A Hierarchical Approach to POMDP Planning and Execution

Joelle Pineau
Nicholas Roy
Sebastian Thrun

JPINEAUQCS.CMU.EDU
NICKRQRI.CMU.EDU
THRUNQCS.CMU.EDU

Robotics Institute, School of Computer Science, 5000 Forbes Ave, Pittsburgh, PA 15213 USA

Abstract

This paper presents a hierarchical approach
to POMDPs which takes advantage of struc-
ture in the problem domain to find modu-
lar policies for complex tasks. We use a de-
composition based on partitioning the action
space into specialized groups of related ac-
tions. We illustrate the appropriateness of
the approach by providing empirical results
for three contrasting domains.

1. Introduction

The vast majority of Al planning has focused on sit-
uations where the state of the environment is fully
observable (Russell & Norvig, 1995). In many real-
world applications, however, this is far from true. Par-
tially Observable Markov Decision Processes (POM-
DPs) (Sondik, 1971) provide a general planning and
decision-making framework for acting optimally in
partially observable domains, and as such have gained
much attention (AAAI 1998). However the computa-
tional cost of finding an optimal policy for the agent
significantly limits the use of this approach, thus pre-
venting the successful application of POMDPs to more
complex problems.

Many real-world domains have structure that can
be exploited to find good policies for complex prob-
lems. The idea of leveraging structure to address
large problems has been explored in Markov Decision
Processes (MDPs) to solve complex problems (Singh,
1992; Dayan & Hinton, 1993; Dietterich, 2000). Unfor-
tunately, none of these solutions is directly applicable
to POMDPs; since they all assume that the state of
the environment is observable; moreover, transition-
ing between different sub-modules is conditioned on
the state of the environment.

The use of structure in POMDPs is more recent,
and preliminary attempts (Castanon, 1997; Wiering &
Schmidhuber, 1997) typically make strict assumptions

about prior knowledge of low-level tasks and order-
ing, which are substantially restrictive. More recently,
memory-based approaches to hierarchical POMDPs
have been proposed (Hernandez-Gardiol & Mahade-
van, 2001), however the amount of training data re-
quired for these exceeds what is available in many
problems, especially for the dialogue management do-
mains we are most interested in.

The single idea underlying our approach is to decom-
pose the domain based on actions. In many task do-
mains, the space of actions naturally decomposes into
a hierarchy of actions that characterizes the applica-
bility of groups of actions in different situations. Con-
sider, for example, a mobile robotic assistant. The
actions involved with navigation (move, turn, stop,

..) are fundamentally different from actions con-
cerned with people interaction (speak, honk horn, dis-
play, ...). Our approach differs from others that adopt
a state-based decomposition of problems.

2. Review of POMDPs

This section establishes the basic terminology used
throughout the paper, by providing a brief overview
of the essential concepts in POMDPs (see (Kaelbling
et al., 1998) for a detailed discussion.)

A POMDP consists of a set of states S = {s1,...,8n},
a set of actions A = {ay,...,a,,} that the agent can
execute, and a set of observations O = {o1,...,01}
that can be perceived by the agent. The dynamics of
the model are described by the state transition prob-
ability distribution p(s’|a, s)!, the observation proba-
bility distribution p(o|s,a)?, and the reward function
R:S x A — R, which maps states and actions into
numerical rewards.

!The probability that the state at time ¢ + 1 is s', as-
suming that the state at time ¢ is s and the agent executed
action a.

2The probability that the agent observes o when the
world is in state s after executing a.

At any given point in time, the system is assumed to
be in some state s;. In general, it is not possible to de-
termine the current state with complete certainty. In-
stead, a belief* distribution is maintained to succinctly
represent the history of the agent’ interaction (both
applied and perceived) with the domain:

by = Pr(st|ot, at,0¢—1,a1—1, ..., 00, G0) (1)

There exist two interesting problems in POMDPs: 1)
state tracking, and 2) policy optimization.

