
A formal framework for robot learning and control under model uncertainty

Robin JAULMES, Joelle PINEAU and Doina PRECUP
School of Computer Science

McGill University
Montreal, QC CANADA H3A 2A7

Abstract— While the Partially Observable Markov Decision
Process (POMDP) provides a formal framework for the prob-
lem of robot control under uncertainty, it typically assumes
a known and stationary model of the environment. In this
paper, we study the problem of finding an optimal policy for
controlling a robot in a partially observable domain, where
the model is not perfectly known, and may change over time.
We present an algorithm called MEDUSA which incrementally
learns a POMDP model using queries, while still optimizing a
reward function. We demonstrate effectiveness of the approach
for a simple scenario, where a robot seeking a person has
minimal a priori knowledge of its own sensor model, as well
as where the person is located.

I. INTRODUCTION

Most approaches for robot planning and control assume
there is a known model that quantitatively describes the
robot’s dynamics and sensors, as well as other agents and
the environment. This is convenient when available, and so-
lutions have been produced for large-scale high-dimensional
domains using a wide variety of algorithms. However these
methods are severely limited in applications where writing
down the exact model is time-consuming and error-prone,
or when the model changes over time. A number of ad-hoc
approaches are available for dealing with this, often involving
re-planning. However the model uncertainty is not generally
considered as an integral part of the initial planning and
control algorithm.

This paper proposes a formal framework for robot plan-
ning and control under model uncertainty. The framework
accommodates uncertainty in the dynamics (the robot’s own,
as well as the environment’s and other agents’), uncertainty
in the sensors, and uncertainty in the very model that
describes these dynamics and sensors. The framework makes
several assumptions: it assumes the model can be described
probabilistically, it assumes the robot can interact with the
environment to learn the model, and finally it assumes
access to an operator (or highly precise sensor) who can
answer queries about the state of the system. The queries
are automatically selected as part of the planning exercise so
as to maximize information gain. The approach we describe
suggests a new paradigm for shared human-robot learning in
unknown environments.

Our approach is based on the Partially Observable Markov
Decision Process (POMDP) [7]. POMDPs provide a sound
decision-theoretic framework for planning under uncertainty.
Due to recent advances in algorithmic techniques, POMDPs
have been applied in large domains where the state of the

robot and other agents in the environment is only partially
observable [10]. These model-based techniques however
require an exact and stable model of the robot’s sensors,
dynamics and environment. A number of experience-based
approaches have also been proposed for the POMDP, which
do not assume a known model, but rather learn it from direct
experience with the environment [2], [12], [1]. However
these typically require excessive amounts of data. We would
prefer using techniques which offer a better compromise
between model-based and experience-based.

The approach we describe, called MEDUSA, combines a
partial model of the environment with direct experimentation,
in order to produce solutions that are robust to model
uncertainty, while scaling to larger robotics domains than
experience-based approaches. Furthermore, because models
may change over time (e.g. non-stationary environments),
our approach is able to automatically track these changes
and adapt the model accordingly. MEDUSA is inspired from
the fields of active learning [3] and Bayesian reinforcement
learning [4]. The core idea is simple: represent any prior
knowledge about the robot and its environment in a set
of Dirichlet distributions and update the parameters of the
Dirichlets whenever the robot interacts with its environment
or queries an oracle (e.g. operator, high-precision sensor) . To
obtain a plan, we sample POMDP models from the Dirichlet
distributions, and solve these using model-based techniques.

The original MEDUSA algorithm was presented in [5].
We discussed in [6] theoretical conditions under which
MEDUSA converges to the correct model. We now present
a novel and extended version of MEDUSA that includes
learning from both queries and non-queries, as well as
adaptation to non-stationary environments. We also provide
the first empirical validation of MEDUSA for a robotic
task. The main contribution of this paper is to present an
improved framework for simultaneous learning and control
that is appropriate for complex robot systems.

