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ABSTRACT Using a powered wheelchair (PW) is a complex task requiring advanced perceptual and motor
control skills. Unfortunately, PW incidents and accidents are not uncommon and their consequences can
be serious. The objective of this paper is to develop technological tools that can be used to characterize a
wheelchair user’s driving behavior under various settings. In the experiments conducted, PWs are outfitted
with a datalogging platform that records, in real-time, the 3-D acceleration of the PW. Data collection was
conducted over 35 different activities, designed to capture a spectrum of PW driving events performed
at different speeds (collisions with fixed or moving objects, rolling on incline plane, and rolling across
multiple types obstacles). The data was processed using time-series analysis and data mining techniques,
to automatically detect and identify the different events. We compared the classification accuracy using
four different types of time-series features: 1) time-delay embeddings; 2) time-domain characterization;
3) frequency-domain features; and 4) wavelet transforms. In the analysis, we compared the classification
accuracy obtained when distinguishing between safe and unsafe events during each of the 35 different
activities. For the purposes of this study, unsafe events were defined as activities containing collisions against
objects at different speed, and the remainder were defined as safe events. We were able to accurately detect
98% of unsafe events, with a low (12%) false positive rate, using only five examples of each activity. This
proof-of-concept study shows that the proposed approach has the potential of capturing, based on limited input
from embedded sensors, contextual information on PW use, and of automatically characterizing a user’s
PW driving behavior.

INDEX TERMS Assistive technologies, wheelchairs, event detection, accelerometers, rehabilitation
robotics.

I. INTRODUCTION
It is well recognized that mobility is an important factor
for the social participation and quality of life of individuals.
For people who live with locomotor impairments, mobil-
ity assistive devices such as manual wheelchairs, power
wheelchairs (PW), scooters, and other motorized vehicles can
be facilitators of mobility [1]. The increasing prevalence of
chronic disease and the changing demographics of our society

will increase the use of mobility assistive devices such as
PWs by older adults. Using a PW is a complex task whose
efficiency and safety are modulated by factors such as indi-
vidual capacity, wheelchair driving skills, design and tech-
nology features of the PW, environmental considerations, and
interaction effects between these factors [2].
Although PW mobility has many potential benefits for

users, PW incidents and accidents are not uncommon and
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their consequences can be serious [3]–[5]. Users of PWs can
have difficulty maintaining a supported seated posture when
subjected to external forces [6], [7]. Oscillatory and shock
whole body vibration (WBV) can be induced by ordinary
obstacles or surfaces that PW users encounter every day [8]
and are often linked to speed control of the PW. These inci-
dents can be associated with unsafe behaviours combined
with poor PW driving skills [9], [10]. PW driving skills are
typically modulated by experience and joystick control [11]
but can be improved through training [12], [13].

Few objective outcome measures used in the clinical
assessment of PW mobility take into account all the factors
influencing PW mobility and safety. PW driving skills are
typically evaluated with performance-based measures during
standardized driving tasks in controlled or real environments,
and graded by an observer who will pass judgement on the
individual’s skill level [14]. Insufficient research has been
published on the ability of these instruments to extrapolate
to PW mobility and safety in everyday use. Indeed, while
PW driving skills are an important factor in the safe operation
of a PW, user behaviour and risk mitigation by the user during
everyday use of the PW is as important.

