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Abstract. In this paper we consider the problem of representing and
reasoning about systems, especially probabilistic systems, with hidden
state. We consider transition systems where the state is not completely
visible to an outside observer. Instead, there are observables that partly
identify the state. We show that one can interchange the notions of state
and observation and obtain what we call a dual system. In the case of
deterministic systems, the double dual gives a minimal representation of
the behaviour of the original system. We extend these ideas to proba-
bilistic transition systems and to partially observable Markov decision
processes (POMDPs).

1 Introduction

Learning and planning under uncertainty is a crucial focus of modern AI re-
search. In the AI literature there is much discussion of the role of “state” and
there is a point of view that asserts that “a canonical notion of state does not
exist.” According to this view, state is merely a sufficient statistic for predicting
the future. This view has found its most articulate and developed exposition
in what is called the “predictive representation of state” or PSRs [18, 24]. The
present paper arose from an attempt to understand PSRs from a foundational
point of view as well as to understand certain well-known learning algorithms [33]
that seem implicitly to use some ideas from duality.

The main point of the present paper is the presence of a duality between state
and observation which seems to lie at the heart of the PSR representation. The
use of the word “duality” of course evokes connections with the duality between
logic and transition systems and of the many dualities known in mathematics:
Stone duality and its many variants and extensions, Priestley duality, Gelfand
duality and general concrete dualities in category theory; see, for example, the
excellent monograph of Johnstone [19] for a general categorical discussion. Dual-
ity has been very important in systems theory and expresses a relation between
observability and controllability [21].

Much of the work in AI planning and learning under uncertainty is based on
the framework of Partially Observable Markov Decision Processes (POMDPs)
[20]. In this framework, problems are modeled using discrete states and actions.
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Actions cause stochastic transitions between states. At each time step, a stochas-
tic observation is also generated, based on the current state and the previous
action. Much work has been devoted to planning in POMDPs when a model
of the system (in terms of the stochastic transitions between states and the
probability distributions over observations) is known. Unfortunately, learning
POMDPs from data is a very difficult problem. One standard algorithmic solu-
tion is expectation maximization (EM) [11], but for POMDPs this approach is
plagued by local minima (more so than for other probabilistic models) and works
poorly in practice unless a good initial model of the system is used. History-based
methods [25] often work better in practice, but are less general. A lot of recent
research has been devoted to finding alternative representations for such sys-
tems, e.g., diversity-based representation [33], predictive state representations
(PSRs) [24] and TD-networks [37]. These approaches aim to combine the gener-
ality of POMDPs with the ease of learning of history-based methods. The key
idea underlying all of these approaches is that the state of the system is not
considered as predefined; instead, it is viewed as a sufficient statistic for mak-
ing (probabilistic) predictions about future trajectories. However, the models
themselves are different and their relationships are only partially understood at
the moment. It is our hope that the theory of the present paper will serve as
a foundation for these different models and bring into focus the commonalities
and differences.

In this paper, we develop a duality theory for POMDPs, which unifies much of
the existing work on predictive representations. We show how, for any POMDP,
one can develop two alternative representations: a dual machine and a double-
dual machine. The key idea in the development is that of making measurements
on the system, which we call experiments. Experiments are sequences of actions
interspersed with observations. They generalize previous notions of tests from
the literature on predictive state representations. Both of the alternative repre-
sentations that we present allow an accurate prediction of the probability of any
experiment. The double-dual representation is of particular interest, because it
has a deterministic transition structure, and no hidden state. Instead, its states
can be thought of as “bundles” of predictions for experiments. As such, this rep-
resentation holds the promise of much better planning and learning algorithms
than those currently available. Our work also generalizes similar representations
from automata theory [10] and is closely related to the update graph from [33].
We show how existing predictive representations can be viewed from the per-
spective of this framework. We also discuss the implications of these alternative
representations for learning algorithms, approximate planning algorithms as well
as working with continuous observations. A preliminary version of these ideas
has appeared in [17].

The main technical result of the present paper is that when one constructs
the double dual one obtains a minimal behaviourally equivalent version of the
original system. Of course, as written this cannot be quite right! One should
get an isomorphic object when one goes back and forth across a dual situation.
Nevertheless, this is what happened with the construction that we present in
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this paper. This shows that what we have cannot be a pure Stone-type duality.
It took a long time to fit these results into a coherent categorical picture. Of
course, in the probabilistic setting the systems are infinite so “minimal” does
not mean fewest states but is best expressed as a couniversal property; we will
come back to this point in the conclusions.

The categorical version of the results of the present paper are being written
up in a separate paper by the first author and Nick Bezhanishvili and Clemens
Kupke. In that work the authors deal with weighted automata as well. The main
idea there is that there is a duality between the transition system and an appro-
priate algebra with additional operators. Thus, for ordinary automata, one has
a duality between the automata and boolean algebras equipped with “modal”
operators while for the probabilistic case one has C∗-algebras equipped with
additional operators. It turns out that the problem of minimizing a transition
system can be seen in the dual category as the problem of finding a 0-generated
subalgebra. Thus going to the dual, finding the 0-generated subalgebra and re-
turning via the duality automatically minimizes the transition system.

