
Noname manuscript No.

(will be inserted by the editor)

A Survey of Point-Based POMDP Solvers

Guy Shani · Joelle Pineau · Robert

Kaplow

Received: date / Accepted: date

Abstract The past decade has seen a significant breakthrough in research
on solving partially observable Markov decision processes (POMDPs). Where
past solvers could not scale beyond perhaps a dozen states, modern solvers can
handle complex domains with many thousands of states. This breakthrough
was mainly due to the idea of restricting value function computations to a
finite subset of the belief space, permitting only local value updates for this
subset. This approach, known as point-based value iteration, avoids the expo-
nential growth of the value function, and is thus applicable for domains with
longer horizons, even with relatively large state spaces. Many extensions were
suggested to this basic idea, focusing on various aspects of the algorithm —
mainly the selection of the belief space subset, and the order of value function
updates. In this survey, we walk the reader through the fundamentals of point-
based value iteration, explaining the main concepts and ideas. Then, we survey
the major extensions to the basic algorithm, discussing their merits. Finally,
we include an extensive empirical analysis using well known benchmarks, in
order to shed light on the strengths and limitations of the various approaches.

Keywords Partially observable Markov decision processes · decision-theoretic
planning · reinforcement learning

1 Introduction

Many autonomous agents operate in an environment where actions have stochas-
tic e↵ects. In many such cases, the agent perceives the environment through

Guy Shani
Information Systems Engineering, Ben Gurion University, ISRAEL
E-mail: shanigu@bgu.ac.il

Joelle Pineau, Robert Kaplow
School of Computer Science, McGill University, Montreal, QC, CANADA
E-mail: jpineau@cs.mcgill.ca

2 Guy Shani et al.

noisy and partial observations. Perhaps the most common example of this set-
ting is a robot that receives input through an array of sensors (Huynh and
Roy, 2009; Hsiao et al, 2007; Atrash et al, 2009). These sensors can provide
only partial information about the environment. For example, robotic sensors
such as cameras and lasers cannot see beyond walls, and the robot thus can-
not directly observe the contents of the next room. Thus, many features of
the problem, such as the existence of hazards or required resources beyond
the range of the sensors, are hidden from the robot. Other examples of appli-
cations where partial observability is prevalent are dialog systems (Williams
and Young, 2007), preference elicitation tasks (Boutilier, 2002; Doshi and Roy,
2008), automated fault recovery (Littman et al, 2004; Shani and Meek, 2009),
medical diagnosis (Hauskrecht and Fraser, 2000), assisting people with disabil-
ities (Hoey et al, 2010), recommender systems (Shani et al, 2005), and many
more.

For such applications, the decision-theoretic model of choice is a partially
observable Markov decision process (POMDP). POMDPs provide a principled
mathematical framework to reason about the e↵ects of actions and observa-
tions on the agent’s perception of the environment, and to compute behaviors
that optimize some aspect of the agent’s interaction with the environment.

Up until recently, researchers attempting to solve problems that naturally
fitted the POMDP framework tended to choose other, less expressive models.
The main reason for compromising on the accurate environment modeling
was the lack of scalable tools for computing good behaviors. Indeed, slightly
more than a decade ago, POMDP researchers still struggled to solve small toy
problems with a handful of states, or used crude approximations that typically
provided low quality behaviors.

Over the past decade, a significant breakthrough has been made in POMDP
solving algorithms. Modern solvers are capable of handling complex domains
with many thousands of states. This breakthrough was due in part to an ap-
proach called point-based value iteration (Pineau et al, 2003a), which computes
a value function over a finite subset of the belief space. A point based algo-
rithm explores the belief space, focusing on the reachable belief states, while
maintaining a value function by applying the point-based backup operator.

The introduction of this approach paved the way to much additional re-
search on point-based solvers, leading to the successful solution of increasingly
larger domains (Smith and Simmons, 2005; Shani et al, 2008a; Spaan and
Vlassis, 2005; Kurniawati et al, 2008; Poupart et al, 2011). Point-based solvers
di↵er in their approaches to various aspects of the point-based value iteration
procedure, mainly their method for selecting a core subset of the belief space
over which to apply dynamic programming operations, as well as on the order
by which the value at those beliefs are updated.

This goal of this paper is to provide a comprehensive overview of point-
based value iteration approaches. It can be used to provide a thorough intro-
duction to the topic, as well as a reference for the more advanced reader. The
paper is meant as a practical guide towards the deployment of point-based
POMDP solvers in practice. Thus we report on extensive experiments cover-

A Survey of Point-Based POMDP Solvers 3

ing contrasting benchmark domains, in order to shed light on the empirical
properties of various algorithmic aspects. While many of the point-based al-
gorithms have been subject to empirical comparisons in the past, one of the
strengths of the analysis presented in this paper is that it systematically com-
pares specific algorithmic components (whereas full algorithms typically di↵er
in many ways). We anticipate that our results and discussion will stimulate
new ideas for researchers interested in building new, faster, and more scalable
algorithms. We do not, however, try in the scope of this survey to propose and
analyze new innovative algorithms, or new combinations of existing algorithms
that may prove better than existing approaches.

Some of the main conclusions of our analysis include recommendations for
which belief collection methods to use on which types of problems, and which
belief updating methods are best paired with which belief collection methods.
We also present evidence showing that some parameters (including the number
of belief points collected between value function updates, and the number of
value function updates between belief collection rounds) have little impact on
performance of the algorithm. We also present results showing the impact of
the choice of initial solution, and the impact of the order of the value updates,
all aspects which can make the di↵erence between successfully solving a hard
problem, and not finding a solution.

The paper is structured as follows; we begin with a thorough background
on POMDPs, the belief-space MDP, and value iteration in belief space. We
then introduce the general point-based value iteration algorithm, and discuss
its various components. We then move to describing the various approaches
to the implementation of these di↵erent components and their properties. We
describe a set of experiments that shed light on these properties. Finally, we
discuss some related issues, point to several key open questions, and end with
concluding remarks.

2 Background

In this section we provide relevant background for understanding the point-
based value iteration procedure. We begin with describing the Markov decision
process (MDP) framework, and then move to POMDPs. We describe the belief
space view of POMDPs, and the extension of value iteration from MDPs to
POMDPs.

2.1 MDPs

Consider an agent operating in a stochastic environment; the agent influences
the world through the actions it executes, attempting to change the world state
to achieve a given objective. Let us assume that the environment is Markovian,
that is, that the e↵ects of an action (stochastically) depend only on the current
world state, and on the action that the agent chooses to execute.

4 Guy Shani et al.

Example 1 (Robotic navigation in a known environment) A robot is required
to move from one location to another in a known environment. The robot
can execute high level commands, such as turning left or right, or moving
forward. These commands are then translated into long sequences of signals
to the robot’s motors. As the execution of each of these low level signals can
be imprecise, the result of applying the entire sequence may be very di↵erent
from the intention of the robot. That is, the robot may try to turn left by
90� and end up turning 120�, 45� or not at all. Also, when moving forward,
the robot may actually deviate from its intended direction. The robot must
execute actions that will bring it from its current location to the goal location,
minimizing the required time for reaching that goal.

2.1.1 Formal MDP definition

Such environments can be modeled as a Markov decision process (MDP) (Bell-
man, 1957a; Howard, 1960; Sutton and Barto, 1998; Szepesvari, 2009), defined
as a tuple < S, A, T, R >. where:

– S is the set of environment states. To be Markovian, each state must encom-
pass all the relevant features for making correct decisions. In the example
above, the robot’s state encompasses the world map, as well as the robot’s
own location and orientation within that map. In case some pathways may
be blocked (e.g. by doors), the state also has to describe whether each
pathway is blocked.

– A is a set of actions that the agent can execute. In our case, the robot may
move forward, turn right, or turn left. In some cases the actions may be
parametric. For example, the robot may TurnLeft(✓). In this paper, for
simplicity, we consider only non-parametric actions.

– T is the stochastic transition function, that is, T (s, a, s0) = Pr(s
t+1 =

s0|s
t

= s, a
t

= a) — the probability of executing action a from state
s at time t and reaching state s0 at time t + 1. We are interested in a
time-invariant system, that is, a system where the e↵ects of actions are
time-independent. Hence, specifying the time t in the equation above is
redundant, and we prefer the simpler notation (s0) to denote the next time
step (t + 1). In the navigation example, the transition function models the
possible e↵ects of the actions. For example, given that the robot attempts
to turn left 90�, the transition function captures the probability of ending
up in any possible successor state, including both the intended position
and unintended ones.

– R is the reward function, modeling both the utility of the current state,
as well as the cost of action execution. R(s, a) is the reward for executing
action a in state s. A negative reward models a cost to executing a in s.
In some cases, the reward may also depend on the state after the actions
execution, resulting in a reward function of the form R(s, a, s0); this can
be translated to the simpler R(s, a) by taking the expectation over the
next states. In our navigation example, it may be that the robot gets a

A Survey of Point-Based POMDP Solvers 5

reward for executing a null action in the goal location, and that the cost of
each movement is the time span or the required energy for completing the
movement. A popular alternative to reward function, especially in naviga-
tion problems, is a cost function, that has a non-zero cost for every action,
except in the goal location. However, the reward functions are more widely
used than cost functions in current POMDP literature and we therefore
choose to use it in this paper.

In this paper we assume a finite and discrete state space, as well as a finite
and discrete action space (and later we make the same assumption for the
observation space). While this is the most widely used formalism of MDPs
and POMDPs, infinite, or continuous state and action spaces can also be used
(see, e.g., (Porta et al, 2006; Brunskill et al, 2008) for continuous POMDPs).

It is sometimes beneficial to add to the definition above a set of start states
S0 and a set of goal state S

G

. The set of start states limits the set of states of
the system prior to executing any action by the agent, allowing many MDP
algorithms to limit the search in state space only to the reachable parts. Goal
states are typically absorbing, that is, the agent cannot leave a goal state. It is
often convenient to define an MDP where the task is to reach some goal state.

2.1.2 Policies and value functions

The objective of MDP planning is to discover an action-selection strategy,
called a policy, defining how the agent should behave in order to maximize the
rewards it obtains. There are many types of policies, stochastic or determinis-
tic, stationary or non-stationary (that is, dependent on the current time step
t), and so forth. In the time-invariant, infinite-horizon MDP case, there exists
a stationary and deterministic optimal policy, and hence we discuss only this
type of policy here.

Di↵erent optimization criteria can be considered, such as the expected sum
of rewards, the expected average reward, and the expected sum of discounted
rewards. In the discounted case, we assume that earlier rewards are preferred,
and use a predefined discount factor, � 2 [0, 1), to reduce the utility of later
rewards. The present value of a future reward r that will be obtained at time
t, is hence �tr. In this paper we restrict ourselves to this infinite horizon
discounted reward model, but other models that do not require the discount
factor exist, such as indefinite-horizon POMDPs (Hansen, 2007) and goal-
directed cost-based POMDPs (Bonet and Ge↵ner, 2009).

In this paper, a solution to an MDP is defined in terms of a policy that maps
each state to a desirable action — ⇡ : S ! A. In the infinite horizon discounted
reward problem, the agent seeks a policy that optimizes the expected infinite
stream of discounted rewards:

E[
1X

t=0

�tR(s
t

, ⇡(s
t

))|⇡, s0]. (1)

6 Guy Shani et al.

This expectation is known as the value of the policy. We seek a policy ⇡⇤ such
that:

⇡⇤ = argmax
⇡

E[
1X

t=0

�tR(s
t

, ⇡(s
t

))|⇡, s0]. (2)

We can also define the value of a policy that starts at state s as

V (s) = E[
1X

t=0

�tR(s
t

, ⇡(s
t

))|⇡, s0 = s]. (3)

A function V : S ! R that captures some value of every state s is called a
value function.

2.1.3 Value Iteration

Given any value function V , one may define a greedy policy

⇡
V

(s) = argmax
a2A

R(s, a) + �
X

s

02S

T (s, a, s0)V (s0). (4)

From this, one can compute a new value function

V 0(s) = R(s, ⇡
V

(s)) + �
X

s

02S

T (s, ⇡
V

(s), s0)V (s0). (5)

More generally, we can define an operator J over value functions:

JV (s) = max
a2A

R(s, a) + �
X

s

02S

T (s, a, s0)V (s0), (6)

known as the Bellman operator, or the Bellman update (Bellman, 1957b). We
can show that J is a contraction operator, and thus applying J repeatedly,
starting at any initial value function, converges towards a single unique fixed
point

V ⇤(s) = max
a2A

R(s, a) + �
X

s

02S

T (s, a, s0)V ⇤(s0). (7)

The greedy policy, ⇡
V

⇤ = ⇡⇤ is the optimal policy for the given problem
(Puterman, 1994).

The process of applying J repeatedly is known as value iteration. The
process can be terminated when the di↵erence between two successive value
functions V and JV is less than ✏(1��)

�

, thus ensuring that the distance between
V ⇤ and JV is less than ✏, that is, |V ⇤(s)� JV (s)| ✏ for every state s.

In some cases it is more convenient to define an intermediate state-action
value function called the Q-function. We can then write:

Q(s, a) = R(s, a) + �
X

s

02S

T (s, a, s0)V (s0) (8)

V (s) = max
a2A

Q(s, a). (9)

A Survey of Point-Based POMDP Solvers 7

While value-iteration provably converges to the optimal value function, for
the purpose of this paper we are more interested in ✏-convergence, where a
value function V is within ✏ of the optimal value function V ⇤: max

s

|V (s) �
V ⇤(s)| ✏. This is su�cient in most cases because such a value function
predicts the expected sum of discounted rewards to within ✏ of its true value.
For the purpose of this paper we will use the term convergence to imply an
✏-convergence.

2.2 Partial Observability

Many real-world domains do not fit the assumptions of the MDP framework,
in particular because the agent cannot directly observe the state of the envi-
ronment at every time step.

Example 2 (Robotic navigation in a partially observable environment) Return-
ing to Example 1, let us further assume that the navigating robot has laser
range sensors that can sense nearby walls. The robot does not know its exact
location in the environment, but can reason about it given the sensors’ infor-
mation. Such sensors typically have a few limitations; first, they are unable to
give full knowledge of the domain, such as objects in other rooms. Further-
more, these sensors provide noisy input, such as occasionally detecting a wall
where no wall exists, or failing to identify a nearby wall.

An agent acting under partial observability can model its environment as
a partially observable Markov decision process (POMDP) (Sondik, 1971; Kael-
bling et al, 1998). A POMDP is formally defined as a tuple < S,A, T, R,⌦, O, b0 >,
where:

– S, A, T,R are an MDP as defined above, often called the underlying MDP
of the POMDP.

– ⌦ is a set of possible observations. For example, in the robot navigation
problem, ⌦ may consist of all possible immediate wall configurations.

– O is an observation function, where O(a, s0, o) = Pr(o
t+1|at

, s
t+1) is the

probability of observing o given that the agent has executed action a, reach-
ing state s0. O can model robotic sensor noise, or the stochastic appearance
of symptoms given a disease.

Even though the agent is Markovian with respect to the underlying state,
the limited sensor information does not allow the agent to be Markovian with
respect to the observations. One option for building a Markovian agent is to
use the agent history as its internal state. This history is composed of all the
agent’s interactions with the environment, starting at time 0, and is typically
denoted as h

t

=< a0, o1, a1, o2, ..., at�1, ot

>. Working directly with histories
can be cumbersome, but one can alternately work in the space of probability
distributions over states, known as beliefs.

A belief b = Pr(s|h) is the probability of being at every state s after
observing history h. In the discrete case that we consider here we can think of

8 Guy Shani et al.

every b 2 B as a vector of state probabilities. That is, for every s 2 S, b(s) 2
[0, 1], and

P
s2S

b(s) = 1. For cases where the agent is unaware of its initial
state, b0 = Pr(s0) provides a distribution over initial states. A POMDP can be
defined without an initial belief, but the assumption of some distribution over
initial states helps us in establishing the boundaries of the reachable belief
space.

