
Active Learning in Partially Observable Markov
Decision Processes

Robin JAULMES, Joelle PINEAU, Doina PRECUP

McGill University, School of Computer Science, 3480 University St., Montreal, QC, Canada,
H3A2A7

Abstract. This paper examines the problem of finding an optimal policy for a
Partially Observable Markov Decision Process (POMDP) when the model is not
known or is only poorly specified. We propose two formulations of the problem.
The first formulation relies on a model of the uncertainty that is added directly
into the POMDP planning problem. This has some interesting theoretical prop-
erties, but is impractical when many of the parameters are uncertain. Our sec-
ond approach, called MEDUSA, is an instance of active learning, whereby we
incrementally improve the POMDP model using selected queries, while still op-
timizing reward. Results show a good performance of the algorithm even in large
problems: the most useful parameters of the model are learned quickly and the
agent still accumulates high reward throughout the process.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) are a well-studied frame-
work for sequential decision-making in partially observable domains (Kaelbling et al,
1995) . Many recent algorithms have been proposed for doing efficient planning in
POMDPs (Pineau et al. 2003; Poupart & Boutilier 2005; Vlassis et al. 2004). However
most of these rely crucially on having a known model of the environment. On the other
hand, experience-based approaches have been proposed which rely strictly on experi-
mentation with the system to learn a model which can then be used for planning (Mc-
Callum, 1996; Brafman and Shani, 2005; Singh et al. 2004). Yet these typically require
very large amounts of data, and are therefore impractical for all but the smallest prob-
lems. In practice, we would often prefer a more flexible trade-off between these two
extremes.

In particular, in many applications it is relatively easy to provide a rough model,
though much harder to provide an exact one, and so we would like to use (small amounts
of) experimentation to improve our initial model. The overall goal of this work is to in-
vestigate POMDP approaches which can combine a partial model of the environment
with direct experimentation, in order to produce solutions that are robust to model un-
certainty, while scaling to large domains. The idea behind our work is the following: we
assume that uncertainty is part of our model and design our agent to take it into account
when making decisions. More importantly, the model should be updated based on new
experience.

We based our work on the idea ofactive learning(Cohn et al. 1996). It is a well-
known technique in machine learning for classification tasks with sparsely labelled data.

The goal is to select which examples should be labelled by considering the expected in-
formation gain. As detailed by Anderson and Moore (2005), these ideas extend nicely
to dynamical systems such as HMMs. Therefore, we will assume the availability of an
oracle that can provide the agent with exact information about the current state, upon
request. It is a reasonable assumption in a number of real-world POMDP domains, espe-
cially since our work is motivated by applications in robotics and dialogue management.
In these domains, it is routine for a human to be involved in the initial calibration of the
robot. However, we will assume that using the oracle is expensive and reserved for the
learning phase, where we will use it as little as possible. Note that we focus only on
a model-based approach because in many applications the model of the dynamics and
observation are re-usable.

Our first technique is conceptually simple, though not scalable. In essence, given a
problem with model uncertainty, we extend the original problem formulation to include
one additional state feature for each uncertain model parameter. This extended model
is used for planning, thereby allowing us to obtain a better way of choosing actions,
which is also robust to the uncertainty in the model. As discussed in Section 3, this is
a straightforward extension of the standard POMDP formulation, which performs well
when there are few uncertain parameters.

Our second technique, presented in Section 4, uses oracle queries while the agent
interacts optimally with the environment. The query result information is used only to
improve the model, not in the action selection process. In this framework the uncertainty
is represented using a Dirichlet distribution over all possible models, and its parameters
are updated whenever new experience is acquired.

2 Partially Observable Markov Decision Processes

We assume the standard POMDP formulation (Kaelbling et al., 1995); namely, a POMDP
consists of a discrete and finite set of statesS, of actionsA and of observationsZ. It has
transition probabilities{Pa

s,s′}= {p(st+1 = s′|st = s,st = a)},∀s∈S,∀a∈A,∀s′ ∈Sand
observation probabilities{Oa

s,z} = {p(zt = z|st = s,at−1 = a)},∀z∈ Z,∀s∈ S,∀a∈ A.
It also has a discount factorγ∈ (0,1] and a reward functionR : S×A×S×Z→ IR, such
thatR(st ,at ,st+1,zt+1) is the immediate reward for the corresponding transition.

