
Learning in non-stationary Partially Observable
Markov Decision Processes

Robin JAULMES, Joelle PINEAU, Doina PRECUP

McGill University, School of Computer Science, 3480 University St., Montreal, QC, Canada,
H3A2A7

Abstract. We study the problem of finding an optimal policy for a Partially Ob-
servable Markov Decision Process (POMDP) when the model is not perfectly
known and may change over time. We present the algorithm MEDUSA+, which
incrementally improves a POMDP model using selected queries, while still op-
timizing the reward. Empirical results show the response of the algorithm to
changes in the parameters of a model: the changes are learned quickly and the
agent still accumulates high reward throughout the process.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) are a well-studied frame-
work for sequential decision-making in partially observable domains (Kaelbling et al,
1995) . Many recent algorithms have been proposed for doing efficient planning in
POMDPs (Pineau et al. 2003; Poupart & Boutilier 2005; Vlassis et al. 2004). However
most of these rely crucially on having a known and stable model of the environment.
On the other hand, the experience-based approaches (McCallum, 1996; Brafman and
Shani, 2005; Singh et al. 2004) also need a stationary model. They also require very
large amounts of data, which would be hard to obtain in a realistic application.

In many applications it is relatively easy to provide a rough model, but much harder
to provide an exact one. Furthermore, because the model may be experiencing some
variations in time, we would like to be able to use experimentation to improve our
initial model. The overall goal of this work is to investigate POMDP approaches which
can combine a partial model of the environment with direct experimentation, in order
to produce solutions that are robust to model uncertainty and evolution, while scaling
to large domains. To do that, we will assume that uncertainty is part of the model and
design our agent to take it into account when making decisions. The model will then be
updated based on every new experience.

The technique we propose in this paper is an algorithm called MEDUSA+, which
is an improvement of the MEDUSA algorithm we presented in Jaulmes et al., 2005.
It is based on the idea ofactive learning(Cohn et al. 1996), which is a well-known
technique in machine learning for classification tasks with sparsely labelled data. In
active learning the goal is to select which examples should be labelled by considering
the expected information gain. As detailed by Anderson and Moore (2005), these ideas
extend nicely to dynamical systems such as HMMs.

We will assume in the present work the availability of an oracle that can provide
the agent with exact information about the current state, upon request. While the agent

experiments with the environment, it can ask for a query in order to obtain state in-
formation, when this is deemed necessary. The exact state information is used only
to improve the model, not in the action selection process, which means that we may
have a delay between the query request and the query processing. This is a realistic
assumption, since in a lot of realistic applications (robotics, speech management), it is
sometimes easy to determine the exact states we went throughafter the experimentation
has taken place.

The model uncertainty is represented using a Dirichlet distribution over all possible
models, in a method inspired from Dearden et al., 1999 and its parameters are updated
whenever new experience is acquired. They also decay with time, so recent experience
has more weight than old experience, a useful feature for non-stationary POMDPs.

The paper is structured as follows. In Section 2 we review the basic POMDP frame-
work. Section 3 describes our algorithm MEDUSA+, and outlines modifications that we
made compared to MEDUSA. Section 4 shows the theoretical properties of MEDUSA+.
Section 5 shows the performance of MEDUSA+ on standard POMDP domains. In Sec-
tion 6 we discuss the relationship of our approach to related work and our conclusion is
in Section 7.

2 Partially Observable Markov Decision Processes

We assume the standard POMDP formulation (Kaelbling et al., 1998); namely, a POMDP
consists of a discrete and finite set of statesS, of actionsA and of observationsZ. It has
transition probabilities{Pa

s,s′}= {p(st+1 = s′|st = s,st = a)},∀s∈S,∀a∈A,∀s′ ∈Sand
observation probabilities{Oa

s,z} = {p(zt = z|st = s,at−1 = a)},∀z∈ Z,∀s∈ S,∀a∈ A.
It also has a discount factorγ∈ (0,1] and a reward functionR : S×A×S×Z→ IR, such
thatR(st ,at ,st+1,zt+1) is the immediate reward for the corresponding transition.