The belief changes every time new observations are received or actions
are taken. Assuming an agent has current belief state b, then, following the
execution of an action a and the observation of signal o, its belief can be
updated to:

ba,o(s0) = Pr(s0|b, a, o) (10)

=
Pr(s0, b, a, o)
Pr(b, a, o)

(11)

=
Pr(o|s0, b, a) Pr(s0|b, a) Pr(b, a)

Pr(o|b, a) Pr(b, a)
(12)

=
O(a, s0, o)

P
s2S

Pr(s0|b, a, s) Pr(s|b, a)
Pr(o|b, a)

(13)

=
O(a, s0, o)

P
s2S

T (s, a, s0)b(s)
Pr(o|b, a)

, (14)

where:

Pr(o|b, a) =
X

s2S

b(s)
X

s

02S

T (s, a, s0)O(a, s0, o). (15)

The process of computing the new belief is known as a belief update.
In fact, in partially observable domains, beliefs provide a su�cient statistic

for the history (Sondik, 1971), and thus for deciding on the optimal action to
execute. Formally, one can define the belief-space MDP < B, A, ⌧, R

B

>:

– B is the set of all possible beliefs over S. The belief space forms an infinite
state space.

– A is the set of possible agent actions as in the original POMDP and the
underlying MDP.

– ⌧ is the belief transition function. That is, ⌧(b, a, b0) is the probability of
starting at belief b, executing action a and reaching the new belief b0. We
can compute ⌧ as follows: ⌧(b, a, b0) =

P
o2⌦

Pr(o|b, a)1I(b0 = ba,o) , that
is, we sum the probabilities of all observations that result in b0 being the
next belief. While B is infinite, the number of valid successors for a belief
is at most |A| ⇥ |⌦|. On the other hand, the number of predecessors of a
belief can be unbounded. That is, for some belief b0 and action a there can
be infinitely many beliefs b that satisfy ⌧(b, a, b0) > 0.

– R
B

(b, a) =
P

s2S

b(s)R(s, a) is the expected immediate reward from exe-
cuting action a at state s. For simplicity of notation we will use R(b, a)
instead of R

B

(b, a) from now on.

A Survey of Point-Based POMDP Solvers 9

2.2.1 Value Functions for POMDPs

As with the MDP model, we can define the Bellman update operator for the
belief-space MDP:

JV (b) = max
a2A

R(b, a)+�
X

b

02B

⌧(b, a, b0)V (b0) = max
a2A

R(b, a)+�
X

o2⌦

Pr(o|b, a)V (ba,o).

(16)
While B is infinite, it has been recognized early on (Sondik, 1978) that the
value function for a POMDP, in both the finite and infinite horizon case, can
be modeled arbitrarily closely as the upper envelope of a finite set of linear
functions, known as ↵-vectors. Hence we write V = {↵1, ...,↵n

}, the value
function defined over the full belief. Using this representation, we can compute
the value at a given belief:

V (b) = max
↵2V

b · ↵, (17)

where b ·↵ =
P

s2S

b(s) ·↵(s) is the standard inner product operation in vector
space.

2.2.2 Value Iteration in Vector Space

The value iteration algorithm over the belief-space MDP can be rewritten in
terms of vector operations, and operations on sets of vectors (Sondik, 1978;
Cassandra et al, 1997):

V 0 =
[

a2A

V a (18)

V a =
M

o2⌦

V a,o (19)

V a,o = { 1
|⌦|ra

+ ↵a,o : ↵ 2 V } (20)

↵a,o(s) =
X

s

02S

O(a, s0, o)T (s, a, s0)↵(s0), (21)

where r
a

(s) = R(s, a) is a vector representation of the reward function, V is
the vector set prior to the backup, V 0 is the new vector set after the backup,
and V1 � V2 = {↵1 + ↵2|↵1 2 V1, ↵2 2 V2}.

This process is known as exact value iteration. In each iteration, the value
function is updated across the entire belief space. There are |V | ⇥ |A| ⇥ |⌦|
vectors generated at Equation 21, and computing each of these vectors takes
|S|2 operations. In Equation 19 we create |V ||⌦| new vectors for each action,
with a complexity of |S| for each new vector. Hence, the overall complexity of
a single iteration is O(|V |⇥ |A|⇥ |⌦|⇥ |S|2 + |A|⇥ |S|⇥ |V ||⌦|).

In practice, exact value iteration is only feasible for the smallest of prob-
lems, since the set of ↵-vectors grows exponentially with every iteration. As the

10 Guy Shani et al.

computational cost of each iteration depends on the number of vectors in V ,
an exponential growth makes the algorithm prohibitively expensive. To some
degree, the sets of ↵-vectors can be reduced to their minimal form after each
stage, resulting in more manageable value functions (Littman, 1996; Cassan-
dra et al, 1997; Zhang and Zhang, 2001). But this is not su�cient for scaling
to domains with more than a few dozen states, actions, and observations.

2.2.3 Belief-Value Mapping

The ↵-vector representation is especially suitable for maintaining a lower
bound over the value function, that is incrementally updated. Due to the
convergence of value iteration towards the optimal value function, starting
with a lower bound, the new vectors will have higher values than previous
vectors. Thus, the max operator in Equation 17 will select these new vectors
that dominate previous additions to the vector set V

¯
.

On the other hand, when value iteration is initialized using an upper bound,
new vectors will typically have a lower value than the currently existing vec-
tors. Adding these vectors to an existing value function, will have no e↵ect,
as these vectors will not be selected by the max operator. Thus, incremen-
tally updating an upper bound over the value function represented as a set of
↵-vector is currently an open problem.

An alternative to the vector set representation of the value function is to
use a belief-value mapping, i.e. maintain a value for every belief that is encoun-
tered. These mappings are all points on the convex hull of the current value
function. Then, one must interpolate the value of beliefs whose mapping is not
currently maintained over the convex value function. This can be computed
by a linear program:

Minimize:
|V̄ |X

i=1

w
i

· v
i

(22)

Subject to: b =
|V̄ |X

i=1

w
i

· b
i

(23)

|V̄ |X

i=1

w
i

= 1 (24)

w
i

2 [0, 1], (25)

where V̄ = < b
i

, v
i

> is the set of belief-value mappings that form the upper
bound value function. When the size of V̄ grows this linear program becomes
di�cult to solve. Recently, Poupart et al (2011) show that while the value
function may change, the belief points that are selected for the interpolation
of each unmapped point b usually remains stable. Thus, when one is interested
in repeatedly computing the value for a fixed set of unmapped points, it is
possible to cache the points selected by the linear program and their weights

A Survey of Point-Based POMDP Solvers 11

and compute only the new value as the linear combination of the cached points.
In general, when most computations of interpolations are over beliefs that were
not previously observed, the linear programming approach is unfeasible.

A number of alternative approximate projections have been suggested in
the literature (Hauskrecht, 2000; Armstrong-Crews et al, 2008). Perhaps the
most popular approach is the saw-tooth (or jig-saw) approximation to the
upper bound, that treats the value function as a set of down-facing pyramids,
with their bases at the corners of the belief simplex, and their points at the
belief-value mappings. Then, one has only to project the unmapped belief unto
the faces of all the pyramids, which can be done using a simple computation.

Algorithm 1 Sawtooth
1: v0

b

P

b

s

2V̄

det

v
s

· b(s)

2: for each < b
i

, v
i

>2 V̄
non�det

do
3: v0

b

i

P

b

s

2V̄

det

v
s

· b
i

(s)

4: vi

b

 v0 + (v
i

� v0
b

i

)(min
s:b

i

(s)>0
b(s)
b

i

(s))

5: v
b

 min
i

vi

b

6: return v
b

In Sawtooth (Algorithm 1), the points in V̄ are divided into the corner
belief points, V̄

det

= {b
s

: b
s

(s) = 1}, i.e. beliefs that are deterministic in a
single state, and the rest of the points V̄

non�det

. We first compute the value
of the query point b using an interpolation of the corner points only, and then
compute the projection of b onto each of the pyramids associated with mapping
< b

i

, v
i

>2 V̄
non�det

(Hauskrecht, 2000; Smith and Simmons, 2005).

3 Point-Based Value Iteration

An important contribution to POMDP research in the past decade was the
introduction of the point-based value iteration algorithm, that allows us to
approximately solve large POMDPs rapidly. This approach and most of its
numerous variants are introduced in this section. We begin with presenting
the basic insight that the point-based approach leverages, and continue with
a thorough description of the important variants of this approach.

3.1 Bounding the Size of the Value Function

As discussed above, it is crucial to limit the size of the set of vectors represent-
ing the value function when performing value iteration over the belief space
MDP. Obviously, there is a trade-o↵ between avoiding the exponential growth
in representation size, at the cost of compromising the accuracy of the value
function. So we must decide wisely which vectors should be removed.

12 Guy Shani et al.

One simple solution would be to select a set of belief points, and maintain
only vectors that are optimal for at least one belief point in the set. This
approach was first suggested by Lovejoy (1991), who maintained a regular
grid of belief points, and pruned out of V all ↵-vectors that were not optimal
for this belief subset. One downside of such an approach (using regular grids),
is that it is highly probable that many of these belief points are not reachable.
That is, there is no possible sequence of actions and observations that leads
from b0 to a regular grid point. Hence, we optimize the value function for a
set of beliefs that will never be visited during policy execution.

This problem can be overcome by instead collecting a set of reachable belief
points, and maintaining the value function only over these points (Hauskrecht,
2000; Pineau et al, 2003a). Collecting a set of such points can be done by
applying the belief update procedure starting from the initial belief state.
We now have to decide which sequence of actions and observations should be
selected in order to collect good sets of belief points, a question that we will
address later in detail. But first, we describe how to update the value function
at a specific set of points, denoted B.

3.2 Updating the Value Function

When updating the value function at a finite subset of the belief set B, it is
not necessary to use a full Bellman backup (Equations 18-21). Instead, we can
use a simple manipulation of the value function update procedure to come
up with a less expensive solution. Below, we begin with an equation that
computes the value at a certain belief point b after a Bellman backup over a
given value function V . We show how the computation of this value can be
used to e�ciently compute the new ↵-vector that would have been optimal for
b, had we ran the complete Bellman backup process. Using the vector notation

A Survey of Point-Based POMDP Solvers 13

R(b, a) = r
a

· b, we can write:

V 0(b) = max
a2A

r
a

· b + �
X

o2⌦

Pr(o|b, a)V (ba,o) (26)

= max
a2A

r
a

· b + �
X

o2⌦

Pr(o|b, a) max
↵2V

ba,o · ↵ (27)

= max
a2A

r
a

· b + �
X

o2⌦

Pr(o|b, a) max
↵2V

X

s

02S

↵(s0)ba,o(s0) (28)

= max
a2A

r
a

· b + �
X

o2⌦:Pr(o|b,a)>0

Pr(o|b, a) max
↵2V

X

s

02S

↵(s0)
O(a, s0, o)
Pr(o|b, a)

X

s

b(s)T (s, a, s0)

= max
a2A

r
a

· b + �
X

o2⌦:Pr(o|b,a)>0

max
↵2V

X

s

b(s)
X

s

02S

↵(s0)O(a, s0, o)T (s, a, s0) (29)

= max
a2A

r
a

· b + �
X

o2⌦:Pr(o|b,a)>0

max
↵2V

X

s

b(s)↵a,o(s) (30)

= max
a2A

r
a

· b + �
X

o2⌦:Pr(o|b,a)>0

max
↵2V

b · ↵a,o. (31)

where
↵a,o(s) =

X

s

02S

↵(s0)O(a, s0, o)T (s, a, s0). (32)

We can now write a compact backup operation, that generates a new ↵ vector
for a specific belief b:

backup(V, b) = argmax
↵

b

a

:a2A,↵2V

b · ↵b

a

(33)

↵b

a

= r
a

+ �
X

o2⌦

argmax
↵

a,o:↵2V

b · ↵a,o. (34)

This procedure implicitly prunes dominated vectors twice, at each argmax
expression. Thus, we never have to run the costly operations of Equation 18
and Equation 19 that generate an abundance of vectors. Still, one has to
generate |A|⇥ |O| new vectors (all possible ↵a,o). However, ↵a,o is independent
of b and can therefore be cached and reused for backups over other belief points
in B.

The complexity of computing Equation 32 is O(|S|2), and it is done for
every ↵ 2 V , hence computing all ↵a,o requires O(|A| ⇥ |⌦| ⇥ |V | ⇥ |S|2).
Computing ↵b

a

(Equation34) requires the computation of all the relevant ↵a,o,
but then the summation and inner products require only O(|S|⇥ |⌦|) opera-
tions and another O(|S|) operations for adding the reward vector. Finally, the
backup operation (Equation 33 requires for each ↵b

a

another O(|S|) operations
for the inner product. Hence, the full complexity of the point-based backup
requires O(|A|⇥ |⌦|⇥ |V |⇥ |S|2 + |A|⇥ |S|⇥ |⌦|).

However, a full backup for the subset B will not require |B| times the
complexity of a single point-based backup, because the ↵a,o are independent

14 Guy Shani et al.

of the current belief point b. Hence, executing a backup for |B| belief points
over a single value function V , where we compute every ↵a,o only once and
cache the result, requires only O(|A|⇥ |⌦|⇥ |V |⇥ |S|2 + |B|⇥ |A|⇥ |S|⇥ |⌦|),
as compared with the O(|A|⇥ |⌦|⇥ |V |⇥ |S|2 + |A|⇥ |S|⇥ |V ||⌦|) of a single
iteration of the exact backup (Section 2.2.2).

3.3 Executing a Policy following the Point-Based Value Function

With every MDP value function representation, the optimal policy with re-
spect to the value function V can be computed using:

⇡
V

(s) = argmax
a

R(s, a) + �
X

s

02S

tr(s, a, s0)V (s0). (35)

In POMDPs, with a value function defined over the belief space, the optimal
policy is:

⇡
V

(b) = argmax
a

R(b, a) + �
X

o2⌦

Pr(o|b, a)V (ba,o). (36)

Computing a policy for the current belief state b using the above equation
requires computing all the |A| ⇥ |⌦| successors of b, with a cost of |S|2 for
each successor. Then, computing the value at each successor requires |S|⇥ |V |
operations (using the ↵-vector representation).

However, if we use the ↵-vector representation, we can label the vector
resulting from the point-based backup operation (Equation 33) with the ac-
tion that generated it, i.e., the action that resulted in the maximal value.
Then, all we need is to find the best ↵-vector for the current belief state us-
ing max

↵2V

b · ↵ (Equation 17) and execute the action corresponding to this
↵-vector is labeled with, with a computation cost of only |S|⇥ |V | for finding
the best action when following V .

3.4 A Generic Point-Based Value Iteration Algorithm

The general point-based approach combines the above two ideas — bounding
the value function size by representing the value only at a finite, reachable
belief subset, and optimizing the value function using the point-based proce-
dure. Essentially, all point-based algorithms fit into the generic point-based
value iteration framework (Algorithm 2).

Algorithm 2 Generic Point-Based Value Iteration
1: while Stopping criterion not reached do
2: Collect belief subset B
3: Update V over B

A Survey of Point-Based POMDP Solvers 15

The algorithm has two main parts — the collection of the belief subset
B, and the update of the value function V . In general, point-based methods
di↵er on the details of how they achieve these two components of the generic
algorithm. These techniques are presented in detail in Section 4. In addition,
the stopping criterion of the algorithm is typically dependent on the choice
of these two components. Many of the algorithms have an anytime nature,
continually improving their value function. In these variations, the stopping
criterion is time-dependent.

3.5 Initializing the Value Function

An orthogonal, yet important, question that arises in point-based algorithms is
the initialization of the value function. As with every value iteration algorithm,
it is necessary to begin with some initial function to be updated. It is desirable
that the selected initial value function be as close as possible to the optimal
V ⇤, to reduce the number of iterations before convergence.

As we discuss in the next section, some point-based approaches additionally
require that the value function be a lower bound on V ⇤. Finding such a lower
bound is relatively easy by setting:

R
min

= min
s2S,a2A

R(s, a) (37)

↵
min

(s) =
R

min

1� �
(38)

V0 = {↵
min

}. (39)

This is equivalent to collecting the minimal possible reward in every step,
and relies on the convergence of

P
ı=0..1 �i to 1

1��

. There are, of course,
better methods for computing a lower bound that is closer to V ⇤ (Hauskrecht,
1997; Smith and Simmons, 2005), which we also consider in the course of our
empirical analysis.

The same considerations apply in the case of the upper bound on the
value function, required by some algorithms. As we have explained above,
using the vector representation for an incrementally updating upper bound
does not seem plausible, and researchers use instead the belief-value mapping
representation. Thus, a di↵erent initialization strategy is needed, and several
such strategies were suggested (Hauskrecht, 1997, 2000). The simplest method
is to solve the underlying MDP, and initialize the value function using V̄ (b) =P

s

b(s)V
MDP

(s), typically known as the Q
MDP

method (Littman, 1996). The
bound can be made tighter, using the fast informed bound (Hauskrecht, 2000),
that updates the value function for each state s using the update rule:

Q̄
a

(s) = R(s, a) + �
X

o

max
a

0

X

s

0

tr(s, a, s0)O(a, s0, o)Q̄
a

0(s0). (40)

While provably tighter, the fast informed bound computation time for a
single value function update is O(|S|2⇥ |A|2⇥ |⌦|) compared with the Q

MDP

16 Guy Shani et al.

initialization that requires only O(|S|2 ⇥ |A|) computations. In domains with
many actions and observations the di↵erence is important, and smart imple-
mentation techniques that exploit sparseness in transitions are needed to scale
up.