II. ROBOT PLATFORM

Many people who suffer from chronic mobility impair-
ments, such as spinal cord injuries or multiple sclerosis, use
a powered wheelchair to move around their environment.
However factors such as fatigue, degeneration of their condi-
tion, and sensory impairments, often limit their ability to use
standard electric wheelchairs. SmartWheeler (Figure 1) has
been developed as a multi-functional intelligent wheelchair
to assist individuals with mobility impairments in their

daily locomotion, while minimizing physical and cognitive
loads. It is built on top of a commercially available Sunrise
Quickie Freestyle, to which we have added laser range-
finders, wheel odometers, a touch-sensitive graphical display,
a voice interface, and an onboard computer.

The robot’s primary task involves navigating in an indoor
environment following high-level commands from the user
(of the type ”Go to the dinning room”, ”Find a caregiver”,
etc.) All mapping and navigation functions are provided
by the Carmen robot navigation toolkit [9]. The learning
and planning engine is provided by the MEDUSA system
described in the current paper.

Fig. 1. SmartWheeler robot platform.

III. PARTIALLY OBSERVABLE MARKOV DECISION
PROCESSES

The MEDUSA learning and planning engine is based
on the POMDP paradigm. This section reviews the basic
concepts in POMDPs. We assume the standard POMDP
formulation [7]. A discrete set of states, S, describes the
task domain. A discrete set of actions, A, describes what the
robot can do. A discrete set of observations, Z, describes
what the robot can perceive.

Unlike other planning representations (e.g. STRIPS,
MDPs), the assumption in POMDPs is that the state of the
system is not known, but can only be perceived (partially)
through the observations. The challenge is for the robot to
pick a good sequence of actions, despite this state uncer-
tainty. Formally stated: at each time step t, the agent is in an
unknown state st ∈ S, it executes an action at ∈ A, arrives in
an unknown state st+1 ∈ S and gets an observation zt+1 ∈ Z.

The dynamics of the POMDP are defined via a probabilis-
tic representation of the task and environment as follows:
• state-to-state transition probabilities

T a
s,s′ = Pr(st+1 = s′|st = s,st = a),∀s∈ S,∀a∈ A,∀s′ ∈ S,

• observation emission probabilities
Oa

s,z = Pr(zt = z|st = s,at−1 = a),∀z ∈ Z,∀s ∈ S,∀a ∈ A.
It also assumes a deterministic reward function R : S×A×S×
Z→ℜ, where R(st ,at ,st+1,zt+1) is a quantitative assessment
of the usefulness of the corresponding experience-tuple <

st ,at ,st+1,zt+1 >. Finally, there is a known discount factor
γ ∈ [0;1] which quantifies preference for reaching the goal
at the current time step, versus the next time step.

Since the state is not fully observable, robots operating
under the POMDP framework keep track of a belief state,
b ∈ ℜ|S|, which is a probability distribution over all states
given the history of actions/observations experienced so far.
The initial belief b0 is usually specified by the designer. Sub-
sequent beliefs bt can be calculated by Bayesian updating:

bt(s′) =
Oa

s′,z ∑s∈S T a
s,s′bt−1(s)

∑σ∈S Oa
σ,z ∑s∈S T a

s,σbt−1(s)
(1)

based on the most recent action, observation pair.
A policy is a function that associates an action to each

possible belief state: π(b)→ a. Solving a POMDP means
finding the policy that maximizes the expected discounted
return:

E[
T

∑
t=0

γ
tR(st ,at ,st+1,zt+1)|b0]. (2)

While finding an exact POMDP solution is often computa-
tionally intractable, due to the large number of possible belief
states, many efficient methods have been proposed recently
for finding approximate solutions. The results presented in
this paper use the PBVI algorithm [10], however, the tech-
niques MEDUSA is equally suited to other approximations.