At each time step, the agent is in an unknown statest ∈ S. It executes an action
at ∈A, arriving in an unknown statest+1∈Sand getting an observationzt+1∈Z. Agents
using POMDP planning algorithms typically keep track of the belief stateb ∈ IR|S|,
which is a probability distribution over all states given the history experienced so far.
A policy is a function that associates an action to each possible belief state. Solving
a POMDP means finding the policy that maximizes the expected discounted return
E(∑T

t=1 γ tR(st ,at ,st+1,zt+1)).
While finding an exact solution to a POMDP is computationally intractable, many

methods exist for finding approximate solutions. In this paper, we use a point-based
algorithm (Pineau et al. 2003), in order to compute POMDP solutions. However, the
algorithms that we propose can be used with other approximation methods.

We assume the reward function is known, since it is directly linked to the task that
we want the agent to execute, and we focus on learning{Pa

s,s′} and{Oa
s,z}. These prob-

ability distributions are typically harder to specify correctly by hand, especially in real
applications. They may also be changing over time. For instance in robotics, the sensor
noise and motion error are often unknown and may also vary with the amount of light,
the wetness of the floor, or other parameters that it may not know in advance. To learn
the transition and observation models, we assume that our agent has the ability to ask a

query that will correctly identify the current state1. This is a strong assumption, but not
entirely unrealistic. In fact, in many tasks it is possible (but very costly) to have access
to the full state information; it usually requires asking a human to label the state. As a
result, clearly we want the agent to make as few queries as possible.

3 The MEDUSA+ algorithm

In this section we describe the MEDUSA+ algorithm. Its main idea is to represent the
model uncertainty with a Dirichlet distribution over possible models, and to update di-
rectly the parameters of this distribution as new experience is acquired. To cope with
non-stationarity, we decay the parameters as time goes. Furthermore, MEDUSA+ uses
queries more efficiently, through the use of the alternate belief and of non-query learn-
ing.

This approach scales nicely: we need one Dirichlet parameter for each uncertain
POMDP parameter, but the size of the underlying POMDP representation remains un-
changed, which means that the complexity of the planning problem does not increase.
However this approach requires the agent to repeatedly sample POMDPs from the
Dirichlet distribution and solve them, before deciding on the next query.

3.1 Dirichlet Distributions

Consider aN-dimensional multinomial distribution with parameters(θ1, . . .θN). A Dirich-
let distribution is a probabilistic distribution over these parameters. The Dirichlet itself
is parameterized by hyper-parameters(α1, . . .αN). The likelihood of the multinomial
parameters is defined by:

p(θ1 . . .θN|D) =
∏N

i=1 θαi−1
i

Z(D)
, whereZ(D) = ∏N

i=1 Γ(αi)
Γ(∑N

i=1 αi)

The maximum likelihood multinomial parametersθ∗1 . . .θ∗N can be computed, based on
this formula, as:

θ∗i =
αi

∑N
k=1 αk

,∀i = 1, . . .N

The Dirichlet distribution is convenient because its hyper-parameters can be updated
directly from data. For example, if instanceX = i is encountered,αi should be increased
by 1. Also, we can sample from a Dirichlet distribution conveniently using Gamma
distributions.

In the context of POMDPs, model parameters are typically specified according to
multinomial distributions. Therefore, we use a Dirichlet distribution to represent the
uncertainty over these. We use Dirichlet distributions for each state-action pair where
either the transition probabilities or the observation probabilities are uncertain.

Note that instead of using increments of 1 we use a learning rate,λ, which measures
the importance we want to give to one query.

1 We discuss later how the correctness assumption can be relaxed. For example we may not need
to know the query result immediately

3.2 MEDUSA

The name MEDUSA comes from ”Markovian Exploration with Decision based on the
Use of Sampled models Algorithm”. We present here briefly the algorithm as it was
described in Jaulmes et al., 2005.

MEDUSA has the following setup: first, our agent samples a number of POMDP
models according to the current Dirichlet distribution. The agent then computes the
optimal policy for each of these models, and at each time step one of those is chosen
with a probability that depends on the weights these models have in the current Dirich-
let distribution. This allows us to obtain reasonable performance throughout the active
learning process: the quality of the sampled models will be linked to the quality of the
actions chosen. This also allows the agent to focus the active learning in regions of the
state space most often visited by good policies.