3.6 Parameters A↵ecting the Generic Algorithm

There are other parameters that control the behavior of the generic point-
based algorithm and influence the resulting value function. As most of these
parameters are tightly bound to a specific point-based approach, we only dis-
cuss them here briefly. These parameters typically induce tradeo↵s between
the computational e↵ort and the accuracy of the point-based approximation.

A major parameter is the number of belief points in B. In most algorithms,
the value update time depends on the size of B, and the accuracy of the value
function also typically depends on the number of belief points that were used.
As such, there is a tradeo↵ between a tolerable approximation and the com-
putation time of a value function update. Hence, most point-based approaches
control, directly or indirectly, the number of belief points in B.

A second parameter of most point-based approaches is the number of point-
based backups in each value function update. In many cases, the value function
can be updated without using all the beliefs in B. In other cases, multiple
backups over a single belief point in an iteration can be beneficial. Limiting
the number of backups reduces the computational burden, while executing
more backups may make the value function closer to V ⇤.

Another important aspect of point-based methods is the removal of dom-
inated vectors. Indeed, many researchers discuss this issue and suggest new
methods for detecting dominated vectors. We discuss this aspect further in
Section 4.5.

4 Point-Based Algorithms

In this section we review the various point-based methods presented in the
literature, from the perspective of the generic point-based algorithm (Algo-
rithm 2). Hence we focus on the approach of each method to these two fun-
damental questions, namely the selection of B and the update of V given
B.

4.1 The original Point-Based Value Iteration (PBVI)

The original approximate point-based method, known as Point-Based Value
Iteration (PBVI), was presented by Pineau et al (2003a). PBVI starts with
the initial belief state, i.e. B0 = {b0}. Then, for the current belief set B

i

,

A Survey of Point-Based POMDP Solvers 17

PBVI updates the value function by executing a point-based Bellman backup
at every point in the current B

i

. That is:

V j+1
B

= {backup(b, V j

B

) : b 2 B}, (41)

where the backups are executed in no particular order. The process is repeated
until V j

B

= V j+1
B

, or until a predefined number of iterations has been executed.
At this point, to achieve further improvement requires selecting a di↵erent

belief subset B. The PBVI algorithm does this by selecting for each belief b
in B a successor b0 that is the most distant from the set B. That is, let L be
a distance metric, then we define:

|b0 �B|
L

= min
b2B

|b� b0|
L

, (42)

and focus on candidate successors generated using forward simulation, thus:

b0 = max
a,o

|ba,o �B|
L

. (43)

The set of successor points, one b0 for each b 2 B
i

, are added into B
i

(along
with the previous points in B

i

) to create the new set B
i+1. Experiments by

various researchers show little, if any, sensitivity to the distance metric chosen,
and L1 has useful theoretical properties for the convergence of PBVI. The full
procedure is formally described in Algorithm 3.

Intuitively, PBVI attempts to select belief points that are spread as evenly
as possible across the reachable belief space, trying to span the reachable space,
within a given horizon. As PBVI is making locally greedy selections, it may
not provide maximal span for a given size of B

i

. Nonetheless it can be shown
(see (Pineau et al, 2003a) for details) that the error of the value function is
bounded by a linear function over the density of the belief subset, i.e. the
smaller the gaps between all beliefs, the closer the resulting function is to the
optimal value function. Therefore, in the limit and under certain conditions,
PBVI converges to the optimal value function.

4.1.1 Alternatives for Expanding B

The belief expansion phase in the original PBVI requires significant compu-
tational e↵ort; computing for each belief state all of its successors, requiring
O(|B| ⇥ |A| ⇥ |⌦|) belief update operations at the cost of O(|S|2) operations
each. Followed by computing a distance from each successor belief point to
the previous subset B, requiring O(|B|) distance computations for each suc-
cessor at the cost of O(|S|) operations each. An obvious method for reducing
this e↵ort is to sample the set of successors; instead of computing all possible
successors of each belief point, we can sample a uniformly and compute only
the possible bo

a

for the specific b and a that were chosen, or sample for each
action a a single observation o (Pineau et al, 2003a).

The above methods take into account only the coverage over the belief
space. We could also leverage the existing value function, to direct the expan-
sion towards points where the policy computed from the current value function

18 Guy Shani et al.

would lead the agent. This can be done by greedily selecting an action that
is best for the current belief according to this policy, instead of sampling an
action randomly (Pineau and Gordon, 2005; Pineau et al, 2006).

The computational cost of the belief set expansion is also largely a↵ected
by the multitude of distance metric computations. These computations can be
somewhat reduced by using metric trees (Pineau et al, 2003b) — data struc-
tures that maintain distance information. Through the use of these structures
we can establish, for example, the distance of a belief from the entire set B
without explicitly computing its distance from each point in B. However there
is overhead to using such structures, and overall performance benefits are not
typically large.

The original belief expansion rule of PBVI doubled the size of B at each
iteration, by adding for each b 2 B a single successor. This exponential growth
of B can make the algorithm incapable of dealing with longer problem horizons,
as the size of B may be too large to handle when the goal enters the horizon. An
alternative strategy, which avoids exponential growth, is to limit the number
of added points to a fixed number N , where N is a parameter to the algorithm.
When |B| > N we can sample N points from B and compute successors only
for these points. Note that a point may be selected more than once in the same
iteration or in di↵erent iterations. That is, we need to check all the successors
of a point b 2 B.

When we sample the N points, we can sample either inner beliefs (i.e. be-
liefs that already have a successor in B) or beliefs from the leaves of B. We
can bias belief selection towards longer horizons by emphasizing the sampling
of these leaves rather than the inner beliefs, following a parameter l (Kaplow,
2010). With probability l, we sample a “leaf”, that is, a belief with no succes-
sors currently in B. With probability (1� l) we will sample an “inner belief”
— a belief that already has one successor in B. For further refinement, the
parameter l could start with a high value, and decay over time, thus o↵ering
more flexible balance between finding a long-horizon goal and optimizing the
path to that goal.

4.1.2 PEMA

The point-based backup of a value function V given a belief set B, i.e. V 0 =
{backup(b, V) : b 2 B} is an approximation of the complete backup of V
(Equations 18 through 21). One interesting variation of PBVI attempts to
find the belief points where the point-based backup is farthest from a complete
backup. That is, a point-based backup over all points in B induces a set of ↵-
vectors V1 while a complete backup will induce a di↵erent vector set V2. PBVI
aims at identifying points reachable in one step from B where |V1(b)� V2(b)|
is maximized. If we add these points to B, the next point-based backup would
fix these errors, and thus reduce the distance of the point-based backup from
the complete backup.

It has been shown (Pineau and Gordon, 2005) that the error induced by
performing a point-based backup at a belief point b0 rather than a complete

A Survey of Point-Based POMDP Solvers 19

Algorithm 3 PBVI
Function PBVI
1: B {b0}
2: while V has not converged to V ⇤ do
3: Improve(V, B)
4: B Expand(B)

Function Improve(V ,B)
1: repeat
2: for each b 2 B do
3: ↵ backup(b, V) //execute a backup operation on all points in B in arbitrary

order

4: V V [{↵}
5: until V has converged //repeat the above until V stops improving for all points in B

Function Expand(B)
1: B

new

 B
2: for each b 2 B do
3: Successors(b) {ba,o|Pr(o|b, a) > 0}
4: B

new

 B
new

[argmax
b

02Successors(b) ||B, b0||
L

//add the furthest successor of b
5: return B

new

backup, denoted ✏(b0), is at most:

✏(b0)
X

s2S

(
(R

max

1��

� ↵(s))(b0(s)� b(s)) if b0(s) � b(s)
(R

min

1��

� ↵(s))(b0(s)� b(s)) if b0(s) < b(s), (44)

where b is the point in B closest to b0, and ↵ is the vector resulting from the
point-based backup of V that is best at b.

We can now compute the estimate:

✏(b) = max
a2A

X

o2⌦

Pr(o|b, a)✏(ba,o), (45)

to choose the point b 2 B that has the maximal ✏(b). Then, add to B its
successor ba,o that contributes the most to this error. This heuristic is the
PEMA (Point-based Error Minimization Algorithm) variation of PBVI.

This heuristic for expanding the belief subset is more informative than the
original distance-based PBVI heuristic as it attempts to approximate as closely
as possible the exact value iteration process, whereas PBVI attempted to cover
the reachable belief space as closely as possible, ignoring the computed value
function.

However, computing ✏(b) for each b 2 B takes O(|B| ⇥ |A| ⇥ |⌦|) belief
updates to compute all the successors (as in PBVI), and for each successor
we would compute its closest belief using O(|B|) distance computations. Fi-
nally, we would compute each error in O(|S|) operations. Thus in general this
approach is much slower than the original PBVI, though it can yield better
results (Pineau et al, 2006) in some domains.

20 Guy Shani et al.

4.2 Perseus

The original PBVI algorithm and its variants focus on the smart expansion of
B, both because B governs the size of V in PBVI, and because expanding B
requires significant e↵ort. However, if we could collect a large B e↵ortlessly,
and still compute a compact value function, we could leverage the e�ciency of
point-based Bellman backups, without performing expensive belief selection
steps.

Spaan and Vlassis (2004, 2005) highlight the intuition that one can be non-
selective in constructing B if V is updated smartly in their Perseus algorithm.
The Perseus algorithm starts with running trials of random exploration in
belief space. At each step of a trial, an action and observation are sampled,
and a new belief is computed and added to B. The trials continue until a
(relatively) large number of points are collected. Similar use of random forward
simulation to collect belief points was explored, though with less impact, in
the early days of approximate POMDP solvers (Hauskrecht, 2000; Poon, 2001;
Lovejoy, 1991).

Once B has been collected, Perseus proceeds to the value function com-
putation phase. The computation is done iteratively. Each iteration begins
with a set B0 = B and a new empty value function V 0 = �. One belief point
b 2 B0 is selected uniformly at random, and used to compute a new vector
↵

new

= backup(b, V). If ↵
new

·b > V (b), then ↵
new

is added into V 0, and we re-
move from B0 all b0 such that ↵

new

· b0 > V (b0). That is, all belief points whose
value was improved by ↵

new

will not be backed up at the current iteration. If
↵

new

· b V (b), we add ↵
old

= argmax
↵2V

↵ · b into V 0. The iteration ends
when B0 = �, and V is set to V 0. The full procedure is outlined in Algorithm 4.

This value function update procedure guarantees that even though many
beliefs are not backed up at each iteration, the value for every point b 2 B gets
closer to V ⇤(b) with every iteration. Still, since many belief points will not get
backed up, the value function may remain relatively small. Note however that
in this algorithm, it is assumed that if ↵

new

·b > V (b), then |↵
new

·b�V ⇤(b)| <
|V (b) � V ⇤(b)|. This is only true if we initialize V to a lower bound on V ⇤.
Therefore, unlike PBVI, Perseus requires a lower bound initialization.

Perseus has two key advantages; the belief collection step is fast, and the
value function update tends to create value functions with a number of ↵-
vectors much smaller than |B|. Thus, Perseus can collect a set of belief points
much larger than PBVI, and has thus the potential to cover more of the
reachable belief space.

There are a number of potential disadvantages to Perseus, though; first,
the random belief gathering assumes that it is relatively simple to obtain good
belief points. That is, that a random exploration will eventually encounter
most of the same points as the optimal policy. In many goal-directed domains
(Bonet and Ge↵ner, 2009), where actions must be executed in a specific order,
the random exploration assumption may be problematic. Second, the unin-
formed selection of beliefs for backups may cause the value function to be
updated very slowly, and with many unneeded backups that do not contribute

A Survey of Point-Based POMDP Solvers 21

to the convergence. For example, in goal-directed domains, values typically
get gradually updated from beliefs closer to the goal to beliefs farther from it,
until finally the value of b0 is updated. The best backup order in these cases is
by moving in reverse order along a path in belief space that the optimal policy
may follow. Randomly picking beliefs, even along such an optimal path, could
substantially slow down convergence (Shani et al, 2008a).

Finally, a practical limitation in large domains with long trajectories is that
Perseus will need to collect a very large set of beliefs, causing the set B to
become too large to maintain in memory. An iterative version of Perseus that
collects a reasonably sized belief set, improves it, and then collects a second
set, may be able to overcome this problem. In this case, we could also leverage
the policy that was already computed, instead of a random policy, for future
collection of belief points.

Algorithm 4 Perseus
Function Perseus
1: B RandomExplore(n)
2: V PerseusUpdate(B, �)

Function RandomExplore(n)
1: B �
2: b b0
3: repeat
4:

choose a random successor of b
5: Choose a 2 A randomly
6: Choose o 2 ⌦ following the Pr(o|b, a) distribution
7: Add ba,o to B
8: b ba,o

9: until |B| = n

Function PerseusUpdate(B,V)
1: repeat
2: B0 B
3: V 0 �
4: while B0 6= � do
5: // Choose an arbitrary point in B to improve

6: Choose b 2 B0

7: ↵ backup(b, V)
8: if ↵ · b � V (b) then
9: // Remove from B all points whose value was already improved by the new ↵

10: B0 {b 2 B0 : ↵ · b < V (b)}
11: ↵

b

 ↵
12: else
13: B0 B0 � {b}
14: ↵

b

 argmax
↵2V

↵ · b
15: V 0 V 0 [{↵

b

}
16: V V 0

17: until V has converged

22 Guy Shani et al.

Informed Selection of Backup Order

The Perseus approach ensures that there will be an improvement in the value
function at each iteration, while preserving a small value function. However,
as we argue above, in some cases the random choice of points at which to
backup may result in a slow convergence rate. Some researchers have suggested
exploiting additional information for selecting the next belief point at which
to execute a Bellman backup.

First, one can leverage information about the value function update pro-
cedure itself in order to select the belief at which to apply the backup (Shani
et al, 2008a). The Bellman update procedure (Equation 33) suggests that the
value of a belief will change only if the value of its successor points is modified.
Hence, a reasonable approach would be to update those belief states whose
successor value changed the most. In the MDP domain, this approach is known
as prioritized value iteration (Wingate and Seppi, 2005), and has been shown
to converge much faster than arbitrary ordering of backups. In the POMDP
case, implementing the prioritized approach is much harder, because beliefs
can have an infinite number of predecessors, making the backward di↵usion
of values di�cult, and because, with the ↵-vector representation, each backup
may introduce a new vector that changes the value of many states.

An alternative approach leverages the structure of the underlying MDP
state space, in particular for domains where the state space has a DAG struc-
ture, or when the states can be clustered into larger components that have a
DAG structure (Bonet and Ge↵ner, 2003; Dai and Goldsmith, 2007). In such
cases, we can compute the value function over the components in reversed
DAG order. We start with the leaves of the graphs and compute the value of
a component only if all its successors have already been computed. The same
idea has been transformed into the POMDP world, and can be applied also
to domains that are not strictly DAGs (Dibangoye et al, 2009).

Finally, one can combine both information about the value function and
information about the structure of the state space. We could use the optimal
policy of the MDP to cluster states into layers, such that states that are closer
to the goal, following the MDP policy belong to a higher level than states
that are farther than the goal. For example, states that can get to the goal
using a single action, following the MDP optimal policy may belong to the
last layer, while states that require two actions to get to the goal belong to
the layer before last. Then, we can associate belief points to layers given their
probability mass over states in specific layers. We then iterate over the layers
in reversed order, selecting belief points to update only from the active layer
(Virin et al, 2007).

All these approaches still su↵er to some degree from the same limitations
as Perseus, namely, the random collection of belief points, and the di�culty of
maintaining a large set of belief points. In fact, as all these methods compute
additional information, such as the belief clusters, the iterative approach sug-
gested towards the end of the previous section becomes harder to implement.

A Survey of Point-Based POMDP Solvers 23

4.3 Heuristic Search Value Iteration (HSVI)

The randomization aspects of Perseus are well suited to the small to mid-
sized domains that were most prevalent a decade ago. Yet, as we argue above,
applying Perseus to more complex domains may fail, because of its unguided
collection of belief points and the random order of backups over the collected
beliefs. For value function updates, there exists a simple, yet e↵ective, heuristic
— maintain the order by which belief points were visited throughout the trial,
and back them up in a reversed order. As the value of a belief is updated
based on the value of its successors (see Equation 26), updating the successors
prior to updating the current belief may accelerate the convergence of value
iteration. This insight is a prime component of the Heuristic Search Value
Iteration (HSVI) approach (Smith and Simmons, 2004, 2005).