While these approximate methods have been crucial in
scaling POMDP solving to larger domains and robotic
applications [11], [13], they require knowing the exact
probabilistic distributions underlying the POMDP model.
This is a challenge in many realistic robotic tasks. For
example, in SmartWheeler, this would mean having a precise
parametric description of: the robot’s motion model, sensor
noise models for the odometry, lasers and speech interface,
and a probabilistic description of the human user’s state
transitions. Clearly, some components are easier to describe
probabilistically than others, for example the motion model
and laser noise model have been quantified previously in
the literature. However the odometry noise for this robot
is unknown, and user’s state transition and speech patterns
are difficult to quantify without data. MEDUSA provides
a formal framework for combining a priori knowledge and
experimental data in a Bayesian manner, to acquire high-
quality model and policy for the task at hand.

IV. THE MEDUSA ALGORITHM

The core idea of MEDUSA is to represent the model un-
certainty with a Dirichlet distribution over possible models,
and to update directly the parameters of this distribution as
new experience is acquired. We assume throughout that the
reward function is fully known; this is in contrast to the
standard reinforcement learning formulation [14]. We focus
instead on learning {T a

s,s′} and {Oa
s,z} which can be hard to

specify correctly by hand.
This approach scales nicely: we need one Dirichlet param-

eter for each uncertain POMDP parameter, but the size of
the underlying POMDP representation remains unchanged,

which means that the complexity of the planning problem
does not increase. However this approach requires the agent
to repeatedly sample POMDPs from the Dirichlet distribution
and solve the sampled models, to best select the next query.

A. Dirichlet Distributions

Consider a N-dimensional multinomial distribution with
parameters (θ1, . . .θN). A Dirichlet distribution is a proba-
bilistic distribution over these parameters. The Dirichlet itself
is parameterized by hyper-parameters α = {α1, . . .αN}. The
likelihood of the multinomial parameters is defined by:

p(θ1 . . .θN |α) =
∏

N
i=1 θ

αi−1
i

Z(α)
, where Z(α) = ∏

N
i=1 Γ(αi)

Γ(∑N
i=1 αi)

,

and Γ() is the standard gamma distribution. The maximum
likelihood multinomial parameters θ∗1 . . .θ∗N can be easily
computed: θ∗i = αi

∑
N
k=1 αk

,∀i = 1, . . .N. The Dirichlet distri-
bution is convenient because its hyper-parameters can be
updated directly from data. For example, if instance i is
encountered, αi should be increased (typically by 1). Also,
we can sample from a Dirichlet distribution conveniently
using Gamma distributions.

In the context of POMDPs, model parameters are typically
specified according to multinomial distributions, thus our use
of the Dirichlet distribution to capture model uncertainty.
A separate Dirichlet distribution is specified for each state-
action pair where either the transition probabilities or the
observation probabilities are uncertain.

B. MEDUSA

The name MEDUSA comes from Markovian Exploration
with Decision based on the Use of Sampled models Algo-
rithm. It is an integrated learning and planning approach for
sequential decision-making. We first give an overview of the
basic algorithm, then discuss enhanced components designed
to handle learning without an oracle, and learning in non-
stationary environments.

The algorithm is as follows. First, we assume that initial
Dirichlet parameters are given, representing both a priori
knowledge of the model, and uncertainty over model param-
eters. This is the place to encode any prior knowledge about
the robot’s motion or sensor models.

Next, we sample a number of POMDP models according
to this prior. Each model is a candidate representation
of the robot’s properties and task domain. In practice, a
small number of models is usually sufficient to obtain good
results while limiting computation (e.g. we used 20 for the
experiments below.)

MEDUSA then computes an (approximately) optimal pol-
icy for each of the sampled models. The resulting policy
describes optimal behavior for the robot under the assumed
model parameters. MEDUSA also computes the weight
(likelihood) of the model under the Dirichlet distributions.