2 Background

In this section we review the definitions of the various kinds of transition systems
that we work with in this paper. The type of system most used in applications to
planning under uncertainty and learning are partially observable Markov decision
processes (POMDPs). There are, however, a number of simpler situations where
the duality phenomenon also occurs and we will discuss duality for these systems
before going on to POMDPs [20].

The crucial ingredient is the interplay between the dynamics, i.e. the state-
to-state transitions, and the observations. In automata theory, the concept of
partially observable system is often not made explicit in the definitions. In sys-
tems theory [21], and in artificial intelligence, one typically has observations that
only partially reveal the state. One, thus, has to reason about behavioural equiv-
alences between systems; bisimulation [26, 29, 30] is the most common of these
equivalences1. In process algebra one has a similar situation: one does not see the
state, only whether actions are “accepted” or “rejected” in a given state. These
approaches have equivalent modelling power and concepts like bisimulation can
be defined in both settings. In this paper we will always assume that all actions
are possible in every state and the behavioural equivalences will take the obser-
vations into account. The usual example from process algebra [26, 27] showing
the difference between trace equivalence and bisimulation can be mimicked in
this setting.

The observations that we use are to be thought of as Boolean valued. Intu-
itively, one thinks of a black box with a number of buttons (the actions) and a
number of lights (the observations). One can press any button and induce some

1 Though [29] is often cited for bisimulation it is only mentioned there in passing and
Park never wrote a paper on bisimulation; the slides [30] are the closest thing to a
proper citation for Park’s contribution.
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kind of internal state transition - which will be invisible - but some of the lights
may light up. In the most general case the observations depend on the action and
the target state or source state of each transition. In the AI literature it is more
usual to consider the observation as depending on the target (posterior) state
and we will do that here when we discuss POMDPs. We discuss everything in the
context of discrete state spaces so we avoid all measure-theoretic complications
and we can work with state-to-state transition probabilities.

Of course, this is a first step. Eventually we will be interested in the case
where the observables are real-valued – as in the case of rewards – or indeed vec-
tors of real-values. We will also be interested in the case where the state space
is continuous. In that case we will be concerned with developing a good ap-
proximation theory so that one can have tractable representations of continuous
systems.

2.1 Kripke Automata

We begin with ordinary automata enriched with a notion of observations asso-
ciated with each state; the observations are deterministic.

Definition 1. A deterministic Kripke automaton (DKA) is a quintuple

K = (S,A,O, δ : S ×A −→ S, γ : S −→ 2O).

S is a set of states, A is a set of actions, O is a set of observations, δ is a
transition function and γ is an observation function associated with the states.

The idea here is that there are a number of observations that will be made in
a given state; in terms of our previous imagery, for each state there is a set
of lights that are turned on in each state. If we call the observations “propo-
sitions” instead, this is essentially the definition of Kripke structure [12] used
in model checking, except that there are labels on transitions as well, and we
have made the transitions deterministic. The automata studied in undergradu-
ate courses [16, 23, 35] are special cases where there is a single observation called
“accept.”

Note that the observations are associated with the states, like in a Moore
machine. Given a state there is a set of observations that are always made in
that state. One can view γ as a relation; we will switch between γ as defined
above and γ̂ ⊆ S×O where γ̂(s,ω)⇔ ω ∈ γ(s). We will usually not even bother
to write γ̂ and just use γ for whatever version is most apt to the situation at
hand.

One can take the view that with a state there is always a single observation:
the complete description of which lights are on. The picture given above can be
encoded in this view by taking the set of observations to be 2O. Furthermore,
the latter view is a special case of our definition: we are just restricting γ to be
a function.

While these two views are the same in the non-probabilistic case, they differ
sharply in the probabilistic case. If we were just to give a probability for a given
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observation in a state, we could not express correlations between observations.
Thus, when we come to the probabilistic case, we will insist that γ determines
a distribution over all possible observations. Of course these observations could
be “structured” in some way and we could analyze aspects of this structure. We
are planning to explore these ideas in future work.

2.2 Probabilistic Systems

In systems theory, one often considers systems where the transitions and the
observations are probabilistic. This gives a probabilistic version of Kripke au-
tomata; the interpretation of γ is, as we explained in the paragraph above,
generalized to a distribution over the observations for each state.

Definition 2. A partially observable probabilistic automaton (POPA) is
a quintuple

H = (S,A,O, τ : S ×A× S −→ [0, 1], γ : S ×O −→ [0, 1])

where τ(s, a, ·) defines a probability distribution on possible target states and
γ(s,ω) is the probability of observing ω in state s. We will often write τa(s, ·)
for τ(s, a, ·). We write τa(s,X), where X ⊆ S, for

∑
t∈X τa(s, t).