Another important contribution of HSVI is in the heuristic it uses to focus
belief point collection on the points that are most relevant to the value func-
tion. This is achieved using the bound uncertainty heuristic; by maintaining
both an upper and lower bound over the value function, we can consider the
di↵erence between the bounds at a specific belief as the uncertainty at that
belief. The higher this distance, the more uncertain we are about the optimal
value at that belief. Assuming the points considered are successors of the ini-
tial belief, b0, then reducing these bounds contributes directly to reducing the
bounds at b0. When the distance between the bounds has dropped below some
threshold on b0, we can claim that value iteration has converged. This con-
vergence is di↵erent than the guaranteed convergence of exact value iteration,
where the value function is within a certain distance for every possible belief
state. Still, in a discount-based POMDP with a given initial belief, one can
argue that we only care about the expected discounted sum of rewards that
could be earned starting at the given b0, and hence that value iteration has
converged when this expected discounted sum has been accurately computed.

Formalizing this idea, HSVI greedily selects successors so as to maximize
the so-called excess uncertainty of a belief:

excess(b, t) = (V (b)� V (b))� ✏

�t

, (46)

where V is the upper bound and V is the lower bound on the value function,
✏ is a convergence parameter, and t is the depth of b (i.e. number of actions
from b0 to b) during the trial.

When selecting actions during the trial, HSVI chooses greedily based on
the upper bound. The reason is that as the value function is updated, the
upper bound is reduced. Therefore, an action that currently seems optimal,
based on the upper bound, can only have its value reduced. Eventually, if the
action is suboptimal, its value will drop below the value of another action.
Choosing greedily based on the lower bound will have the opposite e↵ect. The
action that currently seems optimal can only have its value increase. Hence,
if the current action is suboptimal we will never know that if we do not try
other actions.

24 Guy Shani et al.

Algorithm 5 HSVI
Function HSVI
1: Initialize V

¯
and V̄

2: while V̄ (b0)�V
¯

(b0) > ✏ do
3: BoundUncertaintyExplore(b0, 0)

Function BoundUncertaintyExplore(b, t)
1: if V̄ (b)�V

¯
(b) > ✏��t then

2: // Choose the action according to the upper bound value function

3: a⇤ argmax
a

Q
V̄

(b, a0)
4: // Choose an observation that maximizes the gap between bounds

5: o⇤ argmax
o

(Pr(o|b, a⇤)(V̄ (ba,o)�V
¯

(ba,o)� ✏��(t+1)))

6: BoundUncertaintyExplore(ba

⇤
,o

⇤
, t + 1)

7: // After the recursion, update both bounds

8: V
¯

= V
¯
[backup(b,V

¯
))

9: V̄ (b) JV̄ (b)

Once the trial has reached a belief b at depth t such that V (b)�V (b) ✏

�

t

,
the trial terminates, because the potential change to the value at b0 from
backing up the trajectory is less than ✏. Then, the beliefs along the trajectory
explored during the trial are backed up in reverse order. That is, we first
execute a backup on the belief that was visited last. Both the upper and lower
bounds must be updated for each such belief. An ↵-vector that results from
the backup operation is added to the value function V , and a new belief-value
mapping is added to the upper bound. The HSVI approach is outlined in
Algorithm 5.

This incremental method for updating V allows the computation of back-
ups over many belief points, without the requirement to maintain all those
beliefs in memory. However, the incremental update poses a new challenge:
as opposed to PBVI that has a single vector per observed belief point b 2 B
at most, HSVI may visit the same belief point in many trials, or even several
times during the same trial, and add a new vector for each such visit. It is also
likely that vectors that were computed earlier, will later become dominated
by other vectors. It is useful to remove such vectors in order to reduce the
computation time of the backup operator.

An advantage of the bound uncertainty heuristic is that HSVI provably
converges to the optimal value function. As HSVI seeks the beliefs where
the gap between the bounds is largest, and reduces these gaps, it reduces at
each iteration the gap over the initial belief state b0. Once the gap over b0

drops below ✏, we can be certain that the algorithm has converged. Moreover,
HSVI guarantees termination after a finite number of iterations, although this
number is exponential in the maximal length of a trial.

The upper bound is represented using belief-value mappings, and projec-
tions are computed using the Sawtooth approximation (Algorithm 1).

In later work, Smith and Simmons suggest revising the selection of the
best current ↵-vector — argmax

↵2V

b · ↵ — to only consider ↵-vectors that
were computed for beliefs that had the same set of non-zero entries (Smith

A Survey of Point-Based POMDP Solvers 25

and Simmons, 2005). They introduce masks to rapidly compute which vectors
are eligible for selection.

Breadth First Search

While HSVI uses a depth-first search, it is also possible to use a breadth-first
search, still focused on beliefs where the gap between the bounds contributes
the most to the gap over the initial belief state b0. Poupart et al (2011) suggest
in their GapMin algorithm (Algorithm 6) to use a priority queue to extract
the belief that contributes the most to the initial belief gap. This belief is then
expanded, i.e., its successors are computed and added to the priority queue. In
expanding the belief, only the best action for the upper bound is considered,
as in HSVI. Unlike HSVI, however, all possible observations are expanded.
After collecting the belief points, GapMin updates the lower bound using the
PBVI improvement (Algorithm 3).

Algorithm 6 GapMin
Function GapMin
1: Initialize V

¯
and V̄

2: while V̄ (b0)�V
¯

(b0) > ✏ do
3: B CollectSuboptimalBeliefs(V

¯
, V̄)

4: Improve(V
¯

, B)
5: Update(V̄)

Function CollectSuboptimalBeliefs(b, t)
1: B �
2: pq the empty priority queue
3: pq.Insert(< b0, V̄ (b0)�V

¯
(b0), 1, 0 >)

4: while pq 6= � do
5: < b, score, prob, depth > pq.ExtractMaxScore()
6: // Choose an action following the upper bound

7: a⇤ argmax
a

Q
V̄

(b, a0)
8: // If the upper bound at the new point can be improved, add the mapping to V̄
9: if V̄ (b)�Q

V̄

(b, a⇤) > tolerance then
10: V̄ V̄ [{b, Q

V̄

(b, a⇤)}
11: // If the lower bound at the new point can be improved, add b to B
12: ↵ backup(V

¯
, b)

13: if ↵ · b�V
¯

(b) > tolerance then
14: B B [b
15: // Add all the successors of the b with a gap above the threshold to the priority queue

16: for each o 2 ⌦ do
17: gap V̄ (b

a

⇤
,o

)�V
¯

(b
a

⇤
,o

)
18: if �depth+1 · gap > tolerance then
19: prob

o

 prob · Pr(o|b, a)
20: score prob

o

· �depth+1 · gap
21: pq.Insert(< b

a

⇤
,o

, score, prob
o

, depth + 1 >)

Another important contribution of the GapMin algorithm is with respect
to the upper bound representation and update. Poupart et al (2011) observe
that the belief points used to interpolate the upper bound value for a given

26 Guy Shani et al.

belief remain stable, even when their upper bound value changes. Thus, by
caching these interpolation points, one can compute the interpolation very
rapidly. The Update procedure for the upper bound in Algorithm 6 defines
a POMDP called the Augmented POMDP that uses the interpolation points
to define a tighter upper bound with a smaller set of belief-value mappings.
In the latter sections of this paper we do not explore various representation
and interpolation techniques for the upper bound, although this is certainly
of interest and may significantly a↵ect point-based algorithms.

Other Heuristics for Forward Search

HSVI uses the bound uncertainty heuristic in choosing trajectories, but other
heuristics could be considered. The Forward Search Value Iteration (FSVI) al-
gorithm (Shani et al, 2007) leverages a di↵erent insight; it constructs trajecto-
ries in belief space using the best action following the policy of the underlying
MDP. Such trajectories typically focus the belief search towards areas of high
expected reward, and do so quickly by ignoring partial observability. Once
a trajectory in belief space has been acquired, value updates are applied in
reverse order of belief collection to construct an improved value function.

An obvious limitation of this heuristic is that it does not select actions that
can reveal information about the true state of the environment. For example, if
collecting information requires a sequence of actions that moves the agent away
from the goal/rewards (Ge↵ner and Bonet, 1998), FSVI will not attempt these
trajectories, and will not learn how the information can a↵ect the policy. Still,
FSVI will evaluate these actions during the point-based backup operation.
Thus, if information can be obtained using some action in the current belief
state, this action will be evaluated and may become a part of the policy. The
FSVI approach is outlined in Algorithm 7.

Algorithm 7 FSVI
Function FSVI
1: Initialize V
2: while V has not converged do
3: Sample s0 from the b0 distribution
4: // Compute a trajectory assuming that s0 is the initial state

5: MDPExplore(b0, s0)

Function MDPExplore(b, s)
1: if s is not a goal state then
2: // Choose an action following the MDP policy for the current sampled state s
3: a⇤ argmax

a

QMDP (s, a)
4: // Sample the next state and belief state

5: Sample s0 from T (s, a⇤, ⇤)
6: Sample o from O(a⇤, s0, ⇤)
7: MDPExplore(ba

⇤
,o, s0)

8: V V [backup(b, V)

A Survey of Point-Based POMDP Solvers 27

Another interesting heuristic suggests restricting the set B only to points
that are visited during the execution of an optimal policy is su�cient to con-
struct an optimal policy (Kurniawati et al, 2008). Therefore, executing backups
on belief points that are not visited during the execution of an optimal policy
can be redundant. We can thus ignore all belief points that clearly will not
be visited under an optimal policy. Kurniawati et al. show how we can estab-
lish that certain belief states will not be visited following an optimal policy
without actually computing that optimal policy, and prune these beliefs from
B.

While computing the optimal policy is the problem that we set out to solve
to begin with, we can use the upper and lower bounds of HSVI in order to
establish that certain actions will never be taken. The SARSOP algorithm
maintains a belief tree, with b0 as its root, and prunes out subtrees that will
never be visited under the optimal policy (Kurniawati et al, 2008); given a
lower and upper bound on the value function, we can sometimes discover that
an action a is not optimal in a certain belief state b, because Q̄(b, a) < Q(b, a0)
for some other action a0. In these cases, the entire subtree below the execution
of a in b can be pruned out.

SARSOP also introduces a trial termination criterion that emphasizes
longer trials, called selective deep sampling. Under this criterion, the trial
continues when it is likely to lead to improvements in the lower bound value
at belief points earlier in the search. Such improvements can be predicted using
a mechanism to estimate the optimal value V ⇤(b) at the current belief point.
SARSOP introduces a clustering based algorithm for providing estimates of
V ⇤.

Bonet and Ge↵ner (2009) show that discount-based POMDPs can be easily
translated into cost-based goal-oriented POMDPs, where there is an observable
goal state that has zero cost and all other states incur a non-zero cost for
every action. In such a POMDP one can use the well known RTDP algorithm
(Barto et al, 1995) which provably converges to the optimal value function. An
opportunity that was not explored thus far is to use RTDP as a forward-search
heuristic for gathering belief points.

4.4 Related Methods

Several ideas related to the point-based concept have arisen in literature. We
review such ideas in this section, for the purpose of o↵ering a comprehensive
review of the topic. However we do not empirically evaluate these methods
in the latter sections of the paper. Nevertheless, these ideas may be useful in
some domains.

Izadi et al (2005) suggest a novel strategy for choosing B, that leverages
intuitions from predictive state representations (PSRs)(Littman et al, 2001).
Following the PSR idea of the history-test matrix, they suggest building a
history-belief matrix, and compute a set of core beliefs — beliefs that form a
basis of the belief simplex. These beliefs form the set B that will be used to

28 Guy Shani et al.

compute the value function. The worst-case error of the value function using
this method for selecting B is better than the PBVI approach of covering the
belief space as closely as possible. A downside of this method is that computing
the core beliefs is non-trivial, and the construction of the matrix must rely
on heuristics that no longer guarantee better performance. Even given these
approximations, the computation of the matrix is still expensive and di�cult
to scale.

In another paper, Izadi et al (2006) suggest emphasizing the selection of
belief points that are reachable in fewer steps from b0, because due to discount-
ing, these beliefs may have a greater influence on the value at b0. In addition,
they suggest favoring expansion of beliefs that have extreme (either high or
low) values since those are likely to have a larger e↵ect on the convergence of
the value function.

Policy iteration using a finite state controller representation of a policy is
another approach to solving POMDPs (Hansen, 1998; Poupart and Boutilier,
2003). Policy iteration iterates between two phases: a policy evaluation phase
and a policy improvement phase. In the policy evaluation phase the value of
the current policy must be computed. This can be done using a point-based
approach, where the backup operation is restricted to a specific action — the
action dictated by the current policy (Ji et al, 2007). This method has shown
very promising empirical results.

Armstrong et al. suggest improving the convergence of point-based algo-
rithms by adding a policy improvement phase motivated again by policy iter-
ation (Armstrong-Crews et al, 2008). They show that both the upper bound
and lower bounds, when described by hyperplanes, form an MDP. Thus, they
suggest a value iteration procedure over these MDPs that improves the bounds
towards V ⇤. The improvement uses the belief points in B, and can therefore
be considered a variant on point-based value function improvement.

Scaling up of POMDP solvers can also be achieved through the relatively
new area of parallel and distributed computing. Modern systems have multiple
processors on each machine, and large distributed systems are quickly becom-
ing popular for performing heavy computations. The adjustment of POMDP
algorithms to these new computation models is probably needed for scaling
to real-world problems. Preliminary results show that such point-based algo-
rithms can benefit from multi-core machines (Shani, 2010). Creating point-
based algorithms for the more scalable GPU architecture and to large dis-
tributed environments remains an open problem.

In structured domains, POMDPs are best described through factored mod-
els, which can o↵er a more compact representation of the problem. Point-based
algorithms have been applied to factored POMDPs, using algebraic decision
diagrams for ↵-vector representation (Poupart, 2005; Shani et al, 2008b; Sim
et al, 2008). In some domains, further scaling can be achieved through more
compact representations such as relational or first-order POMDPs (Sanner
and Kersting, 2010; Wang and Khardon, 2010).

A Survey of Point-Based POMDP Solvers 29

4.5 Reducing the Size of V

One core motivation of the point-based approach is the attempt to maintain a
compact representation of the value function. As the complexity of the point-
based backup, which lies at the core of all point-based algorithms, depends on
the number of ↵-vectors in V , keeping this number low is key to scaling up
to longer horizons and larger domains. The inability to maintain small value
functions is perhaps the main reason for the failure of exact methods to scale
up beyond small domains.

PBVI and Perseus maintain a bounded value function where, at each iter-
ation, the value function has at most |B| vectors. Trial-based algorithms such
as HSVI and FSVI that incrementally add new vectors to the value function
no longer maintain this property. For the latter set of algorithms, reducing the
size of V becomes an important issue. Even for PBVI, reducing the size of V is
always desirable, because the complexity of the point-based backup operation
depends on |V |.

A simple method for pruning vectors is to remove pointwise dominated
vectors. We say that a vector ↵1 is pointwise dominated by a vector ↵2 if for
each s 2 S, ↵1(s) ↵2(s). Finding pointwise dominated vectors is relatively
easy. However, a vector may be dominated by a set of vectors, but not by any
single vector. These cases can be detected by a linear program that tries to
find a witness for every vector ↵ — a belief point b for which ↵ is optimal,
that is, ↵ = argmax

↵

02V

b ·↵0 (see, e.g., Cassandra et al (1997)). If no witness
can be found (the linear program has no solution), then we can prune out ↵.
However, solving this linear program is computationally intensive, and there
is currently no known fast method for pruning vectors. An important property
of point-based algorithms is the ability to prune vectors that have no witnesses
in B. When B is relatively small, and we do not incrementally add vectors to
V , this process can be e�cient. However, for larger belief sets, and incremental
algorithms such as HSVI, this process is no longer practical.

Several other heuristics were suggested for pruning vectors; in a trial-based
approach, Armstrong-Crews et al (2008) suggest a pruning technique based
on the points that were observed during the execution of the current policy.
Pruning all vectors that are not used by these beliefs may cause the value
function to degrade. However, maintaining all the vectors that are used by
either points that were observed (backed up) or their successor beliefs ensures
that the value function still monotonically improves in a sense. Still, computing
this pruning strategy requires that we maintain all the beliefs that were backed
up and their successors, which may become a burden in larger domains.