At each time step, the agent is in an unknown statest ∈ S. It executes an action
at ∈A, arriving in an unknown statest+1∈Sand getting an observationzt+1∈Z. Agents
using POMDP planning algorithms typically keep track of the belief stateb ∈ IR|S|,
which is a probability distribution over all states given the history experienced so far.
A policy is a function that associates an action to each possible belief state. Solving
a POMDP means finding the policy that maximizes the expected discounted return
E(∑T

t=1 γ tR(st ,at ,st+1,zt+1)). While finding an exact solution to a POMDP is computa-
tionally intractable, many methods exist for finding approximate solutions. In this paper,
we use a point-based algorithm (Pineau et al. 2003), in order to compute POMDP solu-
tions. However, the algorithms that we propose can be used with other approximation
methods.

We assume the reward function is known, since it is directly linked to the task that
we want the agent to execute, and we focus on learning{Pa

s,s′} and{Oa
s,z}. These prob-

ability distributions are typically harder to specify correctly by hand, especially in real
applications. For instance in robotics, the sensor noise and motion error are often un-
known. To learn the transition and observation models, we assume that our agent has
the ability to ask a query that will correctly identify the current state (we discuss later
how the correctness assumption can be relaxed). This is a strong assumption, but is not
entirely unrealistic. In fact, in many tasks it is possible (but very costly) to have access
to the full state information; it usually requires asking a human to label the state. As a
result, clearly we want the agent to make as few queries as possible.

3 Decision-theoretic model learning in POMDPs

The first algorithm we propose assumes that (1) the parameters of the POMDP model
are not known exactly (2) the agent can perform query actions, and (3) these queries are
expensive, so they should not be used too much. Based on these three assumptions, we
can modify the original POMDP model in order to reflect model uncertainty explicitly.
First, we increase the number of states in the POMDP: for each uncertain model para-
meter, we add a new state feature. This feature is typically discretized inton levels. For
instance, suppose that for some pair of statess,s′ ∈ S and actiona ∈ A we know that
Pa

ss′ ∈ [0.5,1.0]. We will discretize this interval in a certain number of bins, e.g.n, and
then the state space will receive a new feature, which can taken possible values. We
thereby obtainn groups of states; the transitions are such that transitions always occur
between states in the same group. Second, we need to add a ”query” action to our set
of actions. Finally, we have to set the reward function such that it penalizes the query
action adequately.

We analyze the performance of this algorithm on the standard Tiger problem (Kael-
bling et al., 1995). In order to use the decision-theoretic approach to model the uncer-
tainty in the tiger problem, we assume that we do not know the probability of the sensor
providing the correct state information and consider three possible levels of this proba-
bility: 0.7, 0.8 and 0.9. Even with such a simple setting, no exact POMDP solution can
be found, but the approximate planning algorithm with a finite horizon finds solutions.

Figure 1 depicts the policies found and the expected reward, as a function of the
query penalty. The policies found either alternate between query and the optimal action,
or never do any query at all, if the query penalty is very high. Even when no query
is done, the agent still manages to learn the observation probabilities. However, we
think this is an artifact of having aListen action, which is in effect a noisy version
of a Query action. The fact that some policies use theListen action but not the
Query action suggests that noisy queries may be sufficient to learn the parameters of
the system.

This approach will not scale well for large POMDPs, because the number of states
is multiplied bynk wheren is the number of possible values for a given parameter and
k is the number of uncertain parameters. This greatly increases the complexity of the
belief state and the complexity of the policy. Furthemore, the cost of the query can be
very difficult to establish. The results above show that if the cost is too low, the query
action is used as part of permanent policies instead of being used only in the beginning

Fig. 1. Experimental results on the Tiger problem using decision-theoretic model learning. The
bars indicate the % of time each action is chosen (during both learning and testing). The line
indicates performance of the optimal solution obtained with each reward parameter.

to gather information about the model. On the other hand, if the cost is too high, it is
likely that the query action will never be picked.