In each state we can observe possibly several (or no) observations. The number
γ(s,ω) is the probability that one sees ω, as opposed to not seeing it, given that
one is in the state s. The function ω '→ γ(s,ω) is not necessarily a probability
distribution on O. It defines a probability distribution on 2O. Some of our con-
structions on partially observable probabilistic automata will yield deterministic
variants. The interesting case is where the transitions are deterministic, but the
observations are still probabilistic.

Definition 3. A deterministic automaton with stochastic observations
(DASO) is a quintuple

J = (S,A,O, δ : S ×A −→ S, γ : S ×O −→ [0, 1])

where γ(s,ω) is the probability of observing ω in state s.

Here the transitions are deterministic, hence, given by a function, but the states
can only be partially known through the observations, which are stochastic.

In POMDPs the observations are associated with the transitions rather than
with the states.

Definition 4. A Partially Observable Markov Decision Process
(POMDP) is a quintuple

M = (S,A,O, P : S ×A× S −→ [0, 1], γ : A× S ×O −→ [0, 1])

where, as before, S is a set of states, A is a set of actions, O is a set of ob-
servations, P is the transition probability function and γ gives the observation
probabilities. For each s ∈ S and a ∈ A, the function ω '→ γ(a, s,ω) is a distri-
bution on O.
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Note that here we are requiring that γ defines a distribution. This is done to
match the definition used in the extant literature for POMDPs. However, when
we construct duals and double duals this will no longer be the case. The num-
ber γ(a, s,ω) is the probability that one sees the observation ω, given that the
system takes the action a and given that one ends up in s after the transi-
tion is complete2. According to our definition, transitions are triggered by the
actions in A; there is no attempt to model probability distributions over the
actions. They are intended to be actions chosen by an adversary or scheduler
(the verification viewpoint) or actions chosen by a policy external to the sys-
tem definition (the planning viewpoint). The triple (S,A, P ) forms a labelled
Markov process [14] (LMP). If we had a reward as well, it would be a Markov
decision process (MDP) [32]. The fact that the state is only partially observable
is captured by the fact that O is different from S and there is no given bijection
between S and O.

3 Duality for Kripke Automata

We begin with a simple example which is instructive and gives a foretaste of the
rest of the paper. We work with deterministic Kripke automata, i.e. ordinary
automata enhanced with a notion of observation, and establish a very pleasing
duality between state and observation. The situation is rather special, in that the
duality relation is very tight: the stochastic case does not have all the features
of the present case. The results of the present section are a slight generalization
of a technique known to Brzozowski [10] in 1962. We defer a comparison to
Brzozowski’s work to the end of this section.

We recall the definitions. Let K = (S,A,O, δ, γ) be a deterministic Kripke
automaton. Here S is the set of states, A an alphabet of input symbols, O is
a set of primitive observations, δ is the transition function δ : S × A −→ S and
γ : S −→ 2O is a labelling function. One can as well think of the elements of
O as propositions capturing basic properties of the states or as observations –
boolean-valued in this case – that one can make of the states. One can equally
well think of γ as having the type S×O −→ {T, F}. We will emphasize the notion
of observation and testing rather than the equivalent notion of proposition and
modal formula.

Thinking of the elements of O as basic observations, we can use them to define
a family of tests. We define a test t according to the following grammar:

t ::== ω ∈ O | (a) · t

where a ∈ A.
We say that a state s satisfies or passes ω, written s |= ω, if ω ∈ γ(s) or,

equivalently, γ(s,ω) = T . We say s |= (a) · t if δ(s, a) |= t. We define [[t]]K =
{s ∈ S|s |= t}. Clearly this is exactly the same as defining the tests as modal
formulas and defining satisfaction as above.

2 It would be more natural, perhaps, to make this depend on the source state; we are
following the convention used by AI researchers [20].
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We define an equivalence relation ∼K between tests as t1 ∼K t2 if [[t1]]K =
[[t2]]K. Note that this allows us to identify an equivalence class for t with the set
of states [[t]]K that satisfy t. Note that another way of defining this equivalence
relation is

t ∼K t′ := ∀s ∈ S.s |= t ⇐⇒ s |= t′.

We also define an equivalence ≡ between states in K as s1 ≡ s2 if for all tests t
on K, s1 |= t ⇐⇒ s2 |= t. The equivalence relations ∼ and ≡ are clearly closely
related: they are the hinge of the duality between states and observations.

We say that K is reduced if it has no ≡-equivalent states. Since there is
more than just one observation, in general the relation ≡ is finer than the usual
equivalence of automata theory.

Finally, we say that two DKAs K = (S,A,O, δ, γ) and K′ = (S′,A′,O′, δ′, γ′)
are isomorphic if A = A′, O = O′, and there exists a bijection φ : S −→
S′ such that, for all s ∈ S, γ(s) = γ′(φ(s)) and for all a ∈ A φ(δ(s, a)) =
δ′(φ(s), a).

We define the dual construction as follows.