A more focused heuristic prunes more aggressively by keeping only vectors
that are used in the execution of the currently best policy. When executing
a policy, we iteratively update a belief and compute the best vector for the
current belief. Removing all vectors that are never selected in this process will
not modify the currently optimal policy, even though it may change the value
function. Running multiple such trials may consume too much computation
power in regular architectures, but in multi-core environments, a single core

30 Guy Shani et al.

can be dedicated to executing trials and pruning vectors that were not observed
in these trials (Shani, 2010).

Kurniawati et al. use the same idea — removing ↵-vectors that are not
optimal for any belief point observed throughout the execution of the optimal
policy (Kurniawati et al, 2008). As we explained above, SARSOP identifies
belief sets that will never be visited during the execution of an optimal policy,
and can ignore these points when deciding which vectors have witnesses in B.

In general, even though point-based methods benefit from rapid pruning
techniques, pruning is not an essential part of point-based methods. One can
always limit the growth of the value function by limiting the size of B. Typ-
ically, there is a choice to be made between either spending more resources
deciding which belief points to collect, or collecting a larger set of belief points
and spending time afterwards pruning the value function.

5 Empirical Evaluation Methodology

In the previous section we have reviewed the majority of point-based algo-
rithms and their derivatives. Each algorithm employs ideas that make it more
suitable for certain features of a domain. Researchers or practitioners inter-
ested in solving specific problems need to choose an appropriate algorithm for
the properties of their domain. Indeed, it is not the case that a single algorithm
proves best in all possible domains, and di↵erent choices of algorithms may
result in substantially di↵erent performance. It is thus important to show how
the properties of various domains influence the performance of point-based
algorithms.

In our empirical evaluation, we aim to characterize the performance of
di↵erent algorithmic approaches in di↵erent domains. We chose a set of well-
known benchmark domains that illustrate di↵erent properties that appear in
real-world problems. We are interested in understanding what properties of a
domain can be tackled by what algorithmic approach. Thus, in this section we
will not report an exhaustive execution of all algorithms over all domains, but
rather a set of experiments that explore properties that are broadly represen-
tative of contrasting real-world domains.

Many algorithms employ a set of loosely coupled innovations. We would
like to evaluate how each of these ideas is appropriate for various domain
properties. As such, we implement independently the core algorithmic compo-
nents, in particular the choice of belief point selection method, and the choice
of value function update method. We then evaluate each variation of these
components independently. Again, this is in contrast to standard empirical
evaluations which report results for many (full) algorithms.

The advantage of organizing the empirical analysis in this manner are
many; first, we highlight the relation between the di↵erent algorithmic meth-
ods. Second, we gain better understanding of the empirical advantages and
disadvantages of the various components. Third, we provide evidence-based

A Survey of Point-Based POMDP Solvers 31

recommendations on which methods are applicable for specific classes of do-
mains.

This section describes how we conducted our empirical evaluation. First,
we review the algorithmic methods included in the evaluation. Then we discuss
the experimental domains used throughout the analysis, and finally we outline
the empirical measure used to compare the various methods.

5.1 Core Algorithmic Components

As discussed above, the two key components of modern point-based POMDP
solvers are the belief collection and value update methods. The algorithms
presented in Section 4 di↵er on one or more of these components. Table 1
provides a detailed mapping between the algorithms — as originally published,
and as reviewed in Section 4 — and their collection and update methods. We
define each algorithmic component in detail below.

Algorithm COLLECT UPDATE

PBVI (Pineau et al, 2003a) L1 Norm Full Backup
Perseus (Spaan and Vlassis, 2005) Random Perseus Backup
HSVI (Smith and Simmons, 2005) Bound Uncertainty (depth-first) Newest Points Backup
GapMin (Poupart et al, 2011) Bound Uncertainty (breadth-first) Full Backup
PEMA (Pineau and Gordon, 2005) Error Minimization Full Backup
FSVI (Shani et al, 2008a) MDP Heuristic Newest Points Backup

Table 1 An outline of a variety of point-based solvers, where we identify the associated
collection and updating methods. Some of these methods feature additional components (for
example, HSVI’s masked ↵ vectors) that were not included in our analysis.

5.1.1 Belief Point Collection Methods

Recall from Algorithm 2 that the set of beliefs, B, is expanded at each iteration
to yield a new set of points B

new

:

B
new

 COLLECT (V
t

, B, N). (47)

The belief collection method may depend on the current value function V
t

,
and the previous set of beliefs B. The parameter N represents the number of
new points to add.

All the belief point collection methods outlined in Table 1 were discussed
in Section 4. Still, for the sake of clarity, we include below pseudo-code for
the collection steps only, since in some cases minor changes are necessary
(compared with the initial full algorithm) to separate the value function update
from the belief collection method.

The Perseus algorithm uses Random forward simulation to collect belief
points. Algorithm 8 outlines this simple procedure. Whereas Perseus is de-
scribed in the original publication as collecting (only) one initial batch of

32 Guy Shani et al.

beliefs at the start of the algorithm, here we generalize the method to allow
collection of new belief points at each collection step, in keeping with the
general framework of Algorithm 2.

Algorithm 8 Random forward simulation for collecting belief points (Perseus)
Function RandomCollect(N)
1: B �
2: b b0
3: while |B| < N do
4: Choose a 2 A randomly
5: Choose o 2 ⌦ following the Pr(o|b, a) distribution
6: Add ba,o to B
7: b ba,o

8: if b is a goal state then
9: b b0

FSVI adopts a more informed approach, where the MDP heuristic guides
the collection of belief points. The procedure as implemented for our analysis
is presented in Algorithm 9. As with the random exploration belief, we iterate
over belief traces until we have accumulated N belief points.

Algorithm 9 Collection of belief points guided by the MDP solution (FSVI)
Function FSVICollect(N)
1: Initialize B �
2: while |B| < N do
3: Sample s0 from the b0 distribution
4: MDPExplore(B, b0, s0)
5: return B

Function MDPExplore(B, b, s)
1: if s is not a goal state then
2: a⇤ argmax

a

QMDP (s, a)
3: Sample s0 from T (s, a⇤, ⇤)
4: Sample o from O(a⇤, s0, ⇤)
5: Add ba

⇤
,o to B

6: if |B| = N then
7: return
8: MDPExplore(B, ba

⇤
,o, s0)

HSVI guides the forward exploration based on the bound uncertainty
heuristic, that selects successor beliefs where the gap between the bounds
is maximized. As the bounds get updated along the trajectory, the forward
exploration and value function update are tightly coupled in HSVI. To reduce
this dependency we have decided to use the following separation technique —
we update only the upper bound, and leave the lower bound point-based up-
dates to the value function update phase (Algorithm 10). This change makes
our HSVI-motivated belief collection method quite di↵erent from the original
HSVI algorithm. Still, we believe that the change is in the spirit of the HSVI

A Survey of Point-Based POMDP Solvers 33

algorithm, that uses the upper bound for guiding the search, and the lower
bound for the resulting policy.

Algorithm 10 Collection of belief points guided by the bound uncertainty
heuristic (HSVI)
Function HSVICollect(N)
1: Initialize B �
2: while |B| < N do
3: BoundUncertaintyExplore(B, b0, 0)
4: return B

Function BoundUncertaintyExplore(B, b, t)
1: if V̄ (b)�V

¯
(b) > ✏��t then

2: a⇤ argmax
a

Q
V̄

(b, a0)
3: o⇤ argmax

o

(Pr(o|b, a⇤)(V̄ (ba,o)�V
¯

(ba,o)� ✏��(t+1)))

4: Add ba

⇤
,o

⇤
to B

5: if |B| = N then
6: return
7: BoundUncertaintyExplore(B, ba

⇤
,o

⇤
, t + 1)

8: V̄ (b) JV̄ (b)

GapMin uses exactly this tactic — choose beliefs first and update them
later. It hence required no modification to fit our framework, except for limiting
the number of collected points to N (Algorithm 11).

Algorithm 11 Collection of belief points guided by the bound uncertainty
heuristic (GapMin)
Function GapMinCollect(N)
1: B �
2: pq the empty priority queue
3: pq.Insert(< b0, V̄ (b0)�V

¯
(b0), 1, 0 >)

4: while |B| < N and pq 6= � do
5: < b, score, prob, depth > pq.ExtractMaxScore()
6: a⇤ argmax

a

Q
V̄

(b, a0)
7: if V̄ (b)�Q

V̄

(b, a⇤) > tolerance then
8: V̄ V̄ [{b, Q

V̄

(b, a⇤)}
9: ↵ backup(V

¯
, b)

10: if ↵ · b�V
¯

(b) > tolerance then
11: B B [b
12: for each o 2 ⌦ do
13: gap V̄ (b

a

⇤
,o

)�V
¯

(b
a

⇤
,o

)
14: if �depth+1 · gap > tolerance then
15: prob

o

 prob · Pr(o|b, a)
16: score prob

o

· �depth+1 · gap
17: pq.Insert(< b

a

⇤
,o

, score, prob
o

, depth + 1 >)

The sampling-based L1 norm belief set expansion collection algorithm,
outlined in Algorithm 12, is based on the original PBVI algorithm (Pineau
et al, 2003a). Unlike in the original PBVI implementation, where the size of

34 Guy Shani et al.

the belief set was doubled at each collection step by creating a successor belief
for each b 2 B, here we only increase the set by N , by randomly picking N
parent beliefs from B. This is done again to allow a consistent comparison
between methods and control the various experimental conditions.

Algorithm 12 Sampling-based implementation of L1 norm belief set expan-
sion (PBVI)
Function PBVICollect(B,N)
1: Initialize B

new

 B
2: while |B

new

|� |B| < N do
3: Choose b 2 B
4: for each a 2 A do
5: Choose o 2 ⌦ following the Pr(o|b, a) distribution
6: b0

a

 ba,o

7: B
new

 B
new

[argmax
a2A

|b0
a

�B|
L

8: return B
new

The Error Minimization collection method (Algorithm 13) is the expansion
method of the PEMA algorithm. As with the other methods, we collect N be-
lief points, instead of only a single new belief per iteration. Each new collected
belief is considered for being the parent belief point for the next belief.

Algorithm 13 Error Minimization Collection Algorithm (PEMA)
Function PEMACollect(B,N)
1: Initialize B

new

 B
2: while |B

new

|� |B| < N do
3: b

max

= max
b2B[B

new

✏(b)
4: b0 = max

a2A,o2⌦

Pr(o|b, a)✏̂(ba,o)
5: B

new

 B
new

[{b0}
6: return B

new

Table 2 summarizes the computational complexity of each of the belief
collection subroutines.

An obvious omission from the set of methods above is the SARSOP algo-
rithm (Kurniawati et al, 2008). This is because in the SARSOP algorithm, the
various components (belief collection, value function update, vector pruning)
are tightly tied together. After a thorough investigation of various approaches
for separating the various components in a way that would not diminish their
performance considerably, we have concluded that this cannot be done. Thus,
we decided not to include SARSOP in this experimental study.

5.1.2 Value Function Update Methods

Once the beliefs have been collected, point-based solvers need to decide where
to apply value function updates. This phase is expressed in the update oper-

A Survey of Point-Based POMDP Solvers 35

Belief Collection Complexity Requires MDP
Method (per belief point) Solution?

RandomCollect O(|S|2 + |⌦|) No
FSVICollect O(|S|2 + |⌦|) Yes

PBVICollect O
⇣
|A|⇥ (|S|⇥ |B| + |S|2 + |⌦|)

⌘
No

HSVICollect O
⇣
|⌦|⇥ |S|⇥ (|A|⇥ |S| + |A|⇥ |V̄ | + |V

¯
|)

⌘
Yes

GapMinCollect O
⇣
|⌦|⇥ |S|⇥ (log(|B| + |A|⇥ |S| + |A|⇥ |V̄ | + |V

¯
|)

⌘
Yes

PEMACollect O(|B|2 ⇥ |S|3 ⇥ |A|⇥ |Z|) No

Table 2 A summary of the computational complexity of belief collection methods, where
|S|=number of states, |A|=number of actions, |⌦|=number of observations, |B|=number
of belief points, |V̄ |=number of belief-value mappings in the upper-bound, |V

¯
|=number of

↵-vectors. The computations above assume that the projection of a belief onto the upper
bound requires |V̄ |⇥ |S| computations.

ation of the generic point-based method, Algorithm 2:

V
t+1 UPDATE(V

t

, B,B
new

). (48)

There are a number of important considerations at this phase; first we need to
decide at which belief points to apply Bellman backup. The order of backups
over the selected points is also important.

In a Full Backup, we execute backup(b) on each belief in the full set of
belief points, including the most recent points, i.e. B[B

new

. This is the backup
method originally used in PBVI and PEMA. Backing up a belief point multiple
times may be advantageous when belief collection is particularly expensive
(e.g. as in PEMA), or when the values of the successor beliefs are changing.
When the computational cost of expanding B is low (e.g., FSVI and Perseus),
or when the points collected at first have a lower value (e.g., HSVI collects
more important points as the upper bound becomes tighter), a full backup
may be wasteful.

In Newest Points Backup, the backup(b) operator is applied only to the
points b 2 B

new

. This approach was first suggested as part of trajectory-based
algorithms, such as HSVI. These algorithms construct at each belief expansion
phase a trial that begins at b0. As such, improvements to the policy would be
made across the entire planning horizon. In methods such as PBVI, where the
belief tree is expanded by adding new leaves, this method makes little sense,
because if we update only the values at the newly added leaves, the change in
value will not be noticed at the inner nodes.

An alternative to these two methods was suggested in the Perseus algo-
rithm (Spaan and Vlassis, 2005). This approach, henceforth called the Perseus-

Backup, uses a random order of backups, but ensures that after each iteration
the values of all beliefs have been improved. Intuitively, this method encour-
ages smaller value functions, but may be problematic in domains where the
order of backups is important.

36 Guy Shani et al.

5.1.3 Value Function Pruning

As we have discussed above, pruning is less crucial in point-based methods
than in exact solvers, but some simple pruning can still be useful in reducing
computation time and memory consumption.

During belief updating, for each belief point b, we compute ↵
new

= backup(b).
However, instead of directly adding ↵

new

to V , we check whether the new vec-
tor has improved or maintained the value at the current point b — ↵

new

· b >
V (b). We discard vectors that do not satisfy this condition. Note that in doing
so, it is possible that we will prune ↵-vectors which would be optimal for some
other b0 6= b. Still, this optimization provides a considerable reduction in the
size of V and hence a significant speedup in practice.

In the ↵-vector based value function representation we care only about the
upper envelope of the value function. Vectors that do not participate in this up-
per envelope are called dominated. One could prune dominated vectors using a
procedure that employs linear programs, but this procedure is computationally
expensive. However, some vectors may be completely dominated by a single
vector. That is, there may exist an ↵ 2 V such that; ↵(s) ↵

new

(s) for all
s 2 S. Such vectors are called vectors pointwise dominated. When adding ↵

new

to V , we prune all vectors that are pointwise dominated by ↵
new

. Note that
↵

new

cannot be dominated because we already insured that ↵
new

· b > V (b).
Some methods, in particular SARSOP, include other routines for pruning

the set of ↵-vectors. We did not investigate this issue in our empirical work,
because successful pruning of V is still in many ways an under-explored issue,
especially with respect to its impact on balancing time and memory, and we
decided to focus on other important questions in this paper.

5.2 Domains

In recent years, the POMDP community has evolved a set of benchmarks
problems, each motivated by an interesting real-world problem, such as path
planning, human-robot interaction, space exploration, or knowledge discovery.
We hand-picked a number of domains from this benchmark set, with the goal
of spanning the range of properties that a↵ect the performance of point-based
algorithms. Below, we review the selected domains and their properties.

Domain |S| |A| |⌦| Transitions Observations Horizon

Hallway2 92 5 17 stochastic stochastic 29
Tag 870 5 30 stochastic deterministic 30
RockSample[7,8] 12545 13 2 deterministic stochastic 33
Underwater Navigation 2653 6 102 deterministic deterministic 62
Tiger-grid 36 5 17 stochastic stochastic 8
Wumpus 7 1568 4 2 deterministic deterministic 16

Table 3 The domains used in our experiments. Horizon is a crude estimation of the average
number of steps required to solve the problem, i.e. reach a goal or a reward state.