4 Active learning in POMDPs

In this section we describe an approach which draws inspiration from the field of active
learning (Dearden, 1999). We will represent the model uncertainty with a Dirichlet
distribution over possible models, and update the parameters of the distribution as new
experience is acquired.

4.1 Dirichlet Distributions

Consider anN-dimensional multinomial distribution with parameters(θ1, . . .θN). A
Dirichlet distribution is a probabilistic distribution over these parameters. The Dirichlet
itself is parameterized by hyper-parameters(α1, . . .αN). The likelihood of the multino-
mial parameters is defined by:

p(θ1 . . .θN|D) =
∏N

i=1 θαi−1
i

Z(D)
, whereZ(D) = ∏N

i=1 Γ(αi)
Γ(∑N

i=1 αi)

The maximum likelihood multinomial parametersθ∗1 . . .θ∗N can be computed, based on
this formula, as:

θ∗i =
αi

∑N
k=1 αk

,∀i = 1, . . .N

The Dirichlet distribution is convenient because its hyper-parameters can be updated
directly from data. For example, if instanceX = i is encountered,αi should be increased
by 1. Also, we can sample from a Dirichlet distribution conveniently using Gamma
distributions.

In the context of POMDPs, model parameters are typically specified according to
multinomial distributions. Therefore, we propose to use a Dirichlet distribution to rep-
resent the uncertainty over these model parameters. We will use Dirichlet distributions

for each state-action pair where either the posterior transition probabilities or the obser-
vation probabilities are uncertain.

4.2 The algorithm

The algorithm we propose, called MEDUSA for ”Markovian Exploration with Deci-
sion based on the Use of Sampled models Algorithm” is an active learning approach
that follows a familiar scenario. First, our agent samples a number of POMDP models
according to the current Dirichlet distribution. The agent takes an action in the envi-
ronment, and as a result, obtains an observation. At this point, the agent can decide to
query the oracle for the true identity of the hidden state. If it does so, it can update the
Dirichlet parameters according to the result of the query. This process is repeated un-
til the distribution over models is sufficiently well-known. Table 1 provides a detailed
description of these steps, including the implementation details.

1. Let |S| be the number of states,|Z| be the number of observations, andλ ∈ (0,1) be the
learning rate.

2. Initialize the necessary Dirichlet distributions1.
For any unknown transition probability,Ta

s,·, defineDir ∼ {α1, . . .α|S|}.
For any unknown observationOa

s,·, defineDir ∼ {α1, . . .α|Z|}.
3. Samplen POMDPsP1, . . .Pn from these distributions. (We typically usen = 20).
4. Compute the (normalized) probability of each model:{w1, . . .wn}.
5. Solve each modelPi → πi , i = 1, . . .n. (We use a finite point-based approximation.)
6. Initialize the historyh = {}
7. Initialize a belief for each modelb1 = . . . = bn = b0 (We assume a known initial beliefb0).
8. Repeat:

(a) Compute the optimal actions for each model:a1 = π1(b1), . . .an = πn(bn).
(b) Randomly pick and apply an action to execute, according to the model weights:ai =

πi(bi) is chosen with probabilitywi .
(c) Receive an observationz.
(d) Update the historyh = {h,a,z}
(e) Update the belief state for each model:b′i = ba,z

i , i = 1..n.
(f) If desired, query the current state, which revealss, s′.
(g) Update the Dirichlet parameters according to the query outcome:

α(s,a,s′)← α(s,a,s′)+λ
α(s′,a,z)← α(s′,a,z)+λ and re-normalize the Dirichlet distributions.

(h) Recompute the POMDP weights:{w′1, . . .w′n}.
(i) At regular intervals, remove the modelPi with the lowest weight and redraw another

modelP′i according to the current Dirichlet distribution. Solve the new model:P′i → π′i
and update its beliefb′i = bh

0, wherebh
0 is the belief resulting when staring inb0 and

seeing historyh.