State Tracking. To operate in its domain and apply
a belief-conditioned policy, an agent must constantly
update its belief vector:

0(s',a,0) Y sc5 T(s,a, 8")b(s)
Pr(o|a,b)
(2)

where the denominator is simply a normalizing factor.
For most domains, this problem is trivial compared to
that of computing a useful action selection policy.

b'(s'") = Pr(s'|o,a,b) =

Computing a Policy. The goal of POMDP prob-
lem solving is to select actions so as to maximize re-
ward collection. The set of selected actions is com-
monly referred to as the policy. The policy is a func-
tion of the belief state b:

m:B— A (3)

It can be computed using value iteration (Sondik,
1971), which assigns a value V' (b) to each combination
of belief state b:

V:B—®R (4)

After convergence, the value is the sum of all (possi-
bly discounted) future payoffs R the agent expects to
receive up to time T, if the current belief is b. The
literature provides a collection of algorithms for com-
puting the exact value function—and thereby the op-
timal policy—for finite horizon POMDPs (Cassandra
et al., 1997; Kaelbling et al., 1998). However exact al-
gorithms are bounded by a double exponential compu-
tational growth in the planning horizon, and in prac-
tice can be exponential. This points to the need for
more efficient algorithms.

3. Hierarchical POMDUPs

The fundamental idea behind our approach is the de-
composition of a model-based POMDP problem based
on an action hierarchy. Assuming a given POMDP
problem, the model designer hierarchically partitions

3The probability that, at time ¢, the agent is in state
s¢, given the history {o¢,at, 0¢—1,a¢-1, ..., 00,a0}.

its original action set such that it spans a collection
of hierarchically-related smaller POMDPs, which we
refer to as subtasks (we use notation P; for a given
POMDP subtask). Each action is assigned to one
or more subtasks, where each subtask independently
learns a policy over its subset of actions using exist-
ing POMDP solving algorithms. High-level subtasks
generally learn policies over the selection of lower-level
subtasks; and low-level subtasks are responsible for the
selection of primitive actions.

3.1 Action Hierarchy

The defining element of our approach is the action
hierarchy. Figure 1 illustrates the basic concept of
an action hierarchy. Formally, an action hierarchy is
a tree, where each leaf is labeled by an action a €
A. Each action a € A (henceforth called primitive
actions) must be attached to at least one leaf. The
internal leaves are called abstract actions (we use a
bar, as in a;, to indicate that an action is abstract.)
Each a; is in fact an abstraction of the actions in the
nodes directly below it in the hierarchy (e.g. dz is an
abstraction of a1, az,as.)

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1. General Form Action Hierarchy

3.2 Task Decomposition

A key step towards hierarchical problem solving is
to translate the action hierarchy into a collection of
POMDPs that individually are smaller than the origi-
nal POMDP, yet collectively define a complete policy.

In our approach, each internal node in the action hi-
erarchy together with its immediate children defines a
subtask (shown as a triangle in Figure 1.) Each sub-
task P; constitutes a separate POMDP, defined over
the full state space S and observation space O, but
where its set of applicable actions is limited to its im-
mediate children in the action hierarchy. Policy opti-
mization for that subtask is limited to this action sub-
set. Figure 1 shows a problem that has been divided
into three subtasks: Py, P,, P3, with respective action
sets: Py : {a_z,ae,a_g}, P, {al,aQ,ag}, Ps: {a4,a5}.

3.3 Computing Local Policies

Our approach independently optimizes a local action
policy* for each subtask. We note that only the
subtasks with exclusively primitive actions (e.g. Pa,
P3) contain well-defined POMDPs ®, whereas subtasks
containing abstract actions are so far ill-defined since
the original (flat) POMDP does not provide meaning-
ful parameters conditioned on these abstract actions.
Our hierarchical approach recursively makes use of the
policies of lower-level subtasks to parameterize the ab-
stract actions, and therefore we proceed in a bottom-
up manner to find a local policy for each subtask, from
the leaves of the hierarchy, to the root.

Subtasks with only primitive actions are solved first,
using any of the existing algorithms (we currently use
the algorithm described in (Cassandra et al., 1997)).