Note that with MEDUSA we need not specify a separate Dirichlet parameter for
each unknown POMDP parameter. It is often the case that a small number of hyper-
parameters suffice to characterize the model uncertainty. For example, noise in the sen-
sors may be highly correlated over all states and therefore we could use a single set of
hyper-parameters for all states. In this setup, the corresponding hyper-parameter would
be updated whenever actiona is taken and observationz is received, regardless of the
state.2 This results in a very expressive framework to represent model uncertainty. As
we showed our previous work, we can vary the number of hyper-parameters to trade-off
the number of queries versus model accuracy and performance.

Each time an action is made and an observation is received, the agent can decide to
query the oracle for the true identity of the hidden state3. If we do query the Dirichlet
distributions are updated accordingly.

In our previous paper we argued and showed experimental evidence that under a
stable model and such a near-optimal policy the queries always bring useful information
up to a point where the model is well-enough learned. In MEDUSA+ we will however
modify this setting so that we know when it is optimal a query and how we can extract
every possible information from each query.

3.3 Non-Query Learning

A major improvement in MEDUSA+ is the use ofnon-query learning, which consists
of (1) deciding when to query and (2) when we don’t query, using the information we
have from the action-observation sequence and knowledge extracted from the previous
queries to update the Dirichlet parameters.

To do an efficient non-query learning we introduce the concept of an alternate belief
β. Actually, for each model we keep track of it in addition to the standard belief. The
alternate belief is updated in the same way as the standard one, with each action and
observation. The only difference is that when a query is done, it is modified so that the

2 As a matter of fact, we have a function that maps any possible transition or observation param-
eters to either a hyper parameter or to acertainparameter.

3 Note that theoretically we need not have the query result immediately after it is asked, since
the result of the processing is not mandatory for the decision making phase. However we will
suppose in the present work that we do have this result immediately.

state in now certain according to it. This allows to keep track of the information still
available from the latest query.

The decision when to do or not a query can be based on the use of different indica-
tors:

– PolicyEntropy : the entropy of the resulting MEDUSA policyΨ. It is defined by:

Entropy = −∑|A|a=1 p(Ψ,a) ln(p(Ψ,a)). On experimentations we see that this indicator is
biased. The fact that all models agree does not necessarily means that no query is needed.

– Variance : the variance over the values that each model computes for its optimal action. It
is defined by:valueVar = ∑i(Q(mi ,Π(h,mi))− Q̂)2. Experiments show that this indicator
is relatively efficient. It captures efficiently how much learning remains to be done.

– BeliefDistance : the variance on the belief state:Distance = ∑n
k=1wk ∑i∈S(bk(i)−

b̂(i))2, where∀i, b̂(i) = ∑n
k=1wkbk(i). This heuristic has a good performance but has more

noise than valueVariance.
– InfoGain : the quantity of information that a query could bring. Its definition is:

infoGain = ∑N
i=1 ∑N

j=1[
1

∑N
k=1 αt

A,i,k
Bt(s,s′)]+∑N

j=1[B
′(j) 1

∑k=1 Nαz
A, j,k

Bt(s,s′)]. It has nearly the

same behavior as the thedistanceheuristic. Its advantage is that it is equal to zero whenever
a query wouldn’t bring any information (in places where the model is already well known or
certain). Since it would be a complete waste of resources to do a query in these situations, it
is very useful.

– AltStateEntropy : this heuristic measures the entropy of the mean alternate belief.
AltStateEntropy = ∑s∈S−[∑N

i=1 βi(s)] log(∑N
i=1 βi(s))

It measures how much knowledge has been lost since the last query, and measures how
inefficient the non query update will be. Therefore it is one of the most useful heuristics,
because using it makes the agent able to take as much information as it can from each single
query.

The most useful heuristics are alternate state entropy, information gain, and the variance
on the value function. So the logical function we use in our experimental section is a
combination of these three heuristics.

doQ= (AltStateEntropy> ε1)AND(InfoGain> ε2)AND(Variance> ε3) (1)

Note that the first condition ensures that no query should be done if enough infor-
mation about the state is possessed because of previous queries. The second condition
ensures that a query will not be made if it does not bring direct information about the
model (especially if we are in a subpart of the model we know very well). The third
condition ensures that we will stop doing queries when our model uncertainty does not
have any influence on the expected return.