Definition 5. Let K be a Kripke automaton K = (S,A,O, δ, γ). Let T be the
set of ∼K-equivalence classes of tests on K. We define K′ = (S′,A,O′, δ′, γ′) as
follows:

– S′ = T = {[[t]]K}
– O′ = S
– δ′([[t]]K, a) = [[(a) · t]]K, ∀[[t]]K ∈ S′, a ∈ A
– ∀[[t]]K ∈ S′ γ′([[t]]K) = [[t]]K or γ′([[t]]K, s) = (s |= t)

The somewhat strange-looking definition of γ′ is to be understood as follows. In
the machine K′ the observations one can make of the state [[t]] are those states
of K (which are the observations of K′) that satisfy the test t; this set is exactly
[[t]]. We have interchanged the states and the observations; more precisely we
have interchanged equivalence classes of tests - based on the observations - with
the states. We have made the states of the old machine the observations of the
dual machine. To see the remarkable effect of this interchange we consider the
double dual. We will see that the double dual is the minimal automaton with
the same behaviour.

Now consider K′′ = (K′)′, the dual of the dual. Its states are equivalence
classes of K′-tests. Each such class is identified with a set [[t′]]K′ of K′-states by
which tests in that class are satisfied, and each K′-state is an equivalence class
of K-tests. Thus we can look at states in K′′ as collections of K-test equivalence
classes. It is with this perception in mind that we construct the Sat function. To
avoid confusion, we will write ŝ for a state s ∈ S when viewed as an observation
of K′.

Definition 6. Let K′′ be the double dual of K. For any state s ∈ S of K we
define Sat(s) = {[[t]]K|s |= t}.
The next lemma shows that these sets are always states of the double dual. The
following notation will be useful. A state s of K is an observation of K′; recall
that ŝ is s viewed as an observation of K′.
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Lemma 7. Let s ∈ S be any state in the original automaton K. Then Sat(s) is
a state in K′′.

Proof. The observations in K′ are the states in K, i.e. elements of S. Recall
that ŝ ∈ O′ is the observation associated with s. Then [[ŝ]]K′ is a state in K′′,
and

[[ŝ]]K′ = {[[t]]K|[[t]]K |= ŝ} = {[[t]]K|s ∈ [[t]]K} = {[[t]]K|s |= t} = Sat(s).

In fact all the states of the double dual have this form.

Lemma 8. Let s′′ = [[t]]K′ ∈ S′′ be any state in K′′. Then s′′ = Sat(st) for some
state st ∈ S.

Proof. The proof is by induction on the length of t. The base case is settled by
Lemma 7.

Now suppose t = (a) · t′ for some t′. Then, by the inductive hypothesis, there
is some st′ such that [[t′]]K′ = Sat(st′). Let st = δ(st′ , a). Then

[[t]]K′ = {[[r]]K|[[r]]K |= t} = {[[r]]K|[[r]]K |= (a) · t′} = {[[r]]K|δ′([[r]]K, a) |= t′}
= {[[r]]K|[[(a) · r]]K |= t′} = {[[r]]K|[[(a) · r]]K ∈ [[t′]]K′}
= {[[r]]K|[[(a) · r]]K ∈ Sat(st′)} = {[[r]]K|s′t |= (a) · r}
= {[[r]]K|δ(st′ , a) |= r} = {[[r]]K|st |= r} = Sat(st).

We have used the induction hypothesis in the first equality of the penultimate
line.

Now an immediate consequence of the definitions is:

Observation 9. s ≡ s′ if and only if Sat(s) = Sat(s′).

Now from Lemmas 7 and 8 and the observation we have the following corollary.

Corollary 10. If K is reduced then Sat is a bijection from S to S′′.

Proof. Lemma 7 shows that Sat : S −→ S′′. The fact that K is reduced means
that s1 -= s2 =⇒ Sat(s1) -= Sat(s2), which by Observation 9 implies that Sat
is injective. Lemma 8 shows that Sat is surjective. Thus Sat is a bijection from
S to S′′.

The statement of the corollary can be strengthened to show that we actually
have an isomorphism of DKAs between K and K′′. We know that the action
set A is the same for both K and K′′, but the observation set O is not equal
to the observation set O′′. However, we can transform K′′ by just restricting
to the original observations in the following way: recall that an observation in
K′′ is a state in K′, which is an equivalence class of tests in K. We let O be
the observations for K′′ and we define a new observation function γ′′

T for K′′

as
∀s′′ ∈ S′′ ω ∈ γ′′

T (s
′′) ⇐⇒ [[ω]]K ∈ γ′′(s′′).

Now we can define K′′
T .
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Definition 11. K′′
T = (S′′,A,O, δ′′, γ′′

T ), with γ′′
T defined as above.

This allows us to establish the required isomorphism.

Theorem 12. Suppose K is reduced. Then K is isomorphic to K′′
T .