In order to educate PW users on risk mitigation and
improve their poweredwheelchair driving skills, a better char-
acterization of PW users’ driving behaviour is required, in
various real and ecological indoor and outdoor settings [15].
Ambulatory real life monitoring approaches of PW use with
embedded sensors and datalogging are starting to emerge.
Cooper et al. [16] determined the driving characteristics of
PW users during unrestricted community activities by using
a sensor attached to a PW and a custom-built datalogger.
Speed, distance traveled, and the time that each subject’s per-
sonal wheelchair was being driven were recorded for 24hr/d
over approximately five days for each subject. Activity lev-
els among an active group and a group of regular users
were compared. Drivers of PW were most active during
the afternoon and evening hours. Over the 5-day period of
this study, there was little variation in the speed or distance
driven per day across subjects with an average daily distance
of 1.7 km. Another study by Sonenblum et al. [17] reported
PW usage using instrumentation known as the Wheelchair
Activity Monitoring Instrument (WhAMI). PW usage was
logged electronically, and geo-location and interview data
were used to attribute PW use to (1) in the home, (2) not in
the home indoors, or (3) outdoors, over a sample of twenty-
five non-ambulatory, full-time PW users. Distance wheeled,
time spent wheeling, number of bouts, time spent in the
wheelchair, and the percentage of time spent wheeling were
measured to describe wheelchair use. Overall, most research
into PW mobility using embedded sensors and datalogging
have reported global metrics on use of PW, such as the
total distance and time spent moving each day, and have
not taken into account context specific information on PW.
To improve our understanding of PW use, its potential inter-
relationship with the environment and the driving skills of
users, and ultimately its impact on the mobility of older

adults, better outcome measures of PW mobility need to be
developed.
Advances in data miningmethods combined with the avail-

ability of low cost sensing technologies provide new oppor-
tunities to automatically classify PW activity, and understand
behaviours of PW users in natural environments [18]. In our
previous work [20], we presented a method to automati-
cally recognize and categorize five different driving activi-
ties during PW use, directly from sensor data. The method
trains a support vector machine classifier, using time-delay
embedding features of sensor-based data collected from a
datalogging platform installed on a PW. The objectives of the
present study are to: 1) test the robustness of the events recog-
nition method with a dataset containing a larger spectrum of
PW activities (35 instead of 5), 2) assess its performance to
automatically classify safe vs. unsafe activities using a very
limited training set (only five examples of each activity).

FIGURE 1. Classification process using different features.

II. METHODS AND PROCEDURES
A. OVERVIEW
Fig. 1 provides an overview of the multiple components of
our end-to-end system for automatic detection and classifica-
tion of PW driving activities. First, the data-logging device
handles real-time recording of sensor data onboard the PW.
Our analysis uses only the 3D accelerometer data. Second,
event segmentation is applied to the recorded data to identify
events of interest from the data-stream. Next, feature extrac-
tion computes a rich set of features from the events of interest.
Finally, we apply the machine learning classifier to categorize
the events according to type (safe vs. unsafe) and activity
(35 different classes).

B. DATA-LOGGING
A proof of concept for a measurement approach to monitor
real life use of PW driving was developed and is currently
in use with a sample of PW users. The platform, called the
Wireless Inertial Measurement Unit with GPS (WIMU-GPS)
(Fig. 2), consists of a datalogger with embedded sensors
and external sensors installed on the PW. The WIMU-GPS
contains a number of sensors and components. In this paper,
we consider only the data from the 3D accelerometer. The
rationale for this choice is to limit the number of sensor inputs
in order to explore the power of the proposed event detection
and classification methods under a set of distinct and similar
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driving tasks. Accelerometers are inexpensive, reliable, and
unobtrusive, thus would be easy to install on any PW. In our
case, the WIMU-GPS is installed on the base near the wheel,
which takes only a few minutes and minimal tools to install.

FIGURE 2. Overview of datalogging platform (WIMU-GPS).

Once the datalogging platform has been installed on the
PW (anOasismodel fromOrthofab), a wheelchair user (in our
case a research assistant) is asked to perform 35 distinct activ-
ities, listed in Table 1. The activities are selected so that they
cover most common wheelchair activities in different speeds,
directions, and other conditions, following consultation with
clinicians. Of the 35 activities, 15 are identified as being safe
activities, and 20 are identified as unsafe a priori. Unsafe
activities are defined as those activities where collisions with
objects occurred at different speeds. The remaining activities
are defined as the safe activities. The rational for the choice
and segmentation of the driving tasks (safe or unsafe) is based
on the assumptions that irrespective of the task performed,
impacts (collisions) are detrimental to the safety of the user
as they have difficulty maintaining a supported seated posture
when subjected to external forces. As such, while manoeu-
vring an PW, collisions can occur from different point of
the PW (forward motion, backward motion, side motion) at
different speeds. Many of the safe activities selected (such as
passing a step at high speed) can potentially be mistaken with
the unsafe activities. This is done intentionally to ensure that
our event classification process leads to robust classification
of activities.