To solve subtasks with abstract actions (e.g. Py), we
need to infer model parameters p(s'ls, a), p(o|s,a) and
R(s,a) for all abstract actions. Let @; be such an ab-
stract action. Since we are traversing the hierarchy
in a bottom-up fashion, we already have calculated a
POMDP solution for the subtask spanned by a; (i.e.
P;). Let wp, be the policy calculated for subtask P;.
Then we define:

p(s'ls, @) = p(s'ls,mp.(s)) (5)
plols,a;) = p(ols,mpi(s)) (6)
R(s,a;) = R(s,mp(s)) (7)

where all the right-hand side terms are defined in the
original model, and all the left-hand side terms are
those needed to model the abstract action. In other
words, we model @; on a state-by-state basis, using the
action chosen by the policy of subtask P;. These def-
initions lead to a fully parameterized subtask, which
can then be solved using any POMDP algorithm (we
use incremental pruning). Clearly, this definition of
parameters constitutes an approximation. Consider
for example subtask P, which assumes parameters
inferred for abstract actions da, without having access
to the full parameterization of actions {a1, as,as}.

One important assumption of this approach is that
each subtask contains some local reward information,
without which local policies cannot be meaningfully
optimized. This is inconsistent with some single-goal
problems where partial progress is not rewarded, how-
ever the variety of problems presented in the experi-
mental sections suggests that many complex POMDP
problems meet this assumption.

1A local action policy is a policy which is defined over
a given action subset.

5 A well-defined POMDP is one for which all parameters
(e.g. T(s'|s,a),0(0ls,a), R(s,a)) are defined

3.4 Calculating the Policy

We are left with the task of constructing a global pol-
icy using the set of local policies produced for the sub-
tasks. We first notice that all policies in the hierarchy
are defined over the entire belief space, and assume
that no abstraction is applied during belief tracking.
Thus the agent is in possession of the full belief space.

In practice, the global policy is generated only at ex-
ecution time. To generate an action, the agent tra-
verses the tree from the top to a leaf. At each level,
the agent queries the local policy based on the current
belief, and the action proposed by the policy is either
primitive or abstract. If the action is a primitive ac-
tion, it is directly executed by the agent. If the action
is an abstract action, the agent queries the policy of
the subtask spanned by this action. It is trivial to
show that this recursive algorithm always generates a
primitive action.

The recursive action selection (and hierarchy traversal)
is repeated at each time step. This differs from many
hierarchical MDP algorithms where an agent ‘remains’
in a subtask until a so-called terminal state is reached.
The difference is a consequence of the partial state ob-
servability in POMDPs, which suggests that we cannot
guarantee detectability of terminal states.

3.5 State and Observation Abstractions

In general, the number of linear pieces representing an
exact POMDP value function is recursively given by:
IT¢| = O(|A||Ty—1|'°!) (with Ty = |A]|), which can be
enumerated in time: O(|S|?|A||T;—1|/°!). The hierar-
chical algorithm, as described so far, reduces the com-
putational complexity of computing POMDP policies,
specifically for large planning horizons. Each subtask
possesses a reduced action set, which factors in as an
exponential factor in the overall complexity. These
savings are partially offset by the fact that we now
have to compute many policies, not just one.

Fortunately in many applications (including the ones
discussed below), there is an opportunity to further re-
duce computational costs. We consider domains where
the difference between certain states is only relevant if
a specific action is available (e.g. robot location may
be irrelevant for subtasks that do not involve naviga-
tion.) In this case, some state features may be safely
ignore within certain subtasks (e.g. robot location in
dialogue subtasks). Consequently the state set can be
reduced to include only relevant state features, and
related observations 8. This is done on a subtask ba-
sis, where each can ignore those state features that

5Currently done by hand, but soon to be automatic.

are irrelevant to its small action subset. Subtasks
can therefore be defined over smaller state and ob-
servation spaces without influencing the policy opti-
mization. The resulting computational savings can be
tremendous (several orders of magnitude).