Proof. We see that A and O are the same in both K and K′′
T . We use Sat as

our bijection from S to S′′. It remains only to verify the properties of Sat . First,
the observations: for all s ∈ S and all ω ∈ O the following holds:

ω ∈ γ(s) ⇐⇒ s |= ω

⇐⇒ [[ω]]K ∈ Sat(s)

⇐⇒ [[ω]]K ∈ γ′′(Sat(s))

⇐⇒ ω ∈ γ′′
T (Sat(s)).

We now check the transitions. For any s ∈ S and any a ∈ A, let t be such that
Sat(s) = [[t]]K′ . Then

δ′′(Sat(s), a) = δ′′([[t]]K′ , a)

= [[(a) · t]]K′

= {[[r]]K|[[r]]K |= (a) · t}
= {[[r]]K|[[(a) · r]]K |= t}
= {[[r]]K|[[(a) · r]]K ∈ [[t]]K′}
= {[[r]]K|[[(a) · r]]K ∈ Sat(s)}
= {[[r]]K|s |= (a) · r}
= {[[r]]K|δ(s, a) |= r}
= Sat(δ(s, a)).

Thus Sat establishes an isomorphism between K and K′′
T .

Thus the double dual construction produces a machine which is - in a very strong
sense - the “minimal version” of the original machine. What we mean by minimal
is that no further reduction or collapsing of states is possible. We will expand
on this in the conclusions.

In the stochastic case we will not get such a tight correspondence but this
gives a preview of what will happen there. In fact analogous results work for the
nondeterministic case; in this case the double dual is the minimized version of
the equivalent deterministic machine.

An Extended Example. We will explain the concept of duality on a concrete
example, using the finite automaton below, where S = {s1, . . . , s6}, A = {0, 1}
and O = {G,R,Y}.
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))
Y
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'' 1**

In the above machine 010Y, R, and 110R are examples of tests. Suppose that
we start with state s1 in our example. If we follow the sequence of actions 0010,
we end up in state s3, which gives an observation of Y. Thus, we can say that
s1 |= 0010Y. It is easy to see that s4 |= 01R, s1 |= 011G and s6 |= 1100Y.

Consider the test 0G in the above example. We notice that only s1 and s4
satisfy it. In order to find other tests equivalent to it, we should look at tests that
only s1 and s4, and no other states, satisfy. Other such tests areG, 00G, 000G . . .
etc. Thus, we can say that [G] = [0G] = [00G] . . .. Similarly, we find that only
the states s2 and s5 satisfy the equivalent tests [R] = [11R] = [101R] . . ., and
the states s3 and s6 satisfy [Y] = [1Y] = [100Y] . . ..

As we have said before, an equivalence class of tests is identified by the set of
states that satisfy these tests. Then, in our example, the equivalence classes of
tests are: t1 = {s1, s4}, t2 = {s2, s5} and t3 = {s3, s6}.

We use the usual labelled transition notion: s1
a→ s2 when a transition on

action a has source s1 and target s2. Notice that not only s1
0→ s1, and s4

0→ s1,

but s1
1→ s2, and s4

1→ s2 as well. Furthermore, these states have the same
observations. This means that s1 and s4 have the same behaviour, and thus any
test satisfied by one must also be satisfied by the other. Thus, s1 ≡ s4. Following
the same reasoning, we can say that s2 ≡ s5 and s3 ≡ s6.

We now construct the dual machine of our example described above. Recall
that K = (S,A,O, δ, γ). The dual of K is K′ = (S′,A,O′, δ′, γ′) where:

S′ = T = {[t]}
O′ = S

δ′([t], a] = [at]

γ′([t], s) = [t]

The states of the new machine are the equivalence classes of the original machine,
and the new transition function is defined to work with them; the observations
are the states of the original machine. What observations do we see? Since the
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new states of the dual machine are the equivalence classes [t] of the old one, then
the observations that we see should be the states that satisfy t; this is just what
is given by the new observation function γ′.

We now construct the dual machine. In the original machine, we had de-
termined that we have 3 equivalence classes: [t1], [t2] and [t3]. Thus, the new
machine has those three states. In addition, the observations are the states of
the original machine that satisfy each of the equivalence classes, so transition
arrows aside, the dual looks like:

s1, s4
[G]

s2, s5
[R]

s3, s6
[Y]

We now add the transition arrows to the dual.

δ([t1], 0) = [0t1]

We know that [t1] = [G], therefore [0t1] = [0G]. To find out what equivalence
class this test belongs to, we have to go through the test backwards. In order
to see an observation of G, we have to be in either state s1 or s4. The action
that produced the Y observation was 0, so consider what happens if we take a

0 action backwards from s1: s1
0← s1 or s1

0← s4. Note that there is no state s

such that s4
0← s. Thus, whatever equivalence class contains [0G] is identified by

the states {s1, s4}. This is just t1 itself, so we have a 0 transition arrow from [t1]
to itself. Computing the transition arrows in this way we get the dual machine
below.

s1, s4
[G]

0 ++
1

,,
s2, s5
[R]

0

,,

1
-- s3, s6

[Y]

0
--

1**

In this special case, the underlying transition graph of the double dual will
be isomorphic to the transition graph of the dual but that is just an artefact of
this example.