Next, at each time step, one of the models is chosen at
random (with probability equal to the weight of that model)
and the corresponding optimal action is applied. This allows
us to obtain reasonable execution performance throughout

the learning process, while focusing learning in regions of
the state space most often visited by good policies.1

Each time an action is taken, it is followed by an ob-
servation. The agent can then decide whether to query the
oracle for the true identity of the hidden state. A discussion
of the criteria used to decide whether or not we do a
query is differed to the next section. If we do a query, the
Dirichlet distributions are updated according to the outcome
of that query. If we choose not to do a query, the Dirichlet
parameters can also be updated; this is described in the next
section as well. We then repeat these steps, starting with the
selection of the next action. As time goes and the model
improves, the system should choose to do fewer and fewer
queries. In [6], we study the theoretical properties of the basic
MEDUSA algorithm, and show that under certain conditions
(in the limit of infinite exploration, and infinite number of
sampled models), the algorithm is guaranteed to converge to
the correct model.

Many practical considerations arise in the implementation
of this basic algorithm. We discusse a few of these that
are most relevant to robotic applications. First, note that
whenever Dirichlet parameters are updated, the weight of
the sampled models changes. At regular intervals, MEDUSA
drops models whose weight falls below a threshold, and re-
samples new models.

The core assumption in MEDUSA is the availability of
the oracle to provide the robot with exact information about
the current (and next) state. In many tasks it is possible (but
very costly) to have access to the full state information; it
can require asking a human to label the state, or using a high-
precision sensor to recover the information. In practice, this
assumption can be relaxed significantly. For example, while
a robot experiments with a new environment, it can query
the oracle to obtain exact state information only when this is
deemed necessary since the state information is used only to
improve the model, but not in the action selection process.
This is discussed in the next section. For the same reason,
there can be delays between the query request and the query
processing (as long as we do not redraw models after every
step). This is useful for realistic system deployment where
a robot needs to carry out actions at a faster rate than the
operator can be consulted. The answer to the query can also
be noisy. Finally, learning can be performed strictly from
experience (without resorting to the oracle), in which case
our method is equivalent to strict experience-based methods.

Those familiar with POMDP representations of robotic
domains will quickly notice that model parameters are often
correlated. For example, the sensor noise may be identical
regardless of the robot’s position. And the noise induced by
the motion is equivalent in all areas where the surface is
the same. In effect, there are a set of hyper-parameters that
describe the dynamics of the domain. Standard reinforce-
ment learning makes no allowance for learning such hyper-
parameters; the properties of each state-action combination

1For those familiar with reinforcement learning, this is our exploration
policy. Other exploration policies could be used, (e.g. ε-greedy [14]),
however we obtain good empirical results with this.

must be learned separately. MEDUSA on the other hand
is perfectly suited to handle such situations. The key is
to specify the hyper-parameter structure a priori by simply
definition a function that maps any possible transition or
observation parameter to a specified hyper-parameter. The
hyper-parameters are updated directly whenever queries are
made and answered. By varying the number of hyper-
parameters, we are able to trade-off the number of queries
versus model accuracy and performance. Also, any transition
or observation parameter that is known with full certainty
can be fixed a priori, rather than learned through queries.
These modifications can be extremely useful in constraining
the learning problem. The result is a highly expressive
framework to represent, and reason about, model uncertainty.

C. Non-Query Learning

As suggested above, it is not necessary to make a query
at every step, and furthermore it is possible to update the
model based solely on evidence, using non-query learning.
This requires (1) deciding when to query and (2) if we do
not query (or if the query isn’t answered), then using the
information we have from the action-observation sequence
and knowledge extracted from the previous queries to update
the Dirichlet parameters. We begin with this second point.

To do an efficient non-query learning we introduce the
concept of an alternate belief β. For each model i = 1, . . . ,n,
we keep track of such an alternate belief, (denoted βi) in
addition to the standard belief (denoted bi). The alternate
belief is updated in the same way as the standard one (see
Eqn 1) with the difference that whenever a query is answered,
βi is updated to reflect the exact state information, whereas
bi tracks belief uncertainty according to model i’s parameters
(ignoring the state information). The alternate belief allows
us to keep track of the information available from the latest
query, when applying non-query learning. For notational
convenience, we also define:

βi(s,s′) =
[Oi]as′,z [Ti]as,s′ βi(s)

∑σ∈S[Oi]aσ,z [Ti]as,σβi(s)
,

and:
β
′
i(s
′) = ∑

s∈S
βi(s,s′).