Table 1.The MEDUSA algorithm

A few aspects of this approach are worth discussing further. First, every time a new
model is sampled, the agent finds the corresponding (near-)optimal policy. This policy

Fig. 2. Experiment 1: Convergence of the estimated parameterOListen
TL,HL (left). Discounted reward

as a function of the number of queries (right).

is used to select actions. This allows us to obtain reasonable performance throughout
the active learning process: as the sampled models improve, so will the quality of the
actions chosen. This also allows the agent to focus the active learning in regions of the
state space most often visited by good policies.

We also note that our active learning approach assumes a learning rate,λ. This is
used to update the parameters of the Dirichlet distribution over models following each
query. In the experiments, we used a fixed learning rate throughout; however this could
be varied (e.g., decreasing over time, as is often done in reinforcement learning).

Another important characteristic of our approach is that we need not specify a sep-
arate Dirichlet parameter foreachunknown POMDP parameter. It is often the case that
a small number of hyper-parameters suffice to characterize the model uncertainty. For
example, noise in the sensors may be highly correlated over all states and therefore we
could use a single set of hyper-parameters for all states. In this setup, the correspond-
ing hyper-parameter would be updated whenever actiona is taken and observationz is
received, regardless of the state.

Finally, while the table below assumes that a query for the state is performed at
every time step, this need not be the case. The decision of when to query can be ad-
dressed in a decision-theoretic way (as in section 3), but this is intractable when there
are many unknown parameters. In the experimental section below, we investigate vari-
ous heuristics for deciding when to query (or not to query) the state. Another approach
(which we have not investigated yet) could be to use queries which do not directly reveal
the state, but provide related information, since it is possible to update the parameters
of the Dirichlet distribution even without explicit state identification.

4.3 Experimental results on a small domain

To evaluate this approach, we experimented first with the Tiger problem. We considered
two cases:

1. The observation probabilities of perceiving{HL, HR} when theListen action
is performed are unknown (randomly initialized).

2. All parameters are unknown (randomly initialized).

In the first experiment, we assume that all parameters are set to their correct value,
except theOListen

·,· parameters, which are unknown. (Note that in this experiment the
Dirichlet distribution implicitly enforcesOListen

s,HL = 1.0−OListen
s,HR ,∀s∈ S.)

We test the following heuristics for deciding when to query the state:

– Always query : perform a query at every step
– Entropy >0.0: query when models disagree on which action to select
– Entropy >0.1: query when models disagree substantially on which action to se-

lect; i.e., the entropy of the probability distribution over actions, as suggested by
the different models, is larger than 0.1.

– Distance >0.01: query when the distance between the beliefs states correspond-
ing to the different models is too large. This distance is defined by:Distance =
∑n

k=1wk ∑i∈S(bk(i)− b̂(i))2, where∀i, b̂(i) = ∑n
k=1wkbk(i)

Otherwise, the algorithm is applied exactly as described in Table 1. We also show the
return corresponding to the optimal solution obtained when solving the problem with
the known parameters.

As shown in Figure 2, the algorithm allows the agent to learn the correct parameters,
and we see that performance quickly improves with additional queries. We do not notice
a significant difference between the various heuristics for choosing when to perform
queries. This suggests that most queries are useful for learning the model.

In the second experiment, all transition and observation probabilities are learned
simultaneously. As shown in Figure 3, all correct parameters are learned very accu-
rately with relatively few queries (200-300) and we see that 2000 queries are needed
to reach the optimal reward. In comparison, recent results for learning predictive state
representations report using on the order of 106−107 steps to learn the Tiger problem
and other problems of similar sizes (Singh et al. 2004). We note, however, that these
algorithms are not allowed to query an oracle for additional information, and therefore
face a harder problem.

4.4 Experimental results on larger domain

In this section we test the scaling of the algorithm on a larger domain calledTiger-Grid
(Littman et al. 1995). It has 36 states, 5 actions, 17 observations, for a total of 9000+
transition and observation parameters. It also features probability distributions that are
more characteristic of real robots, including noisy motion and sensor conditions. In a
domain of this size, it is unlikely that all parameters will be uncorrelated. More likely,
there are a few effects (e.g., sensor noise) that are similar over a number of states.
Therefore, the uncertainty in these parameters can be correlated through a single hyper-
parameter, rather than learning all parameters independently. In the experiments, we
apply the algorithm described in Table 1 and vary the number ofα parameters used. In
the last case, where we use only 8 parameters, we actually lose the ability to represent

Fig. 3. Experiment 2: Convergence of the parameters for the “always-query” case (left). Dis-
counted reward as a function of the number of queries (right).