To do the non-query update of the transition alpha-parameters, we use thealternate
transition belief Bt(s,s′) which is computed according to Equation 2: it is the distribu-
tion over the transitions that could have occurred in the last time step. Thenon-query
learning then updates the corresponding state transition alpha-parameters according to
Equation 34. On the other hand the observation alpha-parameters are updated propor-

4 There is an alternative to this procedure. We can also sample a query result from the alternate
transition belief distribution and thus update only one parameter. However, experimental result
shows that this alternative is as efficient as the deterministic method.

tionally to the new alternate mean belief stateβ̃′ defined by Equation 4 according to
Equation 5.

∀s,s′Bt(s,s′) =
n

∑
i=1

wi

[Oi]zs′,A [Pi]s
′

s,A βi(s)

∑σ∈S[Oi]zσ,A [Pi]σs,A
(2)

∀i ∈ [1. . .n]∀(s,s′)αt(s,A,s′)← αt(s,A,s′)+λBt(s,s′) (3)

∀s β̃′(s) =
n

∑
i=1

wiβ′i(s) (4)

∀i ∈ [1. . .n]∀s′ ∈ Sαz(s′,A,Z)← αz(s′,A,Z)+λβ′i(s
′)wi (5)

3.4 Handling non-stationarity

Since we want our algorithm to be used with non-stationary POMDPs which have pa-
rameters that change over time, our model has to weight recent experience more than
older experience. To do that, each time we update one of the hyper-parameter, we mul-
tiply all the hyper-parameters corresponding to the associated multinomial distribution
by ν ∈]0;1[, which is themodel discount factor.

This does not change the most likely value of any of the updated parameters:

∀i = 1, . . .N,θ∗i,new=
ναi

∑N
k=1 ναk

=
αi

∑N
k=1 αk

= θ∗i,old

However it diminishes the confidence we have in them. Note that theequilibrium
confidencehas the following expression:Cmax= λ 1

1−ν . This confidence is reached after
an infinite number of samples and is an an idndicator of the trust we have in overall past
experience. Therefore it should be high when we believe the model is stable.

Table 1 provides a detailed description of MEDUSA+, including the implementa-
tion details.

4 Theoretical properties

In this section we study the theoretical properties of MEDUSA+.

4.1 Definitions

We consider a POMDP problem withN states,A actions andO observations. We call
B = {[0;1]N} thebelief space. We callH the history space (which contains all the pos-
sible sequences of actions and observations). LetDt be the set of Dirichlet distributions
at time stept. This set corresponds toNα alpha-parameters:{α1 . . .αNα} parameters.

Proposition 1. Let P be the ensemble containing all the possible POMDP models m
with N states, A actions and Z observations. For any subset P ofP , we can estimate the
probability p(m∈ P|D). It is:

p(m∈ P|D) =
R

p∈P
∏N

i=1 θ
α<i,D>−1

i,p
Z(D) dp, where Z(D) = ∏N

i=1 Γ(α<i,D>)
Γ(∑N

i=1 α<i,D>)
.

This actually defines themeasureµ : P⊂ P → [0;1].

1. Let |S| be the number of states,|Z| be the number of observations, andλ ∈ (0,1) be the
learning rate.

2. Initialize the necessary Dirichlet distributions. Note that we can assume that some parameters
are perfectly known. For any unsure transition probability,Ta

s,·, defineDir ∼ {α1, . . .α|S|}.
For any unsure observation parameterOa

s,·, defineDir ∼ {α1, . . .α|Z|}.
3. Samplen POMDPsP1, . . .Pn from these distributions. (We typically usen = 20). The per-

fectly known parameters are set to their known values.
4. Compute the probability of each model:{p01, . . . p0n}.
5. Solve each modelPi → πi , i = 1, . . .n. We use a finite point-based approximation

(Pineau,Pineau et al. 2003).
6. Initialize the historyh = {}.
7. Initialize a belief for each modelb1 = . . . = bn = b0 (We assume a known initial beliefb0).

We also initialize thealternatebelief β1 = . . . = βn = b0.
8. Repeat:

(a) Compute the optimal actions for each model:a1 = π1(b1), . . .an = πn(bn).
(b) Randomly pick and apply an action to execute, according to the model weights:

ai = πi(bi) is chosen with probabilitywi where∀i wi = pi
p0i

. pi is thecurrent proba-
bility model i has according to the Dirichlet distribution. Note that there is a modifica-
tion compared to the original MEDUSA algorithm here. The reason for this particular
modification is to make Proposition 2 verified.