Brzozowski’s Algorithm for Minimization. Brzozowski [10] discovered the fol-
lowing intriguing algorithm for minimizing finite state automata viewed as ac-
ceptors. Take the transitions and reverse the arrows. In addition interchange the
accepting and non-accepting states; the resulting machine is not deterministic,
of course. Determinize this machine in the usual way then reverse the result, flip
the accepting states and the non accepting states again and determinize again.
Remarkably, this gives the minimal deterministic automaton. The reverse oper-
ation is exactly our duality construction for the special case of one observation.
Brzozowski does not present the duality construction using the logic that we
have made explicit, but it is clearly there implicitly. Our presentation is essen-
tial for the generalization to the stochastic case. Of course this algorithm can
blow up exponentially in the intermediate stage (the construction of the dual).
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Despite this it appears to be useful in practice. We should point out that reach-
ability plays a key role in Brzozowski’s algorithm so the correspondence is not
perfect. A recent paper [8] gives the precise categorical treatment of Brzozowski’s
algorithm.

4 A Simple Duality for Partially Observable Probabilistic
Automata

In this section we work with partially observable probabilistic automata which
is a prelude to the treatment of partially observable Markov decision processes
(POMDPs). We will develop a duality with deterministic automata with stochas-
tic observations (DASOs) using the probabilistic analogues of the simple formu-
las of the last two sections. In the AI literature these are called “e-tests” [24],
where the e signifies that there is a single observation made at the end of a
sequence of actions. With these e-tests one does get a pleasant duality theory,
but the dual automaton loses much of the information of the original automa-
ton. Nevertheless, this simple duality does capture many aspects of the original
behaviour.

We recall the definition of a partially observable probabilistic automaton as
H = (S,Σ,O, τ, γ), where τ : S × Σ × S −→ [0, 1] is the transition function
and γ : S × O −→ [0, 1] is the observation probability function. In our setup
the observations are taken from a discrete set. It is not hard to develop the
theory with observations taking on, for example, real values, but we will not do
that in the present paper because that would involve us in measure-theoretic
considerations.

We can define a dual using the same inductive definition for tests as in the
deterministic case, but with a probabilistic semantics where a state satisfies a
test with a given probability. Thus, the meaning of tests [[t]] should be considered
as functions assigning probabilities to states. We will use s to stand for a typical
state and ω for a typical observation. The definitions are:

[[ω]]H(s) = γ(s,ω)

[[(a) · t]]H(s) =
∑

s′

τ(s, a, s′)[[t]]H(s′)

We can define an equivalence relation on these tests by t1 ∼ t2 if and only if
[[t1]] = [[t2]]: thus, the equivalence class of t is completely determined by [[t]]. We
will just use [[t]] rather than the equivalence class [t].

We define the dual H′ = (S′,Σ,O′, τ ′, γ′) as follows:

– S′ = {[[t]]H|t ∈ F}, where F is the collection of formulas.
– O′ = S
– γ′([[t]]H, s) = [[t]]H(s)
– τ([[t]]H, a, [[(a) · t]]H) = 1 (0 otherwise)

Note that the transition function is now completely deterministic: it can be
written in the much more perspicuous form τ([[t]], a) = [[(a) ·t]]. Thus, the duality
construction has made the system deterministic.
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We can now consider the double dual, which has H′-equivalence classes of
formulas as states. Since the observations of H′ are the states in H, a basic test
on H′ would look like [[ŝ]]H′ for some s ∈ S, where, as before, we are writing ŝ for
the state s regarded as an observation of the dual system. We find that

γ′′([[ŝ]]H′ , [[ω]]H) = [[ŝ]]H′([[ω]]H) = γ′([[ω]]H, ŝ) = [[ω]]H(s) = γ(s,ω).

Tests interpreted on the double dual, applied to states of the double dual that are
of the form [ŝ] for some state s of the primal machine, define the same functions
as they do on when interpreted on the original:

[[a1a2 · · · akω]]H′′([ŝ]H′) = [[ω]]H′′ (δ′′([ŝ]H′ , a1a2 · · · ak))
= [[ω]]H′′ ([ak · · ·a2a1ŝ]H′)

= γ′′([ak · · · a2a1ŝ]H′ , [[ω]]H)

= [[ak · · · a2a1ŝ]]H′([[ω]]H)

= [[ŝ]]H′(δ′([ω]H, ak · · · a2a1))
= γ′([[a1a2 · · · akω]]H, ŝ)

= [[a1a2 · · · akω]]H(s).

What we have here is a duality between probabilistic Kripke automata and
deterministic automata with probabilistic observations. Once again the duality
is mediated by the notion of satisfaction between states and tests and the entire
duality theory can be seen as transposing the satisfaction relation.