Now assume the system decides not to make a query
and sees the standard experience-tuple: < a,z >. The non-
query learning updates all possible state transition hyper-
parameters according to Equation 3 and all possible obser-
vation hyper-parameters according to Equation 4.

α(s,a,s′) ← α(s,a,s′)+λ

n

∑
i=1

wiβi(s,s′) (3)

α(s′,a,z) ← α(s′,a,z)+λ

n

∑
i=1

wiβ
′
i(s
′) (4)

Next, consider the decision of when to make a query
and when to pass. In [5] we discussed a decision-theoretic
optimal approach for deciding this. The method presented
there was highly impractical for all but the smallest problems

(e.g 2 states, 2 actions). We therefore consider the use of
different heuristic indicators that are better suited to large-
scale systems:
• Variance= ∑i wi(V πi −V̂)2

measures the variance over values computed by each
model, V πi . Experiments show that this indicator cap-
tures efficiently how much learning remains to be done.

• InfoGain=
∑

n
i=1[wi ∑s,s′∈S2 [βi(s,s′)(1

∑σ∈S α(s,a,σ) + 1
∑z∈Z α(s′,a,z))]]

measures the quantity of information that a query could
bring. Note that we assume α(s,a,σ)→∞ (and similarly
for α(s′,a,z)) when the corresponding parameter is fully
known a priori. This indicator is useful to reject queries
in cases where the model is already sufficiently certain.

• AltStateEntropy=
∑s∈S−[∑n

i=1 βi(s)] log(∑n
i=1 βi(s))

measures the entropy in the mean alternate belief. It
is a good indicator of how much knowledge has been
lost since the last query. When the state is still well
identified, non-query learning is appropriate, but a query
could be useful if the alternate belief has high entropy.

• NumberOfQueries counts the number of queries
already answered.

We combine these heuristics to decide when to perform
query versus non-query learning, using a simple decision-
rule. We do a query iff:

(AltStateEntropy > ε1)∧ (InfoGain > ε2)∧ (5)

((Variance > ε3)∨ (NumberOfQueries < Nmin))

The first condition ensures that no query should be done
if enough information about the state remains from previous
queries. The second condition ensures that a query will not
be made if it does not bring direct information about the
model, which is the case if we are in a subpart of the model
we know very well. The third condition ensures that we
will stop doing queries when our model uncertainty does
not have any influence on the expected return. Note for this
term that considering the number of queries already done is
necessary in some cases (especially in a learning setup with
a completely uninformed prior) since at the beginning all the
models can be equally bad, which can give a very low value
for the Variance heuristic.2

D. Handling non-stationarity

There are many interesting robotic domains where the
model parameters change over time. For example, slow decay
in the wheel alignment may change the robot motion model,
or a person interacting with the robot may change preferences
over time. We would like our learning algorithm to be able
to handle such non-stationarity in the model parameters.
This is possible in some standard planning and control
algorithms, but only through re-planning, which of course
requires deciding when to initiate replanning. In MEDUSA,

2Other heuristics were considered—e.g. PolicyEntropy (entropy of
the policy over models), BeliefVariance (variance on the belief
state)—but were rejected due to poor empirical performance.

1) Define λ ∈ (0,1), the learning rate.
2) Initialize Dirichlet distributions α(s,a,s′), α(s′,a,z), for any uncer-

tain transition and observation distributions.
3) Sample n models P1, . . .Pn from these distributions.
4) Compute initial model likelihoods: p0

i , i = 1, . . .n.
5) Solve each model: Pi→ πi, i = 1, . . .n.
6) Initialize the belief for each model bi = b0, i = 1, . . .n.
7) Initialize the alternate belief βi = b0, i = 1, . . .n.
8) Initialize the history h = {}.
9) Repeat:

a) Compute the optimal action: ai = πi(bi), i = 1, . . .n.
b) Randomly pick (and execute) a policy action according to

model weights:
πi(bi) is chosen with probability wi = pi

p0
i

, where p0
i is the

original likelihood of model i and pi is the current likelihood
of model i.