To form the dataset, each activity is repeated 30 times
(each of these repetitions is considered an ‘‘event’’). The
3D acceleration is recorded at the rate of 250 Hz. The
30 events for each activity are then concatenated to form a
quasi-periodic signal for each activity. The 30 events are fur-

TABLE 1. PW activities in the dataset.

ther separated into six cross-validation sets, each containing
five repetitions of each activity. The reason for this is two-
fold: it allows us to show that the system can be trained from
relatively few examples (five events for each activity), and by
having cross-validation sets we can get a confidence estimate
on our results. All data used in this study was recorded from
a single PW driver.

C. EVENT SEGMENTATION
The goal of this component is to extract events-of-interest
from the input signal (without, at this stage, identifying
the activity’s type). Segmentation of the input signal into
events-of-interest during long-term recordings is an essential
processing step to make the proposed approach viable. The
segmentation step helps in increasing the accuracy of the
subsequent classification steps. If we were to keep all the data
for the classification steps, then we would face a substantial
class imbalance problem, whereby the activity corresponding
to standard driving (without an event-of-interest) would con-
stitute a much larger portion of the dataset than the specific
activities. This often makes the classification task unneces-
sarily difficult for the algorithms.
To segment the acquired data, accelerometer signals

S = (X, Y, Z) are partitioned into non-overlapping windows
of length l, where l is the average duration of one event.
For example, (xt , xt+1, . . . , xt+l) forms the ith window’s
x coordinate, where i = t−1

l + 1. Then for each data point
St = (xt , yt , zt ) in window wi, the normalized acceleration
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magnitude, βt , is computed for each data point:

βt =

√(
xt − µxi
σxi

)2

+

(
yt − µyi
σyi

)2

+

(
zt − µzi
σzi

)2

(1)

whereµsi,s∈{x,y,z} indicates the mean of over time windowwi.

µis =

∑
t∈wi

st

l
, s ∈ {x, y, z} (2)

and σ 2
is,s∈{x,y,z} indicates the variance of over the same win-

dow. In this case, variance is defined by the squared deviation
of each signal value from its expected value or mean.

σ 2
is =

∑
t∈wi

(st − µis)2

l
, s ∈ {x, y, z}. (3)

Afterwards, β(.) is smoothed by the autoconvolution func-
tion [25].

After the preprocessing step, accelerometer data points in S
are clustered into two groups to differentiate between events-
of-interest and baseline activity based on the β(.) signal.
Clustering is achieved using the K-means clustering algo-
rithm [26], which partitions data into K disjoints subsets such
that each data point belongs to the cluster with the nearest
centroid (we assume K = 2). One cluster is composed of
events-of-interest, to be further classified, and all the subse-
quent steps of our methodology are applied only to the data
points that fall in this cluster. Data points in the other cluster
are not considered for further analysis.

D. FEATURE EXTRACTION
One of the core components of the system is the extraction
of appropriate features on which to perform automatic clas-
sification. We consider four different types of features, each
of which focuses on different signal properties: time-delay
embedding features, simple time-domain features, frequency-
domain features, and wavelet transforms. One of the contri-
butions of this paper is to provide a detailed comparison of
their performance on a challenging dataset. We now present
a brief mathematical description of each feature class.