A Survey of Point-Based POMDP Solvers 37

Hallway2 (Littman et al, 1995) is a classic small robot navigation do-
main. There are several other similar benchmark problems that were proposed
around the same time. These domains are relatively small compared to newer
benchmarks, in terms of the number of states and observations, but exhibit
a stochastic transition and observation functions that result in a very dense
belief state. That is, throughout the execution of a policy, many states have
non-zero probabilities.

Tiger-grid (Littman et al, 1995) is another classic example, designed to
demonstrate the value of information. An agent must figure out its location in
a maze in order to find the right exit. The agent must take actions that move
it outside the path to the door in order to discover where it is. While this
domain is relatively small, it can be surprisingly challenging, even for modern
solvers due to high state aliasing.

In both Hallway2 and Tiger-grid, we used a slightly di↵erent version of
the benchmark, where the goal state is an absorbing, zero-reward, sink state.
Due to historical settings (Littman et al, 1995), experiments on these bench-
marks were stopped once the goal state has been reached, and reported ADRs
on these domains in the community used this non-standard setting, while the
computed value function using the model definition considered restarts once
the goal state has been reached. Replacing restarts with absorbing states re-
moved the need to stop the ADR computation once the goal has been reached.

Tag (Pineau et al, 2003a) (also called sometimes TagAvoid) is a domain
where an agent tries to find an opponent in a T-shaped room. The opponent
is purposefully hiding, and the agent observes it only if it is in the same
location as the opponent. The agent movements are stochastic and it has full
observability over its own location. The opponent moves stochastically away
from the agent. This domain scales to larger state spaces than the traditional
maze domains, and has been used as a benchmark for most methods included
in our survey. The deterministic observations cause only a small subset of the
states (less than 30) to have a non-zero belief. Furthermore, the opponent is
typically driven to one of the three corners of the T-shaped room, and thus is
rather easy to find.

RockSample is a scalable navigation problem that models rover exploration
(Smith and Simmons, 2004). An instance of RockSample with a map size
n⇥ n and k rocks is denoted as RockSample[n, k]. The agent needs to sample
a subset of the rocks that are interesting, and has a long range sensor to
establish whether a rock is interesting or not, with a decreasing accuracy as
the agent gets farther from the inspected rock. RockSample is an interesting
domain to include since it is not strictly goal oriented.

The Underwater Navigation domain (Kurniawati et al, 2008) is an instance
of a coastal navigation problem. This domain has a large state and observation
spaces. However, it is simple in the sense that the transitions and observations
are deterministic. A primary di�culty in the Underwater Navigation domain
is that there is substantial aliasing since the state space is much larger than
the observation space. The required planning horizon is also relatively long.

38 Guy Shani et al.

Wumpus is a domain motivated by problems of the same name from the
planning community (Albore et al, 2009). An agent navigates through a grid
that hosts several monsters, called Wumpuses, along the path to the goal.
When the agent is near a cell hosting a Wumpus, it can smell the Wumpus.
However, it does not know where the smell comes from, i.e., which of the
neighboring cells contains a Wumpus. The agent must visit several neighbor-
ing cells in order to reason about the Wumpus whereabouts. This domain is
challenging because relatively lengthy detours must be made in order to know
whether a cell is safe or not.

5.3 Metrics

In POMDP planning, the goal is typically to optimize the expected stream of
discounted rewards over the planning horizon when following a policy ⇡:

E

"
TX

t=0

�tr
t

|⇡
#

. (49)

Computing this expectation exactly requires us to examine all possible action-
observation trajectories of length T following the policy ⇡. As there are |⌦|
possible observations following each action selected by ⇡, the number of such
trajectories grows exponentially with the horizon T . Thus, this expectation
cannot be computed exactly in general. We can, however, estimate the expec-
tation by simulating sampled trajectories (trials) in the environment. In each
trial, the agent begins at b0, and executes actions following ⇡. We average over
multiple executions to obtain an unbiased estimator of the expectation, known
as the Average Discounted Reward (ADR):

ADR =
1
n

nX

i=1

TX

t=0

�tr
t

|⇡, (50)

where n is the number of trials, and T is an upper bound on the trial length.
For domains with infinite planning horizons, as

P1
t=0 �tR

max

= R

max

1��

, the
di↵erence between stopping at time T and continuing to infinity is at most
�

T (R
max

�R

min

)
1��

. Hence, we can set T such that this di↵erence is bounded by a
predefined ✏.

In measuring the ADR, there is variance due to both the stochastic nature
of the domains, and, for some algorithms, due to stochasticity in the solver
itself. To control for these aspects, we execute each algorithm over the same
domain 50 times, and average the results at each time point. For clarity, we
omit the confidence intervals in most of our results (except for Section 6.2).

Throughout our results, we present the quality of the resulting policies
given a range of di↵erent planning times. This approach not only lets us detect
when a given algorithm has converged, but also allows us to evaluate the rate
of convergence, to understand which methods approach a good solution more

A Survey of Point-Based POMDP Solvers 39

quickly. The ADR is reported at specific (pre-selected and evenly distributed)
time points. To enforce this, we report the ADR for the best policy produced
(full iteration of belief collection and value update completed) before t; we do
not extrapolate between solutions.

When presenting the results, we compare the ADR achieved by various
methods over wall-clock time. Wall-clock time is problematic when comparing
results over di↵erent machine architectures and implementations. It is arguably
better to report other measures such as the number of algorithmic steps, which
generalize across machines. However, in our case, agreeing on what constitutes
a “step” is di�cult given the di↵erent approaches that we compare. Further-
more, all our algorithms use the same infrastructure, i.e., belief update and
point-based backup operations. Therefore, we believe that comparing wall-
clock time is a reasonable approach for the purposes of this analysis.

6 Empirical Analysis of Point-Based Methods

All the algorithms were implemented over the same framework, using identi-
cal basic operations, such as belief update and point-based backups. We use
sparse representations for beliefs and non-sparse representations for ↵-vectors,
where typically there is a large variation in the di↵erent entries. The imple-
mentation is highly optimized for all algorithms. All experiments were run on
a 2.66Ghz Xeon(R) CPU with 24 cores (although the implementation is not
multi-threaded) and 32GB of system memory. Results were computed by aver-
aging over 50 di↵erent POMDP solutions, since many solvers have stochastic
components. The averaged discounted return (ADR) was computed by simu-
lating the policy on the environment for 500 trajectories (for each of the 50
di↵erent solutions). The ✏ parameter for HSVICollect was set to ✏ = 0.001.
Empirically, the results are not very sensitive to this parameter.

6.1 Choosing a method for belief collection

The first set of experiments explores the performance of various belief col-
lection routines. The objective is to see if we can draw overall conclusions on
how the choice of collection method a↵ects the speed of convergence, as well as
seeing whether this is domain-dependent. Throughout these experiments, we
vary the belief selection routine, but keep other parameters mostly fixed. Un-
less otherwise specified, the number of points collected at each step is N = 100
for all collection methods, except PEMACollect which uses N = 10 (since this
collection routine is much slower than the others). The value function is up-
dated using a FullBackup, and unless mentioned otherwise, we do a single
round of value updates per iteration (U = 1).

The results for the Hallway2 and TagAvoid domains are presented in the
top row of Figure 1. The primary observation is that many methods find a
solution within 50 seconds. We observe that HSVICollect and GapMinCollect

40 Guy Shani et al.

Fig. 1 Comparison of di↵erent belief collection methods in six contrasting domains. Value
updates are done using the FullBackup method. We collect N = 100 new belief points
(N = 10 for PEMACollect) at each iteration. We perform U = 1 value update over all
points. All graphs show ADR in the Y axis given time (seconds) in the X axis.

are slower for Hallway2. This is attributed to the fact that this domain features
many observations, which causes a high branching factor in the belief search.
GapMinCollect starts slowly, but then rapidly converges to a good solution,
probably once the breadth-first search found a belief with a high probability
on the goal state. PEMACollect is slower in TagAvoid. As we will see later, it
does not perform very well in many domains, mainly due to scalability issues
in domains with large number of states (more than a few dozen).

Next, we consider two types of domains — navigation-type domains, and
information-type domains; two examples of each are presented. These are more
challenging domains than those presented above.

A Survey of Point-Based POMDP Solvers 41

The middle row of Figure 1 shows the results for the two navigation-type
domains, known in the literature as RockSample[7,8] and UnderwaterNaviga-
tion. Here we see more di↵erentiation between belief collection methods. These
domains are larger than the ones considered in the top row, and require more
informed belief collection. FSVICollect is the best method for the RockSam-
ple domain. The MDP heuristic leads it rapidly to the good rocks, and in this
domain there is no need for moving away from rewards to collect information.
RandomCollect does poorly in this domain, because there are many random
trajectories here that do not lead to the interesting rewards. GapMinCollect
also does not do well on this domain while HSVICollect does fairly well, prob-
ably because with the relatively long planning horizon in this domain is more
appropriate for depth first, rather than breadth first search. PEMACollect is
well below all other methods, due to the significant computation time of each
belief expansion (cubic in the number of states).

We see more di↵erentiation between methods in UnderwaterNavigation.
Here, HSVICollect performs the best, benefitting from the optimistic explo-
ration bias and the deterministic transitions. GapMinCollect that uses the
same action selection heuristic, but explores by breadth first search takes
longer but achieves similar performance. PBVICollect and RandomCollect are
less good, because they explore many suboptimal branches. FSVICollect also
has suboptimal performance here because it does not execute smart informa-
tion gathering required in this domain. PEMACollect performs very erratically
here.

This non-monotonic performance of PEMACollect in UnderwaterNaviga-
tion may seem unintuitive; it is not impossible for an algorithm to exhibit
such behavior especially when there are few belief points supporting the value
function. Recall that PEMACollect adds a very small number of belief points
(10, rather than 100) between value update steps. As a result, the solution at
time T = 100 for PEMACollect is computed with roughly 200 belief points,
compared to 500 belief points for HSVI; this is for a domain with 2653 states.

Notice that after 100 seconds of computation in UnderwaterNavigation,
most methods have not yet converged. Recall that most of the belief collection
methods considered are guaranteed to eventually converge to the optimal so-
lution (FSVICollect being the exception), though may require longer to fully
refine their solution. We terminated the experiments after 200 seconds to better
illustrate the di↵erences in convergence speeds between the di↵erent collection
methods.

Finally, we consider the results for the Tiger-grid and Wumpus domains in
the bottom row of Figure 1. Both of these domains require explicit information-
gathering sequences to achieve good performance. In the case of Tiger-grid, we
observe good performance by FSVICollect, PBVICollect, and PEMACollect.
We observe that HSVICollect does not do well in this domain, and GapMin-
Collect could not compute a reasonable policy in this domain, and remained
with an ADR of 0, and was hence removed from the graph.

Tiger-grid is especially bad for GapMin, because in this domain the agent
has to collect a di↵erentiating observation before collecting the reward. The

42 Guy Shani et al.

gap between bounds is hence maximized when the agent reaches the reward
collection without previously observing the di↵erentiating observation, because
the upper bound predicts the positive reward while the lower bound predicts
the negative punishment. The bound is tighter for the beliefs over states where
the di↵erentiating observation can be collected, and these are thus never con-
sidered. Also, separating the upper bound update and the belief collection, as
is naturally done in GapMin, but not in the original HSVI (Smith and Sim-
mons, 2005), is especially damaging here in obtaining good belief points. Note
that our results on TigerGrid di↵er from previously published results, because
we removed restarts.

The Wumpus domain is an interesting case for POMDP solvers. It is a do-
main where widely exploring the belief space — as does PBVICollect — is prof-
itable, whereas tightly guided exploration following an optimistic MDP-driven
heuristic, as in GapMinCollect, HSVICollect and FSVICollect, is a significant
disadvantage. This advantage towards breadth first exploration is also evident
from the superior performance of GapMinCollect compared to HSVICollect in
this domain.

6.2 Variance in performance

In all previous graphs, we omitted measures of uncertainty for clarity. Here
we show in Figure 2 the standard error over the empirical ADR for di↵erent
collection methods in the Tiger-grid, Wumpus, and UnderwaterNavigation do-
mains. There are two sources of variance, one from the empirical estimate of
the ADR, and the other from the stochasticity in the belief selection mecha-
nisms. In general, the variance is lowered as the algorithms converge towards
a good solution. Measures of empirical uncertainty will also be omitted from
subsequent graphs to make the graphs more readable; recall that all results
presented are computed by averaging over 50 di↵erent solutions and 500 tra-
jectories for each.

6.3 Computation profile

The various collection methods considered vary significantly in terms of com-
putational load. Time-dependent results for each method are provided above,
yet it is helpful to also observe how this load is distributed between algorith-
mic components. Figure 3 shows the ratio of CPU time dedicated to the belief
collection versus the value updating for each of the di↵erent belief collection
methods considered. As expected, PEMACollect is by far the most expensive
method to acquire beliefs; these results continue to assume N = 100 for all
methods, except N = 10 for PEMACollect. The RandomCollect method gen-
erally uses negligible time. FSVICollect is always very fast. PBVICollect is also
reasonably fast, though can be slower in domains with more actions. HSVICol-
lect usually requires more computation for belief collection in domains where

A Survey of Point-Based POMDP Solvers 43

Fig. 2 Standard error over the ADR in the Tiger-grid, Wumpus, and UnderwaterNavi-
gation domains. All collection methods are implemented by repeatedly alternating adding
N = 100 belief points (N = 10 for PEMACollect) with a single value update at all points
(FullUpdate). All graphs show ADR in the Y axis given time (seconds) in the X axis.

there is more stochasticity (e.g. Hallway2, Tiger-grid), but less in domains
that are deterministic (e.g. UnderwaterNavigation). The results presented are
representative of all domains considered.

Fig. 3 Distribution of computational load.

44 Guy Shani et al.

6.4 Choosing a schedule for value updates

Next, we examine how the ordering of value updates a↵ects the performance
of point-based solvers. Recall that we consider three di↵erent strategies: Full-
Backup, PerseusBackup, NewestPointsBackup.

Fig. 4 Comparison of di↵erent value function update orderings in the Tiger-grid domain.
All graphs show ADR in the Y axis given time (seconds) in the X axis.

In Hallway2 (graphs omitted) , the choice of backup ordering did not mat-
ter for the collection methods that performed well (PBVICollect, FSVICollect
and RandomCollect). For the other two (HSVICollect and RandomCollect),
we observed a negative e↵ect of switching to either PerseusBackup or Newest-
PointsBackup. In Tag (graphs omitted) and RockSample (graphs omitted), we
observed very little e↵ect in terms of the choice of backup ordering approach.
Only when considering PEMACollect did we observe a negative e↵ect to using
PerseusBackup or NewestPointsBackup (see below, Figure 7).

In Tiger-grid (Figure 4), the choice of backup ordering was less important
when using FSVICollect with FullBackup being somewhat worse. When us-
ing RandomCollect, the PerseusBackup, which is the combination suggested
originally in the Perseus algorithm (Spaan and Vlassis, 2005) performed the
best. PerseusBackup also works better with PBVICollect, although this is less
pronounced. When using HSVICollect, which is the less preferred collection
method for TigerGrid, NewestPointsBackup, the original combination of the
HSVI algorithm, is better.

A Survey of Point-Based POMDP Solvers 45

Fig. 5 Comparison of di↵erent value function update orderings in the Wumpus domain.
All graphs show ADR in the Y axis given time (seconds) in the X axis.

In the Wumpus domain, we observe a di↵erent e↵ect. As shown in Fig-
ure 5, NewestPointsBackup is the top ordering method for two of the leading
collection methods — RandomCollect and GapMinCollect. This di↵erence is
most evident when using GapMinCollect and NewestPointsBackup together,
the original combination of the GapMin algorithm, that causes GapMinCol-
lect to perform better than all other combinations. The FullBackup tends to
perform poorly, except when combined with PBVICollect, where it is the best
combination. This is probably because the rest of the methods collect many
redundant points, and updating all these points repeatedly reduces perfor-
mance. This conclusion is farther supported by observing the e↵ect of remov-
ing duplicate belief points from the set B in this domain, as we show later
in Section 6.8. With all ordering methods, both HSVICollect and FSVICol-
lect perform well below the (presumed) optimal solution obtained when using

46 Guy Shani et al.

Fig. 6 Comparison of di↵erent value function update orderings in the UnderwaterNaviga-
tion domain. All graphs show ADR in the Y axis given time (seconds) in the X axis.

PBVICollect, GapMinCollect, or RandomCollect, which benefit from a wider,
less goal-oriented, exploration of the belief space.