c) Acquire observation z.
d) Update history trace h = {h,a,z}
e) Update bi and βi, i = 1, . . .n.
f) Determine if any learning should be done by checking Eqn 5
• If yes, observe query outcome (s,s′), and update Dirichlet

parameters accordingly:
α(s,a,s′)← α(s,a,s′)+λ

α(s′,a,z)← α(s′,a,z)+λ

• If no, update Dirichlet parameters using non-query learning
according to Equations 3 and 4.

g) Re-compute the model likelihoods pi, i = 1, . . .n.
h) If model is non-stationary:

α(s,a,s′)← α(s,a,s′)−ν

α(s′,a,z)← α(s′,a,z)−ν

i) At regular intervals:
• Remove the model Pi with the lowest likelihood
• Draw new model Pi according to current Dirichlet distribu-

tions
• Solve Pi→ πi
• Update its belief bi = bh

0, where bh
0 is the belief resulting

when staring in b0 and seeing history h
• Update alternate belief βi similarly, but taking into account

last query result.

TABLE I
THE MEDUSA ALGORITHM

non-stationarity can be handled by simply allowing recent
experiences to be weighed more heavily than older experi-
ences.

To allow for non-stationarity, each time we update one of
the hyper-parameters, we multiply all the hyper-parameters
corresponding to the associated multinomial distribution by
a model decay factor: ν ∈ [0,1]. This can be thought of as
a decay weight over model certainty. It does not change the
most likely estimate of any of the updated parameters, but
it does diminish the confidence over the parameters. Note
that the equilibrium confidence is defined as: Cmax = λ

1
1−ν

,
which is attained after an infinite number of samples, and
is an indicator of our confidence in past experience. This is
high when we believe the model is stable.

This concludes our description of the MEDUSA algo-
rithm. Table I provides a detailed description of MEDUSA,
including implementation details. We now proceed with a
discussion of preliminary experimental validation.

V. EXPERIMENTAL RESULTS

We now turn our attention to the application of MEDUSA
in a hypothetical robot task domain. To begin our inves-

Fig. 2. Map of the environment used for the robot simulation experiment.

tigation, we integrated MEDUSA with the Carmen robot
toolkit [9]. The Carmen toolbox has been widely used in the
robotics community for the control of indoor mobile robots.
It is particularly useful for validation of new algorithms
because its simulator is known to be highly reliable and
policies with good simulation performance can typically
be ported without modification to the corresponding robot
platform.

Our experiments thus far have focused on a scenario where
the SmartWheeler must navigate in an environment, with the
goal of autonomously finding a caregiver that is also mobile.
We consider the environment shown in Figure 2. Planning
and learning are done over a discretized version; the associ-
ated POMDP has 362 states, 24 observations and 5 actions.
Execution assumes the continuous state representation and
in that case belief tracking is done onboard Carmen using
the full particle filter. Similar versions of this problem have
been studied before in the POMDP literature under various
names (Hide, Tag, Find-the-patient). Previous work always
assumed a fully modeled version of this problem, where the
person’s location is unknown, but the person’s motion model
is precisely modeled, as are the robot’s sensor and motion
models.

We now consider the case where in addition to not
knowing the person’s position, we are also uncertain about
the person’s motion model and the robot’s sensor model.
To avoid learning 362*362*5 transition and 362*5*24 ob-
servation parameters, we take advantage of symmetry in
the environment to specify a smaller number of hyper-
parameters. In total, MEDUSA is trying to learn 52 distinct
parameters.

During learning, MEDUSA makes several queries about
the state. Since there is no model uncertainty about the
robot’s motion, this is equivalent to asking the caregiver to
reveal his/her position so that MEDUSA can infer his/her
motion model. The answer to the queries can be provided
by a human operator, though for convenience of carrying out
multiple evaluations, in our experiments they are produced
using a generative model of the caregiver.