1) SIMPLE TIME DOMAIN FEATURES
The first feature set considered contains simple character-
istics of the time-series: mean, variance and line length
on each of the three accelerometer coordinates. These
time-domain signal properties are simple to measure and
have shown good results in classification tasks of time-
series [22]. The mean, variance and line length features are
generated for windows, wi of size l from the segmented
data. Therefore, the feature vector for the ith window is
{µxi, µyi, µzi, σ 2

xi, σ
2
yi, σ

2
zi, llxi, llyi, llzi}, where µ and σ 2 are

defined as in the previous section. The line length of a signal
in a time window indicates the sum of absolute changes in the
signal amplitude during that period [22]:

llis =
∑
t∈wi

|st − st−1| , s ∈ {x, y, z} . (4)

2) FFT COEFFICIENTS
The second set of features considered is the magnitude of
FFT coefficients for each of the accelerometer dimen-
sions, x, y, z. Although it is more common to use
the power spectrum of FFT coefficients, different tri-
als showed that the magnitude of coefficients has bet-
ter accuracy for classification of dynamic activities [23].
Using a Discrete Fourier Transform (DFT), we extract
{F1

ix ,F
2
ix , . . . ,F

n
ix ,F

1
iy, . . . ,F

n
iy,F

1
iz, . . . ,F

n
iz}, the FFT fea-

ture vector corresponding to window wi of the signal
containing l data points, where Fkis indicates the kth
FFT coefficient of signal s:

Fkis =
∑
t∈wi

ste
2π jk
l t , s ∈ {x, y, z}. (5)

Usually, only the first n coefficients for each signal are
computed, where n is chosen based on time constraints and
desired classification accuracy; we use n =10 throughout our
analysis.

3) WAVELET TRANSFORM
In addition to FFT coefficients, a vector of wavelet trans-
form coefficients is also considered. Using wavelet analysis,
the original signal is decomposed into coefficients con-
taining both temporal and spectral information. This infor-
mation can be used to identify the point at which the
activity type is changed. Studies have shown that wavelet
coefficients extracted from accelerometer signals can provide
useful information for activity analysis [23], [24].
We consider wavelet coefficients extracted using the

Daubechies transform [32]. In the simplest case, the decom-
position is as follows:

c(n) = h0s(2n)+ h1s(2n+ 1)+ h2s(2n+ 2)+ h3s(2n+ 3)

(6)

d(n) = h0s(2n)− h1s(2n+ 1)+ h2s(2n+ 2)− h3s(2n+ 3)

(7)

where the multipliers are:

h0 =
1+
√
3

4
√
2
, h1 =

3+
√
3

4
√
2
, h2 =

3−
√
3

4
√
2
, h3 =

1−
√
3

4
√
2
(8)

In our analysis, we consider the magnitude of the
Daubechies 2 wavelets for the 3D accelerometer data,
as recommended in previous work [23]. Therefore,
the corresponding feature vector for wi with length l
is

{
|d1ix

∣∣, |d2ix ∣∣, . . . , |dnix ∣∣, |d1iy∣∣, . . . , |dniy∣∣, |d1iz∣∣, . . . , ∣∣dniz∣∣},
where dkis indicates the detail coefficient at the kth level
of decomposition of signal s∈{x, y, z} in time window wi.
A proper value for n can be chosen based on time constraints
and desired classification accuracy.

4) TIME-DELAY EMBEDDING FEATURES
The final set of features considered is based on a time-
delay embedding of the accelerometer signal. The goal of
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this method is to characterize unknown dynamical systems
directly from sampled data [10], [11]. The time-delay embed-
ding projects the dynamic properties of the time-series at time
t in an m dimensional space S̃t

E
= (St , St−T , . . . , St−mT )

where T > 1 is the sampling delay and m > 1 is an integer
multiplying the sampling delay. The components of this state
space form a coordinate system that captures the structure of
the time-series [21].

