors, or require more data labelling. To reduce the number of queries,
we could also build a simpler model with fewer alpha-parameters. The main purpose of these
preliminary results is to show that MEDUSA can in fact learn models for problems with hundreds of
states and that the approach is applicable to realistic robotic domains. MEDUSA’s flexible approach
to knowledge-engineering (i.e. combination of model priors, labelled data a.k.a. queries, and non-
labelled data a.k.a. non-query learning) make it particular attractive for real-world domains where
parts of the problem can be specified differently.

(a) (b)

Figure 2: Results for the robot simulation domain. (a) Evolution of the discounted reward with the number
of time steps. (b) Evolution of the number of queries with the number of time steps.

Next, we consider the question of whether MEDUSA is robust to sudden changes in model
parameters. This arises in non-stationary environments, where parameters can either (1) slowly
drift over time (e.g. slow decay in the wheel alignments), or (2) change abruptly (e.g. person has
an injury, which suddenly slows down his/her walking speed). Throughout these cases, MEDUSA
should adapt to changes and learn the new correct model with high confidence. If the change in
parameters is small, then non-query learning is sufficient, however if there are large changes, it is
necessary to resort to queries.

We have not yet investigated MEDUSA’s ability to handle non-stationary environments in the
robot scenario, however we have performed preliminary tests on the standard Tiger domain (8),
where we assume that the probability of correctly detecting the target (or tiger) suddenly changes.
Figure 3 summarizes the results. As expected, the speed at which MEDUSA learns the new model
depends on the confidence (sum of Dirichlet parameters). When the confidence is low (<100), the
agent quickly adapts to the new parameters, even when there is a large shift in the model. However
when confidence is high (>1000), the agent takes many more steps to learn new parameter values.

Finally, we investigate MEDUSA’s robustness to errors in the query responses. MEDUSA’s
query learning assumes that an oracle can provide exact state identification on demand. However it

8

(a) (b)

Figure 3: Plot of the evolution of the discounted reward as a function of the number of time steps. There is
a sudden change in the parameterp at time 0. (a) The equilibrium confidence before the change
is low (100). (b) The equilibrium confidence before the change is high (1000).

is more realistic to assume some amount of noise in the state identification provided by the oracle.
This allows us to broaden the class of information sources we can use an oracle. For example in
robotics, one could use a high-precision (but expensive or obtrusive) sensor to answer queries while
the model is being built, and then remove the sensor for standard operation. We don’t yet have results
for robustness to query noise in the Carmen simulator. However we have investigated the issue in
the context of the standard Hallway domain (9). We consider two cases. In the first, whenever a
query is made, there is a 10% probability that the oracle will identify the wrong state (picking one at
random), and a 90% that the oracle will give the correct answer. In the second case, the probability
of a correct answer is 80%. As we see from Figure 4, the quality of the learned model is quite
good when the oracle is correct in 90% of queries, though it takes more steps of query learning (and
thus fewer steps of non-query learning) than when the oracle is always correct. The performance is
significantly degraded for the higher error rate. However the 80% query precision model may not
have converged yet, as we see in Figure 4b that the number of queries is still climbing.

5. Discussion

The work we describe bears some resemblance to earlier techniques for decision-making in model-
free POMDPs, which can learn and plan despite uncertainty in both state and model (3; 10; 15; 17;
2; 16). However these approaches have not scaled to large-scale domains, due to their intensive data
requirements. MEDUSA offers a more flexible trade-off between knowledge engineering and data
requirements. Initial knowledge can be introduced through model priors. In addition MEDUSA
narrows the learning requirements by selecting when to do queries. Finally, unlabelled data can
also be leveraged through non-query learning. We show that this work is applicable to learning a
complex robot task. MEDUSA can also solver a broader class of decision-making problems than
earlier experience-based since it can handle non-stationary environments. And while the oracle
assumption is a strong one, we show results demonstrating that MEDUSA is robust to noise in the
query answers. We are currently extending the results for the non-stationary case and the noisy
queries to the robotics domain.

9

(a) (b)

Figure 4: Results for queries with a noisy oracle. (a) Plot of the discounted reward as a function of the
number of time steps. (b) Plot of the number of queries as a function of the number of time steps.

References

[1] Anderson, B. and Moore, A. “Active Learning in HMMs” ICML, 2005.
[2] Brafman, R. I. and Shani, G. “Resolving perceptual aliasing with noisy sensors” NIPS, 2005.
[3] Chrisman, L. “Reinforcement learning with perceptual aliasing: The perceptual distinctions approach” AAAI, 1992.
[4] Cohn, D. A., Ghahramani, Z. and Jordan, M. I. “Active Learning with Statistical Models” NIPS, 1996.
[5] Dearden, R.,Friedman, N.,Andre, N., “Model Based Bayesian Exploration” UAI, 1999.
[6] Jaulmes, R.,Pineau, J.,Precup, D., “Active Learning in Partially Observable Markov Decision Processes” ECML,

2005.
[7] Jaulmes, R.,Pineau, J.,Precup, D., “Learning in non-stationary Partially Observable Markov Decision Processes”.

ECML Workshop on Reinforcement Learning in non-stationary environments, 2005
[8] Kaelbling, L., Littman, M. and Cassandra, A. “Planning and Acting in Partially Observable Stochastic Domains”

Artificial Intelligence. vol.101, 1998.
[9] Littman, M., Cassandra, A. and Kaelbling, L. “Learning policies for partially obsevable environments: scaling up”.

ICML, 1995.
[10] McCallum, A. K. “Reinforcement Learning with Selective Perception and Hidden State” Ph.D. Thesis. University

of Rochester, 1996.
[11] Montemerlo, M., Roy N. and Thrun, S. “Perspectives on Standardization in Mobile Robot Programming: The

Carnegie Mellon Navigation (CARMEN) Toolkit”. IROS, 2003.
[12] Pineau, J., Gordon, G. and Thrun, S. “Point-based value iteration: An anytime algorithm for POMDPs” IJCAI,

2003.
[13] Poupart, P. and Boutilier, C. “VDCBPI: an Approximate Scalable Algorithm for Large Scale POMDPs” NIPS,

2005.
[14] Roy, N., Gordon G. and Thrun S. “Finding Approximate POMDP solutions Through Belief Compression”. Journal

of Artificial Intelligence Research, 23: 1-40, 2005.
[15] Shatkay, H., Kaelbling, L. “Learning topological maps with weak local odometric information” IJCAI, 1997.
[16] Shani,G.,Brafman,R.I.,Shimony,E. ”Model-Based online learning of POMDPs”, ECML, 2005.
[17] Singh, S., Littman, M., Jong, N. K., Pardoe, D., and Stone, P. “Learning Predictive State Representations” ICML,

2003.
[18] Spaan, M. T. J. Spaan, and Vlassis, N. “Perseus: randomized point-based value iteration for POMDPs”. Journal of

Artificial Intelligence Research, 2005.

10