As we can see from Figure 3, MEDUSA converges within
roughly 12,000 time steps, after having received answers to
approximately 9,000 queries. While this may seem large, it is
orders of magnitude faster than experience-based approaches,
which can require millions of steps to learn problems with
less than a dozen states. We note however that experience-
based approaches do not require an oracle. It is worthwhile

pointing out that MEDUSA’s oracle can in fact take the
form of a high-precision sensor. It is realistic to assume for
example that the caregiver will carry around a GPS sensor
that can answer queries automatically during the learning
phase, and that this will play the role of the oracle. In such
a setup, 9,000 queries seems a small price to pay to obtain
a full probabilistic model of the person’s motion model.

We emphasize that the high number of queries required
by MEDUSA for this problem is in large part due to the fact
that the experiment assumed completely uninformed initial
priors on the robot’s sensor model and the caregiver’s motion
model (i.e. α(·) = 0,∀s,a,s′,z in Step 2 of Table 1). Using a
more informed prior would lead to faster learning, but would
require more knowledge engineering. To reduce the number
of queries, we could also build a simpler model with fewer
Dirichlet parameters, in effect assuming stronger correlations
between model parameters.

The main purpose of the results presented here is simply to
establish the feasibility of learning probabilistic models for
a realistic robotic domains with hundreds of states. Future
investigations will be carried out to verify deployment of
MEDUSA in a range of test domains and under various
parameter configurations.

(a) Discounted return as a function of the number of time steps.

(b) Number of queries as a function of the number of time steps.

Fig. 3. Results for the robotic task domain.

Next, we consider the question of whether MEDUSA is
robust to sudden changes in model parameters. This arises
in non-stationary environments, where parameters can either
(1) slowly drift over time (e.g. slow decay in the wheel
alignments), or (2) change abruptly (e.g. person has an
injury, which suddenly slows down his/her walking speed).

Throughout these cases, MEDUSA should adapt to changes
and learn the new correct model with high confidence. If the
change in parameters is small, then non-query learning is
sufficient, however if there are large changes, it is necessary
to resort to queries.

We have not yet investigated MEDUSA’s ability to handle
non-stationary environments in the robot scenario above,
however we consider a simple POMDP domain [7], where
we assume that the probability of correctly detecting the
target suddenly changes. Figure 4 summarizes the results. As
expected, the speed at which MEDUSA learns the new model
depends on the confidence (sum of Dirichlet parameters)
prior to the change in parameter. When the confidence is low
(<100), meaning that a weak model had been learned, the
agent quickly adapts to the new parameters, even when there
is a large shift in the model. However when confidence is
high (>1000), then the agent takes many more steps to learn
new parameter values. This confirms our hypothesis that the
MEDUSA framework is able to handle non-stationarity in
parameter values without the need for re-planning, or for
explicitly detecting the change in parameters. This happens
as an integral part of the learning process.

(a) The equilibrium confidence before the change is low (100).

(b) The equilibrium confidence before the change is high (1000).

Fig. 4. Evolution of the discounted return as a function of the number of
time steps. There is a sudden change in the parameter p at time 0.

Finally, we investigate MEDUSA’s robustness to errors in
the query responses. MEDUSA’s query learning assumes that
an oracle can provide exact state identification on demand.
However it is more realistic to assume some amount of noise
in the state identification provided by the oracle. This allows
us to broaden the class of information sources we can use

as an oracle. We do not yet have results for robustness
to query noise in the robotic scenario above. However we
have investigated the issue in the context of a simpler robot
navigation domain [8]. We consider two cases. In the first,
whenever a query is made, there is a 10% probability that the
oracle will identify the wrong state (picking one at random),
and a 90% that the oracle will give the correct answer. In
the second case, the probability of a correct answer is 80%.
As we see from Figure 5, the quality of the learned model
is quite good when the oracle is correct in 90% of queries,
though it takes more steps of query learning (and thus fewer
steps of non-query learning) than when the oracle is always
correct. The performance is significantly degraded for the
higher error rate. However the 80% query precision model
may not have converged yet, as we see in Figure 5b that the
number of queries is still climbing.