Theoretically, we know that any time-delay structure can
reconstruct the dynamics of the system if m is large enough
and T does not have a conflict with any periodic property of
the system [27]. But in practice, it remains a challenge to find
the real dimension d and determine the proper sampling delay
m necessary to capture the dynamics of the system. In gen-
eral, two approaches are used to determine the embedding
parameters. In the first one, statistical tools are used to find
the parameters and the optimised values are used for further
analysis [28]. Alternately, and as we do in this paper, one
starts with the intended analysis and optimizes the result for
m and T using a grid search over parameter space on a small
validation dataset.

After generating the high dimensional model, principal
component analysis is used to map the system to the lower
dimensional space. In this method, each set of observations
in the m-dimensional space, S̃t

E
∈ Rm, is mapped to a

p-dimensional space, SEt ∈ Rp, (with p < m) using an
orthogonal transformation [29]. After mapping all data points
to the new p-dimensional space,1 the distance from each
data point to its nearest neighbour in each (labelled) activity
set is measured, and this measurement forms the time-delay
embedding feature. In other words, if the dataset includes u
different activities {A1, . . . ,Au} and SEti indicates the p
dimensional embedding for the ith activity at time t , the
corresponding feature vector is F(i, t) = {|SEti − S

E
t ′ j
|}
j=1,...,u

where t
′

= Argmin|SEti − SE
t ′ j
|}. These pairwise distances

are used as features for the subsequent classification step.
For points that are members of the labelled set, the pairwise
distance to their second nearest neighbour is used.

For our experiments, we build three separate time-delay
embeddings (corresponding to recorded accelerometer data
in the X, Y, and Z axes, respectively) for each of the 35 activ-
ity types. The parameters are the same for all embeddings,
m = 16, T = 0.1 sec and p = 5.

E. CLASSIFICATION USING SVM CLASSIFIER
Given a dataset where each point is described by a feature
vector {f

(
x it
)
, f
(
yit
)
, f
(
zit
)
} i = 1, . . . ,N , supervised learning

techniques can be applied to find a mapping from feature
space to event identity. For this step, we use a Support Vector
Machine classifier [34]. An SVM classifier constructs a set
of hyperplanes in a high-dimensional space that classifies

1The projected points are stored using a KD-Tree structure [30]. This
structure is useful for fast searching because it organizes the data points
spatially, and can respond to pairwise distance queries in time linear in the
number of points and in the dimension of the tree.

the samples into two classes. The classifier is essentially a
function mapping the feature vector f (x, y, z) to the output
set, γ ∈ {1,−1}. To construct these hyperplanes, the SVM
uses an iterative training algorithm to minimize an error func-
tion, corresponding to the following optimization problem.

minω,b,ζ
1
2
ωTω + C

∑n

i=1
ζi

subject to γi(ωTφ(fi)+ b) ≥ 1 − ζi, ζi ≥ 0 (9)

The feature vector is mapped to a higher dimensional space by
φ and the classifier finds a separating hyperplane in this space.
SVM classifiers are characterized by their kernel function,
K
(
fi, fj

)
= φ(fi)Tφ(fj). We use a basic polynomial kernel:

K
(
fi, fj

)
=
(
αf Ti fj+r

)d
, α > 0, with degree d = 2. In order to

classify a dataset including multiple classes, multiclass SVM
can be achieved by reducing a single classification problem
into multiple binary classification problems. Our classifiers
are trained using the LibSVM tool [34]. Hyper-parameters for
the algorithms were selected using our previous study [20].

III. RESULTS
A. SEGMENTATION OF EVENTS
We begin by considering the segmentation of events-of-
interest from the datastream. We applied the segmentation
approach described above. For this step, we considered data-
points at the full time resolution (250 Hz). The magnitude
signal β was generated over windows of size 7000 points
(=28 sec), the average duration of each activity. Then β is
smoothed by auto-convolving βt and βt+δ (where δ =
100 points @ 250Hz). Finally, the datapoints in β were
divided into two clusters using the K-Means algorithm.
We applied a final smoothing step over the clustering output,
removing cluster assignments with fewer than k consecutive
points (k = 1500 points, selected by cross-validation). For
most activities, we correctly segmented the 30 repetitions of
each activity. Fig. 3a presents a sample segmentation, based
on 30 repetitions of the DP1L (Rolling down 1 inch slope
at low speed) activity. For a few of the activities, some of
the events were segmented into two parts. In particular, for
three of the activities (MP1L, MP1N, MP1R), each event-
of-interest was segmented into two separate events, rather
than a single one. This is not so surprising looking at the
signal, as shown in Fig. 3b, where we observe that each
event is characterized by a double-peak. For the other activity
types (excluding MP1L, MP1N, MP1R), out of 960 events,
our approach missed one event (0.1%) and over-counted
12 events (1%).