4. Experimental Evaluation

To demonstrate our approach in practice, we evaluated
our algorithm on three different domains. We gener-
ated policies for all problems using three approaches:
a conventional POMDP algorithm, our hierarchical
POMDP algorithm (referred to as H-POMDP) and an
MDP-solution, which solves the problem as an MDP
and during execution uses the most likely state heuris-
tic to map belief states to states. Policy computations
were performed using the incremental pruning algo-
rithm for POMDPs, and value iteration for MDPs (all
computations were performed on a 400MHz Pentium
IT). All tasks were evaluated using 5000 runs to show
performance over time.”

The first task considered is the parts manufacturing
problem introduced in Sondik’s thesis (Sondik, 1971).
We selected this problem specifically because it was
not constructed to exhibit structure and can therefore
illustrate the generality of the approach. Furthermore,
we considered seven different hierarchical decomposi-
tions of this problem, to better study whether the al-
gorithm is highly susceptible to a good design of the
action hierarchy. Figure 2a shows one of the action
hierarchy considered for this domain.

Root
t={s1,53}

| ReadMap | | GetReward(t) |
/ \ / tz% \
o open
\

N
Manufacture Examine Inspect Replace Left Right Up

Down

Figure 2. Action hierarchies for (a) Manufacturing task
and (b) Taxi navigation task

Figure 3 illustrates the average reward for each of the
seven decompositions (in decreasing order of perfor-
mance). There is a clear grouping, where the first four
decompositions yield near-optimal policies, whereas
the last three are much weaker, though still as good
as the MDP heuristic®. We currently have no intuitive

"The results reported were obtained using a simulated
user due to the large number of experiments necessary to
gain significance. Experiments are currently underway to
verify the performance of the robot policy with real users.

8There is no theoretical guarantee that an H-POMDP
policy will necessarily be better than an MDP policy

explanation for the performance difference, however
this is the object of ongoing work.

05 -

PR G SR S S S

4
—

03

02

Avg. Reward

0.1

Planning Method

Figure 3. Manufacturing Task Results
The second task is a modified version of Dietterich’s
taxi task (Dietterich, 2000) with noisy perception. The
problem is simple enough to be solvable using conven-
tional POMDP techniques. Figure 2b shows our ac-
tion hierarchy for this domain.

The third task is a more challenging one. It arises
from a robot-interface domain where a robot has to
perform diverse tasks involving motion and dialogue
exchanges, which can exhibit significant uncertainty,
in large part due to poor speech recognition. POMDPs
are currently our best solution for this high-level robot
control problem. Figure 4 shows our action hierarchy,
which decomposes the action space along the natural
divisions of various conversational goals.

! | AskWhere
| GreetMorning ;) GoToRoom

7
"AsWhen ' [DoMeds| agalig
11 SayCurrent P T ,,,,1CdIHe|?) !

'GreetNight |} GoToKitchen |} SayToday ! "

[ReplyThenks | GoToFollow | SyNextDay: | Nariese i SRS
v S s, Gy
IVerifyFollow | 1QuitMeds ;; VerifyNurse |

Figure 4. Dialogue Problem Action Hierarchy

Table 1 presents results for the two more complex
problems, showing policy computation times, and av-
erage reward per action. For the taxi task, perfor-
mance with the hierarchical POMDP (H-POMDP)
approaches that of the conventional POMDP (goal
is always reached, but occasionally requires an ex-
tra action), and clearly exceeds that of the greedy
MDP heuristic, which is unable to take advantage of
uncertainty-reducing actions. Results for the robot
problem show that even though the exact POMDP
solver is unable to find a policy (and had only com-
pleted one iteration after 24 hrs), our hierarchical ap-
proach (H-POMDP) was able to obtain a policy in

reasonable time. Execution performance with the H-
POMDP policy was superior to that obtained with the
MDP heuristic, both in terms of average reward per
action and goal success rate. The performance dif-
ference between the MDP and H-POMDP policies is
smaller for this domain since at many time steps the
state is fully observable.