(c) Receive an observationz.
(d) Update the historyh = {h,a,z}
(e) Update the belief state for each model:b′i = ba,z

i , i = 1..n. We also update the alternate
belief β according to the action/observation pair.

(f) Determine if we need a query or not. See Equation 1.
(g) If the query is made, query the current state, which revealssands′. Update the Dirichlet

parameters according to the query outcome:
α(s,a,s′)← α(s,a,s′)+λ
α(s′,a,z)← α(s′,a,z)+λ
Multiply each of theα(s,a,∗) parameters by themodel discount factorν. Set the alter-
nate beliefβ so that the confidence of being in states′ is now 1.

(h) If the query is not made, we use a non query update according to equations 3 and 5.
Note that the alternate beliefs are used in this procedure.

(i) Recompute the POMDP weights:{w′1, . . .w′n}.
(j) At regular intervals, remove the modelPi with the lowest weight and redraw another

modelP′i according to the current Dirichlet distribution. Solve the new model:P′i → π′i
and update its beliefb′i = bh

0, wherebh
0 is the belief resulting when starting inb0 and

seeing historyh. The same is done with the alternate beliefβ: we compute the belief
resulting when starting from the last query and seeing the history.

(k) At regular intervals, reset the problem, sample a state from the initial belief and set
everyb andβ to b0.

Table 1.The MEDUSA+ algorithm

Proof. (1)∀P⊂ P µ(P)≥ 0. (2)µ(/0) = 0. (3) LetP1,P2, . . . ,Pn be disjoint subsets ofP :
we haveµ(

S
i Pi) = ∑i µ(Pi). This a straightforward application of the Chasles relation

for converging integrals.

Definition 1. We say that a POMDP isfully-explorable if and only if:

∀s′ ∈ S∀a∈ A∃s∈ S such that p(st = s′|st−1 = s,at−1 = a)≥ 0

This property is verified in most existing POMDPs5. Note that we have to introduce
the fact that a given state can be reached at least once by every possible action only
because in the general case POMDP the observation probabilities are a function of the
resulting stateandof the chosen action.

Definition 2. LetΠ : P →H ×{1. . .A} be thepolicy function which gives the optimal
action for a given model and a given history H. Note that for a given history the policy
function is constant per intervals over the space of models.

Definition 3. A POMDP reward structure iswhithout coercionif the reward structure
is such that:∀a∈ A∀h∈H ∃m∈ Ps.t.Π(h,m) = a

This property is verified in most POMDP problems of the literature.

4.2 Analysis of the limit of the policy

In this subsection we analyze how the policy converges when we have an infinite num-
ber of models.

Proposition 2. Given the history h, if we have Nm models m1 . . .mNm and every model
has a weight wi ≥ 0 and the weights are such that∑wNm

i = 1, we consider the fol-
lowing stochastic policyΨ in which the probability of doing action a is equal to:
∑Nm

i=1 δ(a,Π(h,mi))wi (whereδ is such thatδ(n,n) = 1, n 6= m⇒ δ(n,m) = 0, and Pi is
defined according to Definition 2).

Suppose that we have an infinite number of models is redrawn at every step. Then
the policyΨ is identical to the policyΨ∞ for which the probability of doing action a is:

p(Ψ∞,A = a) =
R P

µ δ(a,Π(h,m))dmR
µ being the integral defined by the measure µ that was described in Proposition 1.

Proof sketch. Actually if the conditions are verified, the functions that defineΨ are
rectangular approximations of the integral. According to the Riemann definition of the
integral (as a limit of rectangular approximations or Riemann sums), these approxima-
tions always converge to the value of the integral.

4.3 Convergence of MEDUSA+

In this subsection we do not consider initial priors or any previous knowledge about the
parameters. We study the case where in which the model is stationary (andν = 1). The
intuitive idea for this proof is quite straightforward. We will show that convergence is
obtained provided every state-action pair is queried infinitely often. Then we will show
how our algorithm allows this condition to be true.

Theorem 1. If a query is performed at every step, the estimation for the parameters
converges with probability 1 to the true values of the parameters if (1) For a given
state, every action has a non-zero probability of being taken. (2) The POMDP isfully
explorable.

5 The property is true in thetiger POMDP. However it is a very strong condition and we might
want to consider onlysubpartsof a POMDP where this condition is true.