B. ACTIVITY CLASSIFICATION: SAFE VS. UNSAFE
The data points extracted via segmentation are further pro-
cessed for feature extraction according to the four types
of features outlined above. Features of the time domain,
FFT coefficients, and wave transforms, were extracted
using the Automated Feature Extraction and Selection
toolbox (AFESt) [33]. Features for the time-delay
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FIGURE 3. (a) Activity DP1L (Rolling down 1 inch slope at low speed),
30 repetitions, segmented into two groups: events-of-interest (red boxes)
and background data (blue signal). (b) Activity MP1L (Climbing up 1’’
slope at low speed ), 30 repetitions, segmented similarly; in this case the
automatic segmentation yielded 60 events-of-interest.

embeddings were produced using our own code. Using these
features vectors, we considered two types of classification
tasks: binary classification to distinguish between Safe and
Unsafe events, and per-type classification whereby events
are categorized into the 35 types listed in Table 1. In this
section we present the results of the Safe vs. Unsafe clas-
sification task. The results of the per-type classification task
are described in the following section.

To train and evaluate the classifiers, the data correspond-
ing to the events-of-interest were divided into two datasets:
a training set that was used to train the algorithms, and
included five trials (out of 30) for each activity; and a test set
that was used to evaluate the performance of the algorithm,
and included five different trials. We used a small training
set as this is more realistic for eventual deployments where
assessment of PW driving skills for a given PW user could
include tasks needed to generate this training set. All reported
results are the average of a K -fold cross validation (K = 6).
Feature extraction, with all types of features, was done over
windows of 1.6 sec, assuming a 1.596 sec (=one data point)

FIGURE 4. Average error rate (%) over all Safe / Unsafe events, using five
different types of features: time-delay embeddings, time-based features,
FFT coefficient magnitudes, wavelet transform, and all features. Error is
defined as the number of false positives and false negatives over the total
number of examples. Vertical bars indicate 95% confidence intervals.

overlap with the preceding window.
The average classification error to detect safe and unsafe

activities using each type of features is shown in Fig. 4.
We also examined the classification accuracy for each of the
35 different activity classes separately; results are presented
in Fig. 5.
Using only simple time-domain features, our classification

algorithm incorrectly classified 9% of unsafe events as being
safe, and 17% of safe events were classified as unsafe, as
shown in Fig. 4. We note from Fig. 5 that two out of 20 unsafe
activities were classified as being safe more than 20% of
the time. Using only FFT coefficients, results in Fig. 4 and
Fig. 5 show that we can achieve a low classification error for
unsafe events (3%). The FFT features also achieved the lowest
error (33%) on the challenging IFMR (Frontal collision with
a moving object at high speed) activity. However the safe
DP1L (Rolling down 1 inch slope at low speed) activity
was always misclassified as being unsafe. As shown again
in Fig. 4, detection of events with time-delay embeddings
misclassified 7% of unsafe events and 15% of safe events.
The most difficult unsafe activity to classify was once again
IFMR (Frontal collision with a moving object at high speed).
Of the safe activities, the TDE features were the only ones to
successfully classify DP1L (Rolling down 1 inch slope at low
speed), with only 3% error. The average misclassification rate
using only wavelet transforms, as shown in Fig. 4, was 10%
for unsafe activities and 26% for safe activities. This is not
competitive with any of the other feature families considered.
We observe from Fig. 5 that classification errors for unsafe
activities were localized to certain activity types, for example
IFCR (Frontal collision with a soft object at high speed)
and IFMR (Frontal collision with a moving object at high
speed) for the unsafe activities. Finally, we considered the
classification accuracy that can be achieved when combining
all feature families within a single classifier. As shown in
Fig. 4, with this combination, our classification algorithm
achieved a misclassification rate of 2% for unsafe events
and 12% for safe events. This was lower than with any