Fig. 4. Experiment 3: Discounted reward as a function of the number of queries for Tiger-grid
domain for different numbers of alpha parameters .

the correct model (since we correlate parameters that are not exactly identical). We see
on this case that we do not reach a positive reward with such a setting.

The results in Figure 4 confirm that with the appropriate number of parameters, the
algorithm can effectively improve the model using queries. As expected, the speed of
learning depends on the number of hyper-parameters. Thus, our approach can effec-
tively trade-off learning speed versus model accuracy.

5 Conclusions and future work

In this paper, we studied active learning strategies for POMDPs, a topic that has not yet
been addressed in the literature. We presented two alternative algorithms for handling
this problem. The first, based on an extended POMDP representation, offers a decision-

theoretic way of handling uncertainty, but it scales poorly when there are many uncer-
tain parameters. The second, called MEDUSA, scales much better but does not offer
the same theoretical guarantees. As shown in the empirical results, MEDUSA can han-
dle significant uncertainty with relatively little training data. Furthermore, the correct
parameters can be learned even when the priors on the model are uninformative, or
in the presence of noise in the oracle. The algorithm offers significant flexibility. We
can specify different initial values and confidence levels for the parameters, and when
appropriate we can correlate model parameters through the use of the same Dirichlet
hyper-parameters. Both of these are effective tools for improving the effectiveness of
learning.

Some parts of the algorithm leave something to be desired. At the moment, POMDPs
are re-sampled from the Dirichlet distribution at fixed intervals. A better strategy would
be to perform as many redraws as possible, and to use all the computational power that
is not used by applying the policy in the redrawing subroutine. The question of when
to do queries, and whether to consider a more varied set of queries is also of interest.
Clearly the decision-theoretic approach of Section 3 can contribute to this decision.
However, using this approach calls for POMDP algorithms that can handle very large
(possibly continuous) state spaces, and these are currently lacking. Finally, a theoretical
analysis of the convergence properties of MEDUSA remains to be done. Our next goal
is to apply the ideas proposed in this paper to the control of a mobile interactive robot.

References

Anderson, B. and Moore, A. “Active Learning in HMMs”. In submission. 2005.
Brafman, R. I. and Shani, G. “Resolving perceptual asliasing with noisy sensors”. Neural Infor-

mation Processing Systems. 2005.
Cohn, D. A., Ghahramani, Z. and Jordan, M. I. “Active Learning with Statistical Models”. Ad-

vances in Neural Information Processing Systems.
Dearden, R.,Friedman, N.,Andre, N., ”Model Based Bayesian Exploration”, Proc. Fifteenth Conf.

on Uncertainty in Artificial Intelligence (UAI), 1999.
Kaelbling, L., Littman, M. and Cassandra, A. ”Planning and Acting in Partially Observable Sto-

chastic Domains” Artificial Intelligence. vol.101. 1998.
Littman, M., Cassandra, A., and Kaelbling,L. ”Learning policies for partially observable envi-

ronments: Scaling up”, Brown University, 1995.
McCallum, A. K. Reinforcement Learning with Selective Perception and Hidden State. Ph.D.

Thesis. University of Rochester. 1996.
Pineau, J., Gordon, G. and Thrun, S. “Point-based value iteration: An anytime algorithm for

POMDPs”. IJCAI. 2003.
Poupart, P. and Boutilier, C. “VDCBPI: an Approximate Scalable Algorithm for Large Scale

POMDPs”. NIPS 2005.
Singh, S., Littman, M., Jong, N. K., Pardoe, D., and Stone, P. “Learning Predictive State Repre-

sentations”. Machine Learning: Proceedings of the 2003 International Conference (ICML).
2003.

Spaan, M. T. J. Spaan, and Vlassis, N. “Perseus: randomized point-based value iteration for
POMDPs”. Journal of Artificial Intelligence Research. 2005. To appear.