The formulas that we have considered are very special: observations are made
only at the end of a sequence of actions. One can consider tests to be formulas
and ask what the effect of adding other logical connectives would be. We will,
however, take the view that we are working with “tests” that the system may
or may not pass. With this viewpoint it is more natural to consider generaliza-
tions that are different from what one would consider by adding more logical
connectives to a logic.

As a prelude to the next section, consider what happens with a more general
kind of test called an “s-test” [24] in the AI literature. The new feature is that one
can make observations after every action. Note, however, that with these more
general kinds of tests one does not induce the same functions on the original and
double dual. This is because in the double dual the transitions are deterministic
so the observations provide no additional information about the state, given the
action. A more precise semantics would capture conditional probabilities of a
given new state conditioned on the observations made.

5 State Based Duality for POMDPs

In order to obtain a duality theory without a loss of information one needs a
more refined notion of experiments, or, equivalently, a richer notion of formulas.
The class of s-tests introduced at the end of the last section is not quite the right
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concept: it does capture all the system dynamics but, it is an ad-hoc class of
tests without a nice algebraic structure. We will work with a larger class of tests
in which a series of actions can be alternated with an observation. This allows
the concatenation of actions with tests, which is essential for duality.

Definition 13. We define a POMDP as

M = (S,A,O, δa∈A : S × S −→ [0, 1], γa∈A : S ×O −→ [0, 1]).

We use the word “tests” almost as before (“e-tests”); we use the word “experi-
ments” in this section for sequences of tests. The formal definitions are as follows.

Definition 14. A test t is a non-empty sequence of actions followed by an
observation, i.e. t = a1 · · · anω, with n ≥ 1.

Definition 15. An experiment is a non-empty sequence of tests e = t1 · · · tm
with m ≥ 1.

Note that these definitions force one to make an action in order to observe
anything. This is a consequence of the way observations are defined; they are
associated with actions so we cannot just make an observation in a state. Unlike
with POPAs, observations are associated with the action and the target state
so it makes no sense to regard a simple observation as a test.

In order to proceed with the construction of the dual to a POMDP we extend
the definition of the transition function to work on sequences of actions.

Definition 16. Given a POMDP as in Def. 13 we define a transition function
δα, where α is a sequence of actions, inductively:

δε(s, x) = 1s=x ∀s, x ∈ S

δaα(s, x) =
∑

y∈S

δa(s, y)δα(y, x) ∀s, x ∈ S.

We have written 1s=x for the indicator function viewed as a Kronecker distribu-
tion; i.e. 1s=x is 0 unless s = x in which case it is 1.

In order to define the meaning of a state satisfying a test, or an experiment,
we need to introduce a ternary symbol, because a test will contain at least
one action and thus will cause a transition to a new state. We will define the
satisfaction relation between states and tests as a ternary symbol 〈s|t|q〉 which
gives the probability that the system starts in s, is subjected to the test t and
ends up in the state q.

Definition 17. We define 〈s|t|q〉 by induction on t: 〈s|aω|q〉 = δa(s, q) ·γa(q,ω)
and 〈s|αaω|q〉 =

∑
r δα(s, r)〈r|aω|q〉.

We use the same notation for an experiment e: 〈s|e|q〉 is the probability of the
system starting in state s, being subject to the experiment e and ending up in
the state q.
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It is worth clarifying exactly what it means to say that “a system is subjected
to an experiment.” If we have an experiment

e = a(1)1 . . . a(1)n1
ω1a

(2)
1 . . . a(2)n2

ω2 . . . a
(m)
1 . . . a(1)nm

ωm

then the system is subjected to the sequence of actions

a(1)1 . . . a(1)n1
a(2)1 . . . a(2)n2

. . . a(m)
1 . . . a(1)nm

.

The number 〈s|e|x〉 is the probability that we see the observations ω1ω2 . . .ωm

at the appropriate points of the action sequence.

Definition 18. Given an experiment e the probability 〈s|e|q〉 is given by the
following inductive formula: for a basic experiment e = t the formula is given by
Def. 17, for an experiment of the form te we define

〈s|te|q〉 =
∑

r

〈s|t|r〉〈r|e|q〉.

These ternary relations are the fundamental quantities that one can use to carry
out the duality constructions. One can define the notion of a state s satisfying
test t or experiment e by just summing over the target states. We use the same
angle-bracket notation for this.

Definition 19. We define 〈s|t〉 to be the probability that a state s satisfies a
test t. It is given by the following formula:

〈s|t〉 =
∑

q

〈s|t|q〉.

Similarly 〈s|e〉 is the probability that s satisfies an experiment e:

〈s|e〉 =
∑

q

〈s|e|q〉.

Now we construct the dual and show how to come back. The dual is not a
POMDP but a deterministic transition system with stochastic observations.

We proceed as usual by defining an equivalence, this time on experiments;
exactly the same definition can be used on tests of course: tests are just simple
experiments.