2100509 VOLUME 2, 2014



Pineau et al.: Automatic Detection and Classification of Unsafe Events

FIGURE 5. Safe vs. unsafe classification average error rate (%) per activity class, using 5
different types of features: time-based features, FFT coefficient magnitudes, time-delay
embeddings, wavelet transforms, and all features. The average error rate for each event was
calculated over six folds of cross-validation. In each fold, the training set included five
examples of each activity.

single feature family, but not significantly better than with the
FFT features. This may be due to the small size of the training
set; in general, larger training sets are necessary when training
classifiers with greater numbers of parameters (features in
this case). This classifier outperformed all the others on most
activities, though there were a number of activities for which
the time-delay embedding features or FFT features performed
better, notably IFCR (Frontal collision with a soft object at
high speed).

Running paired t-tests comparing the misclassification
rates obtained with the various feature sets confirmed that we
could partition feature families into two sets: {FFT features,
All features} vs. {Time-based features, Wavelet features}.
Results obtained with any of the feature types in the first set
were significantly better (at the p = 0.05 level) than those

obtained with any of the features in the second set, but not
significantly better than those obtained within their set. There
was no significance between time-delay embeddings and any
of the other feature families.
We end this section by presenting results showing the

impact of the training set size on the Safe/Unsafe classi-
fication performance. We focus on the FFT family of fea-
tures and the AllFeatures set, which performed best in the
results above. We observe in Fig. 6 that the Safe/Unsafe
classification performance improved steadily until the 5 first
training examples, and continued to improve but at a slower
rate, up to 15 training examples for FFT features. In the case
of the AllFeatures, improvements continued up to 25 training
examples (the limit of our dataset, preserving a five example
test) and may improve further with more data. This confirms
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FIGURE 6. Classification error as a function of the size of the training set.

that moderate amounts of data can be sufficient to correctly
classify events, but that more data can be useful, especially
when considering a greater number of features.

IV. CONCLUSION
The paper presents a machine learning approach targeting the
development of automated analysis tools to characterize the
driving behavior of wheelchair users. The results presented
constitute a proof-of-concept that the system can accurately
detect unsafe activities using a variety of features and support-
vector machine classification, with less than 2% error, and a
relatively low rate of false positives (12%). This approach can
be helpful in monitoring safe usage of the wheelchair under
varied operating conditions. The number of false alarms can
likely be reduced by leveraging richer sensor data (e.g., using
audio or video data to better diagnose activities). Offering
more training examples in a diversity of safe activities could
also improve robustness.

We compared classification performance using different
sets of features common in the time-series analysis litera-
ture: time-delay embeddings, time-domain characterization,
frequency-domain features, and wavelet transforms. This was
deemed necessary because these features have been often
used in the literature, without reliable comparison between
them. The results presented here show that the most robust
performance was achieved when combining all features, how-
ever nearly as good performance was obtained by using
FFT features alone.

Our approach could be helpful in diagnosing frequent
driving mistakes in every day usage, without requiring a
user to keep a detailed diary. One of the challenges in
moving forward with the implementation of this technique
onboard regular PWs is to validate the method using natural
recording conditions. This poses logistics challenges in terms
of obtaining accurate labeling of activities. The labels could
however be assigned through post-processing of the recorded
data, and corroboration through camera data. Furthermore,
the current system was evaluated using activity recordings
from a single user; we expect results to be relatively robust

to different users given the very narrow class of events con-
sidered, however this remains to be tested.
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