In the UnderwaterNavigation domain, the best update method is highly de-
pendent on the choice of collection method. As shown in Figure 6, the Perseus-
Backup is best for RandomCollect and even more significantly so for FSVICol-
lect. In fact, with PerseusBackup FSVICollect becomes almost competitive for
this domain. For PBVICollect, HSVICollect, and GapMinCollect, the Newes-
tUpdate performs best. Note that in this domain, HSVICollect achieves the
best policies, with GapMinCollect trailing behind. As with Wumpus, GapMin-
Collect is the most sensitive to the choice of the backup ordering method.

Finally, throughout all of our experiments with PEMACollect, it was al-
ways better to apply a FullBackup. Other methods can give good results,
but less consistently. This is not surprising since PEMACollect is very careful

A Survey of Point-Based POMDP Solvers 47

Fig. 7 Comparison of di↵erent value function update orderings in combination with PEMA-
Collect. All graphs show ADR in the Y axis given time (seconds) in the X axis.

about which points it selects, thus it stands to reason that it pays o↵ to update
all of them. Figure 7 shows this e↵ect for a few domains, but similar results
were observed on all domains. The e↵ect was particularly noticeable for Tiger-
grid. Of course this primarily applies to reasonably small domains, otherwise
PEMACollect is not a good option, regardless of value updating schedule.

Observing the results above, we can conclude best matches for algorithmic
components over various domains, presented in Table 4. We can immediately
see that NewestPointsBackup is preferred in most cases, and FullBackup is
preferred only by PBVICollect, and even then not in all cases. In the coming
sections, when comparing other features of the algorithms, we will use only
these best combinations.

Domain Random PBVI HSVI GapMin FSVI

Wumpus 7 Newest Full Perseus Newest Newest
underwaterNav Perseus Newest Newest Newest Perseus
Tiger-grid Perseus Perseus Newest ⇥ Perseus
RockSample [7,8] Newest Full Newest Newest Newest

Table 4 the best combinations for the domains that will be investigated in Section 6.5 and
on.

48 Guy Shani et al.

6.5 Choosing how many belief points to add

The results presented above in Figure 3 show how di↵erent methods balance
computation load between exploring the belief space and updating value es-
timates. In general, the balance between these two components can be con-
trolled by choosing the number of belief points collected at each iteration (N),
and the number of iterations of belief updates (U) performed between adding
batches of points. When N is high, this shifts the balance of computation
time towards belief point collection, especially when the time complexity of
the update method does not scale linearly with N (as in the Perseus update
method).

Fig. 8 Comparison of di↵erent numbers of belief points to add between iterations of value
updates. We vary the update schedule for each domain, according to the results of Sec-
tion 6.4. We show the average discounted reward (ADR) after the planning time specified
for each domain.

Modifying U has the opposite e↵ect: when we increase U , we linearly in-
crease the time spent computing belief point updates while the collection time
remains fixed. This should theoretically be useful for collection/update combi-
nations that spend a large proportion of time collecting, compared to updating.
We begin by exploring the e↵ect of the number of belief points in this section;
the issue of the number of belief updates is explored in the following section.

For the four domains presented in Figure 8 we consider N = {25, 50, 100, 200}.
Recall that N = 100 was used for all results presented thus far. For the most
part, we observe that empirical results are relatively stable with respect to the
parameter N . HSVICollect is perhaps the most sensitive to this parameter in
three of the domains. In the UnderwaterNavigation domain, for example, with

A Survey of Point-Based POMDP Solvers 49

HSVICollect, we do notice a notable improvement with larger number of belief
points (from 25 to 100), and then a decrease from 100 to 200 points, where
too many belief points are collected, and more time is needed for updating
the value function. UnderwaterNavigation is the most sensitive in general to
this parameter, probably due to the relatively long planning horizon. Other
domains and methods see a small improvement or decrease in performance as
a function of the number of beliefs added, but the e↵ect is generally modest.
This suggests that it is not too important to carefully tune this parameter,
which is useful to remember when tackling a completely new domain.

Fig. 9 Comparison of di↵erent numbers of value function updates between rounds of adding
new belief points. For each belief collection method, we compare running 5 value updates
for all belief points, compared to only 1 value update. The y-axis represents the di↵erence
in ADR when using using 5 value updates instead of one. When using 5 updates is useful,
the value should be higher than 0.

6.6 Choosing how many value updates to perform

In this section, we vary the parameter U , which controls the number of itera-
tions of belief point updates at each step in the POMDP planning. Applying
more updates may result in a better policy than a single update, however the
extra time spent updating is not used for collecting new points (and updating
these points instead).

50 Guy Shani et al.

In fact, as shown in Figure 9, this is exactly what happens; performance
usually degrades or stays the same with the addition of more value backups.
The only exception is with PEMACollect, whose performance improves with
more updates, but is still much below that of other methods. This is not
unexpected since with such a slow collection algorithm, it is useful to extract
as good a policy as possible with the belief points that have been collected.
Results are similar across domains.

6.7 Belief ordering

One of the interesting innovations proposed in the HSVI paper was to update
the value at belief points in the reverse order in which the points were acquired.
Assuming for example that we collected points b0...bT

, then when executing a
round of updating, we would update the value at each belief starting with b

T

,
and moving back. This procedure is used in much of the reinforcement learn-
ing literature, where the idea has been extended in various ways, for example
using eligibility traces (Singh and Sutton, 1996). We expect this ordering to
matter most for domains with long planning sequences, such as Underwater-
Navigation, since it provides a way to pass the value updates backward from
the goal to earlier beliefs.

In Figure 10, we show the di↵erence in ADR when the beliefs are updated
in reversed order instead of the same order as they are collected. Rather sur-
prisingly, the e↵ect is not very large, and in some cases, the forward ordering
performs just as well, or slightly better. As expected, the benefit from reverse
ordering is more pronounced in the Wumpus, RockSample, and the Underwa-
terNavigation domains, that have longer planning horizons, and less so in the
TigerGrid domain.

It should be emphasized that all other results presented in this paper (ex-
cept, of course, some of the results of the current section) use the reverse
ordering.

6.8 Removing duplicate beliefs

As mentioned above, we did not investigate in detail the issue of pruning (be-
liefs or ↵-vectors), since it is a substantial topic, requiring a discussion on
its own. However we performed a simple experiment, whereby we considered
removing any duplicates from the belief set. This can be computed quickly,
and easily. Some of the previous literature on Perseus had suggested that in-
cluding duplicate beliefs may be beneficial. Duplicate beliefs occur only with
HSVICollect, FSVICollect and RandomCollect; the collection criteria in Gap-
MinCollect, PBVICollect, and PEMACollect are such that duplicate beliefs
are never selected.

We see from the results shown in Figure 11 that in some domains, in
particular those with information-gathering aspects such as Wumpus, it can

A Survey of Point-Based POMDP Solvers 51

Fig. 10 Comparing forward and reverse ordering of collected belief points while updating
the value function. The y-axis represents the di↵erence in ADR when using ordering the
beliefs in reverse order instead of by the order by which they were collected. When reverse
ordering is useful, the value should be higher than 0.

be beneficial to remove duplicates, since it allows increased exploration of the
belief space. In other more goal-directed domains, such as RockSample, the
e↵ect is modest to non-existent (within 0.5 of an ADR of around 18).

6.9 Initializing the value function

Another design decision that arises when implementing a point-based solver
is the choice of initial value function, V0. As discussed in Section 3.5, some
methods require the initial function to be a lower bound on the optimal, V ⇤,
whereas others perform well regardless of the initial value function. In the
updated version of HSVI (Smith and Simmons, 2005), the initial lower bound
is based on a blind policy, as first proposed by Hauskrecht (1997). The idea is
to create an initial value function that contains one ↵-vector per action, where
each ↵-vector represents the policy of always taking the associated action (and
only that action).

This blind lower bound was used in all experiments reported above. This
bound is guaranteed to be tighter than a single vector lower bound initialized
according to the minimum reward, yet a naive lower bound (defined in Equa-
tion 38) is somewhat easier to program. In Figure 12, we show the impact of
this choice, by plotting the di↵erence between the empirical return obtained

52 Guy Shani et al.

Fig. 11 Measuring the e↵ect of removing duplicates in the belief set, compared to allowing
duplicates. The y-axis represents the di↵erence in ADR when using removing duplicate
beliefs instead of allowing duplicate beliefs. When removing duplicates is useful, the value
should be higher than 0.

when using a Blind lower bound, and the empirical return obtained when using
a naive lower bound to initialize the value.

Overall, we observe that the disadvantage in the extra computation re-
quired by the blind lower bound is minimal, and the impact on performance
can be significant, especially for short planning times.

In the UnderwaterNavigation domain, there is a significant degradation
of performance when initializing with the naive lower bound. This is because
in this domain there are very large punishments (negative rewards) that are
easily avoided. The naive lower bound hence reflects receiving these punish-
ments forever, while the blind strategy avoids them. Hence, many backups
are needed when initializing using the naive lower bound before obtaining a
reasonable policy. In fact, PBVICollect and PEMACollect never overcame the
initialization and hence the di↵erence for these two methods is considerable.

It is also interesting to note that GapMinCollect, while benefiting at the
beginning from the tighter initialization, manages later to compute a similar
value function using the two initialization methods. As GapMinCollect is one
of the best methods in this domain, this points to a strength of the GapMin
strategy in overcoming a bad initialization.

In other domains a naive initialization of the value function is quickly over-
come and after a few seconds of planning, the performance is nearly identical

A Survey of Point-Based POMDP Solvers 53

for both types of value function initialization. This may reflect the fact that
this is an easier planning domain.

Finally, in some cases the naive lower bound leads to slightly better per-
formance (e.g. FSVICollect in the Wumpus domain), which is interesting. It
may be that using a less constrained lower bound allows the value iteration
to construct a better shaped value function, and hence get some benefit. That
being said, FSVICollect and PEMACollect do not perform well on Wumpus,
so even with the naive lower bound they are far from being the best methods
for this domain.

Fig. 12 Measuring the e↵ect of value function initialization, by plotting the di↵erence
between the ADR obtained when using a Blind lower bound and the ADR obtained when
using a naive lower bound. The y-axis represents the di↵erence in ADR when using the
Blind lower bound, compared to the naive lower bound. When the Blind lower is useful, the
value should be higher than 0.

7 Discussion

In this section we present the conclusions of our analysis, and suggest directions
for future investigation.

7.1 Summary of empirical analysis

We begin by summarizing a number of key findings from the empirical analysis.

54 Guy Shani et al.

– We observe that di↵erent methods are suited for di↵erent types of envi-
ronments. Thus, when solving a new problem, it is important to consider
the characteristics of one’s domains when picking a solver, rather than just
picking the latest method.

– The size of the problem domain is not a direct indicator of the di�cult
of finding a solution. Some problems with a large state space can have
a very simple structure that makes them easier to solve. For example,
the TagAvoid domain has substantially more states than the Tiger-grid
domain, yet the latter takes longer to solve. In this case, it is due to the
fact that one of the factors of the state space (the robot’s position) is
fully observable, limiting the partial observability to the other factor (the
target’s position). In general, the number of reachable beliefs may be a
better indicator of solution di�culty.

– HSVICollect is e↵ective in domains with low branching factors, such as
RockSample and UnderwaterNavigation. This is typical of domains with
deterministic actions. It is less advantageous in domains with more stochas-
ticity, such as Hallway2, and Tiger-grid and domains with many observa-
tions, such as Wumpus, where the branching factor in the belief tree is
too large. We expect HSVICollect to be useful in robot planning domains,
where deterministic planning algorithms have until recently been fairly
useful.

– PBVICollect performs well in domains requiring wide, undirected, explo-
ration of the belief. In a domain like Wumpus, where there is intrinsic value
to exploration, it achieves a good solution substantially faster than other
methods. We expect it to be useful in human-robot interaction domains,
where its exploratory behavior may compensate for high stochasticity and
poor domain parameterization.

– FSVICollect performs very well in a domain like Tiger-grid. This is be-
cause the stochastic transitions occasionally lead the agent to states where
it receives the needed observations. In domains with highly stochastic tran-
sitions the error in transition often serves as an exploration factor.

– GapMinCollect (combined with the NewestPointsBackup) has shown good
results in some of the larger and more di�cult domains, such as Wumpus,
and UnderwaterNavigation. In UnderwaterNavigation it was also the only
method to overcome a bad initialization, thus showing robustness to initial-
ization techniques. On the other hand, some domains, such as Tiger-grid
without restarts are very di�cult for GapMinCollect, where it tends to col-
lect beliefs with large gap but ignores beliefs where required observations
are collected.

– RandomCollect performs surprisingly well (given how naively it picks points)
across domains, though is better suited to highly explorative domains, such
as Wumpus and Tiger-grid, and less so for long-horizon planning problems,
such as UnderwaterNavigation.

A Survey of Point-Based POMDP Solvers 55

– There are substantial interactions between the choice of belief collection
method, and the choice of value updating schedule. For example, PBVICol-
lect and PEMACollect usually perform best with a FullUpdate, whereas
HSVICollect and FSVICollect benefit from a NewestPoints update. Finally,
RandomCollect tends to perform well with a PerseusUpdate. This is, for
the most part, consistent with the full algorithms as presented in their re-
spective initial publications. These observations suggest that the choice of
collection method should first be matched to the type of problem at hand;
the choice of backup method can then be done to match the selected belief
collection method, according to the findings above.

– Most methods are robust to the size of the collected belief point set N . It
is clear that N needs to be at least as large as the number of execution
steps required to reach most beliefs encountered under an optimal policy.
Otherwise, the search might always terminate before encountering many
useful beliefs. In our experiments, we picked N = 100 without careful tun-
ing; this choice was not motivated by any pre-testing or cross-validation, it
simply seemed like a reasonable initial guess. Our experiments show that all
methods are robust to this parameter, with the exception of PEMACollect
which requires substantially fewer beliefs per rounds.

– The other key parameter in controlling the computational trade-o↵ between
adding more points and updating those that are already acquired is the
number of updates, U . Our experiments show that this can usually be
safely set to 1. There can be a decrease in performance when setting it
to something higher (such as U = 5). The only exception occurred when
using PEMACollect in goal-directed domains, such as RockSample and
UnderwaterNavigation.

– As observed in the literature, it is preferable to use a reverse ordering of the
beliefs when performing the value updates. This insight has been exploited
previously in the reinforcement learning literature. More sophisticated ap-
proaches, such as eligibility traces, have not been fully investigated in the
context of the point-based POMDP literature.

– We briefly experimented with removing duplicate beliefs from the set of
points. This generally proves helpful, though there are a few exceptions.
In general, a more systematic investigation of the role of pruning in point-
based value algorithms would be highly valuable.

– Finally, we observe that it is typically worthwhile to initialize the value
function with the blind policy, rather than a more naive lower bound.
The computation is usually minimal (compared to the costs of the full
algorithm), and therefore this can be used in general. The more impor-
tant point though is that the performance boost of using a blind policy is
mostly observed in domains where the blind policy is a good surrogate for
the optimal policy; this suggests more generally that it is useful to initialize
the value function as close as possible to the optimal policy. This is not a

56 Guy Shani et al.

new result, the literature on reward shaping has yielded similar observa-
tions (Ng et al, 1999). But here we provide some clear empirical evidence
and explanations of how this impacts point-based POMDP solvers.

7.2 Limitations of analysis

While the analysis presented above examines many aspects of point-based
algorithms, some of the aspects, especially pruning, are under explored. These
have proven useful in some recent approaches, such as SARSOP. We did not
tackle this here, as the topic is rich and deep. A systematic investigation of
this topic would be highly valuable.

An important factor in scaling point-based approaches to very large do-
mains is the use of factored, or symbolic, representations (Poupart, 2005; Shani
et al, 2008b; Sim et al, 2008). This aspect is somewhat orthogonal to the ques-
tions explored here, and we did not include it to simplify the presentation
and analysis. Most of the algorithmic approaches presented here can be ex-
tended to handle factored representations, through the use of appropriate data
structures. We expect most of our findings to apply to this case.

Another consideration is the fact that the analysis presented above only
considered components of algorithms, rather than whole algorithms. In many
cases, the comparison of whole algorithms is provided in the original papers,
though not often using standardized hardware and software practices. We
opted for the component-based comparison because it provides new insight
on the interaction between various algorithmic aspects. Nonetheless there are
some disadvantages to proceeding this way, as some components that were not
included may have an important e↵ect. For example, the original HSVI algo-
rithm updates both an upper bound and a lower bound on the value function
while collecting belief points, which we did not consider here.

Finally, it is worth noting that there are other, non point-based, approaches
to computing behaviors for POMDP models; some of which have achieved
strong empirical results (Ji et al, 2007; Ross and Chaib-draa, 2007). Further
empirical evaluation could encompass those approaches. We believe that the
work presented here sets a standard for good empirical analysis in this larger
context.