(a) Discounted return as a function of the number of time steps.

(b) Number of queries as a function of the number of time steps.

Fig. 5. Results for queries with a noisy oracle.

VI. DISCUSSION

Most approaches for robot planning and control assume
access to a full model of the robot’s dynamics, sensors
and task domain. Such models are extremely useful when
available, but are generally difficult and expensive to acquire,
and become obsolete following changes in the robot or
environment. This paper proposes a formal framework for
robot planning and control in which reasoning about model
uncertainty is an integral part of the approach.

The work we describe bears some resemblance to ear-
lier techniques for decision-making in model-free POMDPs,
which can learn and plan despite uncertainty in both state

and model [2], [12], [1]. However these approaches have
been scarcely used in robotics due to their intensive data
requirements. MEDUSA offers a significantly more flexible
trade-off between knowledge engineering (in the form of
model priors) and data requirements (in the form of query
answers and non-query experiences). This makes it partic-
ularly attractive for real-world domains where parts of the
problem can be specified differently.

We demonstrate that the approach is applicable to learning
non-trivial robotic tasks with significant model uncertainty.
We also demonstrate applicability to non-stationary domains.
The core assumption of MEDUSA is the availability of an
oracle to provide state information. While this is a strong
assumption, the framework and empirical results indicate that
it can be relaxed in a number of ways. First, the oracle
can be replaced by a high-quality sensor. Second, there is
some tolerance for noise in the oracle’s answers. And third,
there can be a delay between the time the query is posed
and when the answer is received. In the future, we will
perform a thorough investigation of MEDUSA’s robustness
to a wide range of such experimental conditions. We will also
investigate improved decision-theoretic methods for selecting
when to do queries.

ACKNOWLEDGMENTS

This work was made possible by funding from the Natural
Sciences and Engineering Research Council Canada.

REFERENCES

[1] Brafman, R. I. and Shani, G. “Resolving perceptual aliasing with noisy
sensors” NIPS, 2005.

[2] Chrisman, L. “Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach” AAAI, 1992.

[3] Cohn, D. A., Ghahramani, Z. and Jordan, M. I. “Active Learning with
Statistical Models” NIPS, 1996.

[4] Dearden, R.,Friedman, N.,Andre, N., “Model Based Bayesian Explo-
ration” UAI, 1999.

[5] Jaulmes, R.,Pineau, J.,Precup, D., “Active Learning in Partially Observ-
able Markov Decision Processes” ECML, 2005.

[6] Jaulmes, R.,Pineau, J.,Precup, D., “Learning in non-stationary Partially
Observable Markov Decision Processes”. ECML Workshop on Rein-
forcement Learning in non-stationary environments, 2005

[7] Kaelbling, L., Littman, M. and Cassandra, A. “Planning and Acting in
Partially Observable Stochastic Domains” Artificial Intelligence. vol.101,
1998.

[8] Littman, M., Cassandra, A. and Kaelbling, L. “Learning policies for
partially obsevable environments: scaling up”. ICML, 1995.

[9] Montemerlo, M., Roy N. and Thrun, S. “Perspectives on Standardiza-
tion in Mobile Robot Programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit”. IROS, 2003.

[10] Pineau, J., Gordon, G. and Thrun, S. “Point-based value iteration: An
anytime algorithm for POMDPs”. IJCAI, 2003.

[11] Pineau, J., and Gordon, G. ”POMDP Planning for Robust Robot
Control”. ISRR, 2005.

[12] Shatkay, H., Kaelbling, L. “Learning topological maps with weak local
odometric information”. IJCAI, 1997.

[13] Spaan, M.T.J. and Vlassis, N. ”A point-based POMDP algorithm for
robot planning”. ICRA, 2004.

[14] Sutton, R. and Barto, A. ”Reinforcement learning; An introduction”.
MIT Press, Cambridge, MA. 1998.