Proof. The estimation we have for each parameter is equal to the maximum likelihood
estimation (MLE) corresponding to the samples (consisting of either< a,s,∗ > tuples
or < s,a,∗ > tuples) seen since the beginning of the algorithm. (∀i ∈ [1. . .N]θ∗i =

αi

∑N
k=1 αk

). We know that maximum likelihood estimation always converges to the real

value when there is an infinite number of samples. Furthermore, conditions 1 and 2
assure that there will be an infinite number of them.

Theorem 2. If the POMDP isfully explorable, if queries at performed at every step,
if the reward structure iswithout coercionand if Psi∞ is followed, the parameters will
converge with probability 1 to their true values given an infinite run.

Proof. We have to verify the conditions of theorem 1. Condition 2 is verified since we
have the fully-explorable hypothesis. We will prove condition 1. Let us suppose that the
system is in states after having experienced the historyh. The no-coercion assumption
implies that for any actiona there exists a modelm such thatΠ(h,m) = a. Since the
policy function is constant per intervals, there exists an intervalP, subpart ofP such
that:∀m ∈ PΠ(h,m) = a and

R P
µ dm> 0.

p(Ψ∞,A = a) =
R P

µ δ(Π(h,m),a)dm

p(Ψ∞,A = a) >
R P

µ δ(Π(h,m),a)dm

p(Ψ∞,A = a) >
R P

µ dm> 0
So the probability of doing actiona is strictly positive, which proves condition 1

and therefore proves the convergence.

According to property 2 and to theorem 2, the MEDUSA+ algorithm converges
with probability 1 given an infinite number of queries, an infinite number of models,
plus queries and redraws at every step. Note that we could also modify MEDUSA+ so
that every action is taken infinitely often6. In that case the no coercion property would
not be required.

Theorem 3. The non-query version of the MEDUSA+ algorithm converges under the
same conditions as above, provided that we useInfoGain > 0, AltStateEntropy
> 0, or an AND of these.

Proof. If InfoGain = 0 doing the query has no effect on the learned model. Further-
more if AltStateEntropy = 0 it means that we can determine with full certainty
what the result of the query would be if we did one: so doing the non-query update has
exactly the same result as doing the query update in both cases. Therefore, using the
non-query learning in MEDUSA+ with these heuristics is equivalent to performing a
query at every step. So Theorem 2 can be applied, which proves the convergence.

5 Experimental results

In this section we present experimental results on the behavior of MEDUSA+. Exper-
iments are made on thetiger problem taken from Cassandra’s POMDP repository. We

6 This would imply the use of anexploration rate: we would have a probability ofε of doing a
random action, which is a common idea in Reinforcement Learning.

studied the behavior of MEDUSA+ in cases where we have learned a model with high
confidence and we experience a sudden change in one of the parameters. This setting
allows us to see how MEDUSA+ can adjust to non-stationary environments.

Fig. 1. Evolution of the discounted reward. There is a sudden change in the correct observation
probability a time 0. Here, the equilibrium confidence is low (100).

Fig. 2. Evolution of the discounted reward. There is a sudden change in the correct observation
probability a time 0. Here, the equilibrium confidence is high (1000).

On Figure 1, we see the behavior of the algorithm when the equilibrium confidence
is low (equal to 100): the agent quickly adapts to the new parameter value even if
the variation is big. However the low confidence introduces some oscillations in the
parameter values and therefore in the policy. In figure 2, we see what happens when the
equilibrium confidence is high (equal to 1000): the agent takes more time to adapt to
the new parameter value but the oscillations are less important.

These results show that we can actually tune the confidence factors to make them
adapted either to almost constant parameters or to quickly changing parameters. Note
that on these experiments we need a number of queries which is between 300 and 500.
Actually, the non-query learning introduced in this paper reduces the number of queries
necessary in MEDUSA by a factor of 3.

6 Related Work

Chrisman (1992) was among the first to propose a method for acquiring a POMDP
model from data. Shatkay & Kaelbling (1997) used a version of the Baum-Welch algo-
rithm to learn POMDP models for robot navigation. Bayesian exploration was proposed
by Dearden et al. (1999) to learn the parameters of an MDP. Their idea was to reason
about model uncertainty using Dirichlet distributions over uncertain model parameters.
The initial Dirichlet parameters can capture the rough model, and they can also be eas-
ily updated to reflect experience. The algorithm we present in Section 3 can be viewed
as an extension of this work to the POMDP framework, though it is different in many
respects, including how we trade-off exploration vs exploitation, and how we take non-
stationarity into account.