Problem Solution | CPU time Average % Goal
(secs) reward success
Taxi Problem: [S]=11, |A]=6, |O|=6
MDP 0.000654 0.0 50
H-POMDP 2.84 12.2 100
POMDP 1119.93 12.5 100
Robot Problem: |S]=20, |A]=30, [O]=27
MDP 6.46 53.33 80.0
H-POMDP 77.99 64.43 93.2
POMDP 24hrs+

Table 1. Performance Results

Table 2 provides a sample interaction in the robot
domain, using the H-POMDP policy. It shows how
the policy generated using our approach is able to
make use of additional information-gathering actions,
thereby allowing the system to recover from speech
recognition errors (e.g. the third observation (“go_to”)
is erroneous: the speech recognition extracted “go to
big” from the user’s “go to room”, and our H-POMDP
decides that the cost of accidentally moving to the
wrong location outweighs the cost of asking for clar-
ification.) The MDP-heuristic policy did not exhibit
similar adaptability to poor recognition performance.

Actor Speech Observation Action

Person “Hello” hello

Robot “Can I help you?” Initiate

Person “What time is it?” time_request

Robot “It’s now 11:41.” SayTime

Person “Go to big.” go_to

Robot “Where should I go?” AskWhere

Person “Go to the.” go_to_room

Robot “Should T go to the VerifyRoom
room?”

Person “Yes to the room.” go_to_room

Robot “You want me to go to VerifyRoom
the room?”

Person “Yes.” yes

Robot Robot goes to room GoToRoom

Table 2. An example dialogue from the interface domain.

It is worth mentioning that the domains examined ex-
hibit structure differently. In the first case, there is no
structure to speak of. In the second case, a final goal
can be satisfied through a sequence of intermediate
subgoals. In the third case, the dialogue manager can
satisfy alternate goals within a unified domain. Thus,
our experiments address different problem setups al-
ways using the same algorithm, thereby shedding light
onto our approach under different circumstances.

5. Conclusion

We presented a hierarchical POMDP algorithm that
can be used to optimize policies for complex POMDP.
A bottom-up algorithm was introduced that computes
a sequence of POMDP policies, one for each task in the
hierarchy. At run-time, the resulting hierarchy of poli-
cies is traversed from the top to the bottom, until a
primitive action is found. Mild computational savings
are achieved through reduced action space. However,
in many tasks the action hierarchy gives rise to state
and observation abstractions, which can drastically re-
duce the computational complexity.

Experimental results obtained for two different tasks
illustrate reduction in computational complexity of
several orders of magnitude with minimal performance
loss, when compared to the flat, computationally hard
POMDP model. These experiments suggest that
our hierarchical approach provides a viable approach
for solving complex POMDPs that are otherwise in-
tractable — assuming that the domain possesses struc-
ture that can be expressed via an action hierarchy.

References

AAAT (1998). AAAI Symposium on POMDPs. www.
cs.duke.edu/mlittman /talks/pomdp-symposium.html.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997).
Incremental pruning: A simple, fast, exact method for
partially observable markov decision processes. UAL

Castanon, D. (1997). Approximate dynamic programming
for sensor management. Conf. Decision and Control.

Dayan, P., & Hinton, G. (1993).
learning. NIPS 5.

Feudal reinforcement

Dietterich, T. G. (2000). Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. Jour-
nal of Artificial Intelligence Research, 13, 227-303.

Hernandez-Gardiol, N., & Mahadevan, S. (2001). Hierar-
chical memory-bsed reinforcement learning. NIPS 13.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R.
(1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101, 99-134.

Russell, S., & Norvig, P. (1995). Artificial intelligence: A
modern approach. Prentice Hall.

Singh, S. (1992). Transfer of learning by composing solu-
tions of elemental sequential tasks. Machine Learning,
8, 323-339.

Sondik, E. (1971). The optimal control of partially observ-
able markov processes. Doctoral dissertation, Stanford.

Wiering, M., & Schmidhuber, J. (1997).
Adaptive Behavior, 6.

HQ-learning.