7.3 Point-based methods as heuristic search in the belief-MDP

It is sometimes argued that point-based method are essentially a class of
MDP heuristic search methods, given that they heuristically select MDP states
(POMDP belief states) and compute a value function for these states. We be-
lieve that this view is somewhat limiting — while there are many heuristic
algorithms for solving MDPs, the unique structure of the belief space makes
most of these algorithms either inapplicable or ine�cient for the belief space
MDP. For example, Shani et al (2008a) demonstrated in their prioritized value

A Survey of Point-Based POMDP Solvers 57

iteration algorithm how the computation of priority update, that is simple in
MDPs, is di�cult in POMDPs. We believe that, generally speaking, transfer-
ring ideas from MDPs to POMDPs is challenging, and may require significant
changes to the original idea to apply.

As such, while it is important for the point-based research community to
be knowledgeable in the latest advancements in MDP heuristic search, and
consider whether techniques from MDPs can be brought into the point-based
framework, we believe that many ideas that work well in general MDPs will
not be easy to adapt to the belief-space MDP that interests us.

7.4 Convergence of point-based methods

Exact value iteration provably converges to the optimal value function V ⇤

(Sondik, 1971). Some point-based algorithms, such as PBVI, HSVI, SARSOP,
and GapMin, also provably converge to the optimal value function, or at least
arbitrarily closely to the optimal value function, but in a slightly di↵erent
sense. While exact value iteration computes the optimal value function for
every possible belief state in the belief simplex, point-based algorithm typically
converge to the optimal value function only over the belief space reachable
from the given initial belief b0, and in some cases the convergence of the
value function is limited only to b0. Still, an exponential number of iterations
is required even for convergence on b0. Algorithms such as HSVI, SARSOP,
and GapMin, that maintain both an upper and a lower bound over the value
function, can use these bounds to decide when the value function has converged
and stop the value iteration.

That being said, it is widely agreed that in all the benchmarks reported in
POMDP literature, point-based value iteration computes a good solution much
faster than exact value iteration — typically in a few dozens of iterations. It
is also obvious from the experiments that we report above that most methods
find good solutions. The ADR curves also hint of a convergence to some value
that could not be further improved. Indeed, additional experiments which were
not described above, where some algorithms were allowed to run for much
longer than the graphs above show, yielded no further improvements on these
benchmarks. Still, especially in point-based algorithms that heuristically grow
their belief set, it is di�cult to know whether one should not expect further
improvements. It is possible that the algorithm will suddenly discover a new
reachable belief point where a substantial reward can be earned, thus radically
changing the value function. Algorithms that maintain both an upper and a
lower bound over the value function can stop once the bounds converge to
within a given ✏ of each other, but experiments show that for larger domains,
the gap between bounds closes very slowly, and remains considerable even after
the lower bounds seems to converge (Poupart et al, 2011). Hence, the question
of when is it reasonable to assume that the lower bound value function has
converged in practice remains open.

58 Guy Shani et al.

Perhaps a practical way of approaching the question of when we should stop
an algorithm is the anytime approach (Zilberstein, 1996), where algorithms can
be stopped at any time, always returning some solution. The quality of the
solution is expected to improve as more computation time and resources are
given to the algorithm. Indeed, most, if not all, point-based algorithms display
a good anytime behavior. As such, when to stop the algorithm is no longer
a question of its convergence, but rather a function of the available time and
resources. Indeed, this is the approach that was implicitly assumed in our
experiments, by reporting the value function convergence over a range of time
intervals.

8 Conclusion

POMDP planning algorithms have made important gains in terms of e�ciency
and scalability over the decade. Still, using such methods in real-world domains
can be challenging, and typically requires careful design choices. The primary
goal of this paper is to shed light on the various dimensions of point-based
value iteration approaches.

In addition to this survey, we are publicly releasing the software used in
producing the analysis presented above, containing an implementation of many
point-based solvers over a uniform framework. This paper, together with the
package, makes the following primary contributions:

First, we expect the survey to facilitate the targeted deployment of point-
based POMDP methods in a wider variety of practical problems. In many
cases the implemented algorithms can be used o↵ the shelf to solve interesting
domains specified using standard protocols. The framework also has abilities
to create and solve new domains.

Second, the analysis presented here highlights opportunities for future re-
search and development into POMDP solving algorithms. For example, we en-
courage investigation into methods that automatically tune their belief-space
search strategy to the characteristics of the domain at hand.

Finally, by presenting a carefully designed analysis, as well as providing the
related software package, we aim to encourage good experimental practices in
the field. The software can be used as a platform for future algorithmic devel-
opment, as well as for benchmarking di↵erent algorithms for a given problem.
This can be useful to a wide range of researchers and developers in many fields.

Acknowledgments

The authors thank the anonymous reviewers for multiple helpful suggestions,
both about the presentation and the experimental validation. Funding for this
work was provided by the Natural Sciences and Engineering Research Council
of Canada.

A Survey of Point-Based POMDP Solvers 59

References

Albore A, Palacios H, Ge↵ner H (2009) A translation-based approach to con-
tingent planning. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp 1623–1628

Armstrong-Crews N, Gordon G, Veloso M (2008) Solving pomdps from both
sides: Growing dual parsimonious bounds. In: AAAI workshop for Advance-
ment in POMDP Solvers

Atrash A, Kaplow R, Villemure J, West R, Yamani H, Pineau J (2009) De-
velopment and validation of a robust speech interface for improved human-
robot interaction. International Journal of Social Robotics 1:345–356

Barto AG, Bradtke SJ, Singh SP (1995) Learning to act using real-time
dynamic programming. Artificial Intelligence 72:81–138, DOI 10.1016/
0004-3702(94)00011-O

Bellman R (1957a) Dynamic programming. In: Princeton University Press
Bellman R (1957b) A Markovian decision process. Journal of Mathematics and

Mechanics 6:679–684
Bonet B, Ge↵ner H (2003) Labeled RTDP: Improving the convergence of real-

time dynamic programming. In: International Conference on Planning and
Scheduling (ICAPS), pp 12–31

Bonet B, Ge↵ner H (2009) Solving POMDPs: RTDP-Bel vs. Point-based algo-
rithms. In: International Joint Conference on Artificial Intelligence (IJCAI),
pp 1641–1646

Boutilier C (2002) A POMDP formulation of preference elicitation problems.
In: National Conference on Artifical Intelligence (AAAI), pp 239–246

Brunskill E, Kaelbling L, Lozano-Perez T, Roy N (2008) Continuous-state
pomdps with hybrid dynamics. In: International Symposium on Artificial
Intelligence and Mathematics (ISAIM)

Cassandra A, Littman ML, Zhang NL (1997) Incremental Pruning: A simple,
fast, exact method for partially observable Markov decision processes. In:
Conference on Uncertainty in Artificial Intelligence (UAI), pp 54–61, URL
http://www.cs.duke.edu/\

~

mlittman/docs/uai97-pomdp.ps

Dai P, Goldsmith J (2007) Topological value iteration algorithm for Markov
decision processes. In: International Joint Conference on Artificial Intelli-
gence (IJCAI), pp 1860–1865

Dibangoye JS, Shani G, Chaib-draa B, Mouaddib AI (2009) Topological or-
der planner for POMDPs. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp 1684–1689

Doshi F, Roy N (2008) The permutable POMDP: fast solutions to POMDPs
for preference elicitation. In: International Conference on autonomous
Agents and Multiagent Systems (AAMAS), pp 493–500

Ge↵ner H, Bonet B (1998) Solving large POMDPs using real time dynamic
programming. In: Proceedings AAAI Fall Symp. on POMDPs

Hansen E (1998) Solving POMDPs by searching in policy space. In: Conference
on Uncertainty in Artificial Intelligence (UAI), pp 211–219

60 Guy Shani et al.

Hansen EA (2007) Indefinite-horizon POMDPs with action-based termination.
In: National Conference on Artificial Intelligence (AAAI), pp 1237–1242

Hauskrecht M (1997) Incremental methods for computing bounds in partially
observable Markov decision processes. In: National Conference on Artificial
Intelligence, pp 734–739

Hauskrecht M (2000) Value-function approximations for partially observ-
able Markov decision processes. Journal of Artificial Intelligence Research
(JAIR) 13:33–94, URL http://www.cs.washington.edu/research/jair/

abstracts/hauskrecht00a.html

Hauskrecht M, Fraser HSF (2000) Planning treatment of ischemic heart disease
with partially observable markov decision processes. Artificial Intelligence
in Medicine 18(3):221–244

Hoey J, Poupart P, von Bertoldi A, Craig T, Boutilier C, Mihailidis A (2010)
Automated handwashing assistance for persons with dementia using video
and a partially observable markov decision process. Computer Vision and
Image Understanding 114(5):503–519

Howard RA (1960) Dynamic Programming and Markov Processes. MIT Press,
Cambridge, Massachusetts

Hsiao K, Kaelbling LP, Lozano-Pérez T (2007) Grasping POMDPs. In: IEEE
International Conference on Robotics and Automation (ICRA), pp 4685–
4692

Huynh VA, Roy N (2009) icLQG: Combining local and global optimization for
control in information space. In: IEEE International Conference on Robotics
and Automation (ICRA), pp 2851–2858

Izadi MT, Rajwade AV, Precup D (2005) Using core beliefs for point-based
value iteration. In: International Joint Conference on Artificial Intelligence,
pp 1751–1753

Izadi MT, Precup D, Azar D (2006) Belief selection in point-based planning
algorithms for POMDPs. In: Canadian Conference on Artificial Intelligence,
pp 383–394

Ji S, Parr R, Li H, Liao X, Carin L (2007) Point-based policy iteration. In:
National conference on Artificial intelligence (AAAI), AAAI Press, pp 1243–
1249

Kaelbling L, Littman M, Cassandra A (1998) Planning and acting in partially
observable stochastic domains. In: Artificial Intelligence, pp 99–134

Kaplow R (2010) Point-based pomdp solvers: Survey and comparative analysis.
Master’s thesis, McGill University

Kurniawati H, Hsu D, Lee W (2008) SARSOP: E�cient point-based POMDP
planning by approximating optimally reachable belief spaces. In: Robotics:
Science and Systems (RSS)

Littman ML (1996) Algorithms for sequential decision making. PhD the-
sis, Department of Computer Science, Brown University, Providence,
RI, URL ftp://ftp.cs.brown.edu/pub/techreports/96/cs96-09.ps.Z,
also Technical Report CS-96-09

Littman ML, Cassandra AR, Kaelbling LP (1995) Learning policies for par-
tially observable environments: Scaling up. In: International Conference on

A Survey of Point-Based POMDP Solvers 61

Machine Learning (ICML), pp 362–370
Littman ML, Sutton RS, Singh SP (2001) Predictive representations of state.

In: Advances in Neural Information Processing Systems (NIPS), pp 1555–
1561

Littman ML, Ravi N, Fenson E, Howard R (2004) An instance-based state
representation for network repair. In: National Conference on Artifical In-
telligence (AAAI), pp 287–292

Lovejoy WS (1991) Computationally feasible bounds for partially observed
Markov decision processes. Operations Research 39(1):162–175

Ng A, Harada D, Russell S (1999) Policy invariance underreward transforma-
tions: Theory and application to reward shaping. In: International Confer-
ence on Machine Learning (ICML)

Pineau J, Gordon G (2005) POMDP planning for robust robot control. In:
International Symposium on Robotics Research (ISRR), Springer, vol 28,
pp 69–82

Pineau J, Gordon G, Thrun S (2003a) Point-based value iteration: An any-
time algorithm for POMDPs. In: International Joint Conference on Artificial
Intelligence, pp 1025–1032

Pineau J, Gordon GJ, Thrun S (2003b) Applying metric-trees to belief-point
POMDPs. In: Advances in Neural Information Processing Systems (NIPS)

Pineau J, Gordon GJ, Thrun S (2006) Anytime point-based approximations
for large pomdps. Journal of Artificial Intelligence Research (JAIR) 27:335–
380

Poon L (2001) A fast heuristic algorithm for decision theoretic planning. Mas-
ter’s thesis, The Hong-Kong University of Science and Technology

Porta JM, Vlassis N, Spaan MTJ, Poupart P (2006) Point-based value it-
eration for continuous POMDPs. Journal of Machine Learning Research
7:2329–2367

Poupart P (2005) Exploiting structure to e�ciently solve large scale partially
observable markov decision processes. PhD thesis, Department of Computer
Science, University of Toronto

Poupart P, Boutilier C (2003) Bounded finite state controllers. In: Advances
in Neural Information Processing Systems (NIPS)

Poupart P, Kim KE, Kim D (2011) Closing the gap: Improved bounds on
optimal POMDP solutions. In: International Conference on Planning and
Scheduling (ICAPS)

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA

Ross S, Chaib-draa B (2007) AEMS: An anytime online search algorithm for
approximate policy refinement in large POMDPs. In: International Joint
Conference on Artificial Intelligence (IJCAI), pp 2592–2598

Sanner S, Kersting K (2010) Symbolic dynamic programming for first-order
POMDPs. In: National Conference on Artificial Intelligence (AAAI)

Shani G (2010) Evaluating point-based POMDP solvers on multicore ma-
chines. IEEE Transactions on Systems, Man, and Cybernetics, Part B
40(4):1062–1074

62 Guy Shani et al.

Shani G, Meek C (2009) Improving existing fault recovery policies. In: Ad-
vances in Neural Information Processing Systems (NIPS), vol 22, pp 1642–
1650

Shani G, Heckerman D, Brafman RI (2005) An MDP-based recommender
system. Journal of Machine Learning Research 6:1265–1295

Shani G, Brafman R, Shimony S (2007) Forward search value iteration for
POMDPs. In: International Joint Conference on Artificial Intelligence (IJ-
CAI)

Shani G, Brafman RI, Shimony SE (2008a) Prioritizing point-based POMDP
solvers. IEEE Transactions on Systems, Man, and Cybernetics, Part B
38(6):1592–1605

Shani G, Poupart P, Brafman RI, Shimony SE (2008b) E�cient ADD opera-
tions for point-based algorithms. In: International Conference on Automated
Scheduling and Planning (ICAPS), pp 330–337

Sim HS, Kim KE, Kim JH, Chang DS, Koo MW (2008) Symbolic heuristic
search value iteration for factored POMDPs. In: National Conference on
Artificial intelligence, pp 1088–1093

Singh SP, Sutton RS (1996) Reinforcement learning with replacing eligibility
traces. Machine Learning 22:123–158

Smith T, Simmons R (2004) Heuristic search value iteration for POMDPs. In:
Conference on Uncertainty in Artificial Intelligence (UAI)

Smith T, Simmons RG (2005) Point-based POMDP algorithms: Improved
analysis and implementation. In: Conference on Uncertainty in Artificial
Intelligence (UAI), pp 542–547

Sondik E (1971) The optimal control of partially observable Markov decision
processes. PhD thesis, Stanford University

Sondik EJ (1978) The optimal control of partially observable Markov processes
over the infinite horizon: Discounted costs. Operations Research 26:282–304

Spaan M, Vlassis N (2004) A point-based POMDP algorithm for robot
planning. In: IEEE International Conference on Robotics and Automation
(ICRA), pp 2399–2404

Spaan M, Vlassis N (2005) Perseus: Randomized point-based value iteration
for POMDPs. In: Journal of Artificial Intelligence Research, pp 195–220

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA

Szepesvari C (2009) Reinforcement learning algorithms for MDPs - a survey.
Tech. Rep. TR09-13, University Of Alberta

Virin Y, Shani G, Shimony SE, Brafman RI (2007) Scaling up: Solving
POMDPs through value based clustering. In: National Conference on Arti-
ficial Intelligence (AAAI), pp 1290–1295

Wang C, Khardon R (2010) Relational partially observable mdps. In: National
Conference on Articial Intelligence (AAAI)

Williams JD, Young S (2007) Partially observable markov decision processes
for spoken dialog systems. Computer Speech & Language 21(2):393–422

Wingate D, Seppi KD (2005) Prioritization methods for accelerating mdp
solvers. Journal of Machine Learning Research (JMLR) 6:851–881

A Survey of Point-Based POMDP Solvers 63

Zhang NL, Zhang S (2001) Speeding up the convergence of value iteration in
partially observable Markov decision processes. Journal of Artificial Intelli-
gence Research (JAIR) 14:29–51

Zilberstein S (1996) Using anytime algorithms in intelligent systems. AI Mag-
azine 17:73–83