Recent work by Anderson and Moore (2005) examines the question of active learn-
ing in HMMs. In particular, their framework for model learning addresses a very similar
problem (albeit without the complication of actions). The solution they propose selects
queries to minimize error loss (i.e., loss of reward). However, their work is not di-
rectly applicable since they are concerned with picking the best query for a large set of
possible queries. In our framework, there is only one query to consider, which reveals
the current state. Furthermore, even if we wanted to consider a larger set of queries,
their work would be difficult to apply since each query choice requires solving many
POMDPs (wheremanymeans quadratic in the number of possible queries.)

Finally, we point out that our work bears resemblance to some of the recent ap-
proaches for handling model-free POMDPs (McCallum, 1996; Brafman & Shani, 2005;
Singh et al. 2004). Whereas these approaches are well suited to domains where there is
no good state representation, our work does make strong assumptions about the ex-
istence of an underlying state. This assumption allows us to partly specify a model
whenever possible, thereby making the learning problem much more tractable (e.g., or-
ders of magnitude fewer examples). The other key assumption we make, which is not
used in model-free approaches, regards the existence of an oracle (or human) for cor-
rectly identifying the state following each query. This is a strong assumption; however,
in the empirical results we provide examples of why and how this can be at least partly
relaxed. For instance, we showed that noisy query responses are sufficient, and that
hyper-parameters can be updated even without queries.

7 Conclusion

We have discussed an active learning strategy for POMDPs which handles cases where
we don’t know the full domain dynamics and cases where the model changes over time.
Those were cases that no other work in the POMDP literature had handled.

We have explained the MEDUSA+ algorithm and the improvements we made from
MEDUSA. We have discussed the theoretical properties of MEDUSA+ and presented
the conditions needed for its convergence. Furthermore, we have shown empirical re-
sults showing that MEDUSA+ can cope with non stationary POMDPs with a reasonable
amount of experimentation.

References

Anderson, B. and Moore, A. “Active Learning in HMMs”. In submission. 2005.
Brafman, R. I. and Shani, G. “Resolving perceptual asliasing with noisy sensors”. Neural Infor-

mation Processing Systems. 2005.
Chrisman, L. “Reinforcement learning with perceptual aliasing: The perceptual distinctions ap-

proach”. In Proceedings of the Tenth International Conference on Artificial Intelligence,
pages 183–188. AAAI Press. 1992.

Cohn, D. A., Ghahramani, Z. and Jordan, M. I. “Active Learning with Statistical Models”. Ad-
vances in Neural Information Processing Systems.

Dearden, R.,Friedman, N.,Andre, N., ”Model Based Bayesian Exploration”, Proc. Fifteenth Conf.
on Uncertainty in Artificial Intelligence (UAI), 1999.

Jaulmes, R.,Pineau, J.,Precup, D., ”Active Learning in Partially Observable Markov Decision
Processes”, ECML, 2005.

Kaelbling, L., Littman, M. and Cassandra, A. ”Planning and Acting in Partially Observable
Stochastic Domains” Artificial Intelligence. vol.101. 1998.

Littman, M., Cassandra, A., and Kaelbling,L. ”Learning policies for partially observable envi-
ronments: Scaling up”, Brown University, 1995.

McCallum, A. K. Reinforcement Learning with Selective Perception and Hidden State. Ph.D.
Thesis. University of Rochester. 1996.

Pineau, J., Gordon, G. and Thrun, S. “Point-based value iteration: An anytime algorithm for
POMDPs”. IJCAI. 2003.

Poupart, P. and Boutilier, C. “VDCBPI: an Approximate Scalable Algorithm for Large Scale
POMDPs”. NIPS 2005.

Shatkay, H., and Kaelbling, L. “Learning topological maps with weak local odometric informa-
tion”. Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence
(pp. 920–927). Morgan Kaufmann. 1997.

Singh, S., Littman, M., Jong, N. K., Pardoe, D., and Stone, P. “Learning Predictive State Repre-
sentations”. Machine Learning: Proceedings of the 2003 International Conference (ICML).
2003.

Spaan, M. T. J. Spaan, and Vlassis, N. “Perseus: randomized point-based value iteration for
POMDPs”. Journal of Artificial Intelligence Research. 2005. To appear.