Definition 20. For experiments e1, e2, we say e1 ∼M e2 if and only if 〈s|e1〉 =
〈s|e2〉 for all s ∈ S. Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before, by making equivalence classes
of experiments the states of the dual machine; the states of the primal machine
become the observations of the dual machine.
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Definition 21. We define the dual as

M′ = (S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0, 1])

where

S′ = {[e]M}
O′ = S

δ′([e]M, a0) = [a0e]M

γ′([e]M, s) = 〈s|e〉

As noted before this is a deterministic transition system with stochastic obser-
vations.

To get the double-dual we have to use the appropriate construction in the
space of the dual machines, i.e. in the space of deterministic transition systems
with stochastic observations. This is precisely the simple construction of the last
section. Thus, we consider only single-test experiments on the dual (i.e. e-tests),
but we allow the action sequences to be empty. Then for a given test τ = αs of
the dual machine3, where α is a sequence of actions, we have 〈[t]M|τ〉 = 〈s|αRt〉,
where αR indicates α with the action order reversed. Equivalence is defined
analogously: τ1 ∼M′ τ2 if and only if 〈x|αR

1 t〉 = 〈y|αR
2 t〉 for all tests t; where

τ1 = α1x and τ2 = α2y.
We now define the double dual as follows.

Definition 22. Given a POMDP M and its dual M′ we construct the double
dual M′′ = (S′′,A′,O′′, δ′′, γ′′), which is of the same type as the dual and has
the same actions, as follows:

S′′ = {[τ ]M′}
O′′ = S′

δ′′([τ ]M′ , a0) = [a0τ ]M

γ′′([τ ]M′ , [e]M) = 〈[e]M|τ〉 = 〈s|αRe〉 (τ = αs)

We now show that everything is well-defined for the transition functions, which
follows more or less immediately from the definitions for observation functions.
Note that the ternary symbol is not needed in the actual definition of the dual
but it is necessary for the proof that the transition function is well-defined.
Essentially the transitions in the dual are given by e goes under an a-action
to ae; for this to make sense we need to show that it does not matter which
representative of the equivalence class of e is chosen. This is what the next
lemma shows.

Lemma 23. If e1 ∼M e2 then a0e1 ∼M a0e2.

3 We will use the Greek letter τ for tests of the dual machine.
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Proof. e1 ∼M e2, so 〈s|e1〉 = 〈s|e2〉 for all s ∈ S. For i = 1, 2 let ei = t(i)1 · · · t(i)mi

and t(i)1 = α(i)ω(i) = a(i)1 · · ·a(i)ni ω
(i). Then for any state s,

〈s|a0e1〉 =
∑

x,y∈S

〈s|a0t(1)1 |y〉〈y|t(1)2 · · · t(1)m1
|x〉

=
∑

x,y∈S

δa0α(1)(s, y)γ
a
(1)
n1
(y,ω(1))〈y|t(1)2 · · · t(1)m1

|x〉

=
∑

x,y,z∈S

δa0(s, z)δα(1)(z, y)γa(1)
n1
(y,ω(1))〈y|t(1)2 · · · t(1)m1

|x〉

=
∑

z∈S

δa0(s, z)
∑

x,y∈S

〈z|t(1)1 |y〉〈y|t(1)2 · · · t(1)m1
|x〉

=
∑

z∈S

δa0(s, z)〈z|e1〉 =
∑

z∈S

δa0(s, z)〈z|e2〉 = 〈s|a0e2〉.

Similarly, for the double dual we have the following lemma.

Lemma 24. If τ1 ∼M′ τ2 then a0τ1 ∼M′ a0τ2 for any action a0.

Proof. Let τ1 = α1x and τ2 = α2y and assume that τ1 ∼M′ τ2, so 〈x|αR
1 e〉 =

〈y|αR
2 e〉 for all experiments e. Then for any experiment e,

〈x|(a0α1)
Re〉 = 〈x|αR

1 a0e〉 = 〈x|αR
1 (a0e)〉 = 〈y|αR

2 (a0e)〉.

Now that we know that these constructions are well defined the duality is cap-
tured by the following theorem.

Theorem 25. The probability of a state s in the primal satisfying an experiment
e, i.e. 〈s|e〉, is given by 〈[s]M′ |[e]M〉 = γ′′([s]M′ |[e]M〉, where [s]M′ indicates the
equivalence class of the e-test on the dual which has s as an observation and an
empty sequence of actions.

Proof. Note that [s]M′ is an equivalence class of states of tests of the dual,
hence a state of the double dual. Recall that the dual is a DASO so we are
using the simple duality here. Note further that [e]M is an equivalence class of
experiments on the primal, which is a state of the dual and hence an observation
of the double dual. So, by definition of the angle bracket notation this is just
γ′′([s]M′ |[e]M〉. By the definition of the double dual construction we have

γ′′([τ ]M′ |[e]M〉 = 〈s|αRe〉,

where τ = αs. In our case α is the empty sequence and τ is just s so we get
γ′′([s]M′ |[e]M〉 = 〈s|e〉.
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S4

S1 S2

S3

Fig. 1. The navigation domain

Thus, the results of all experiments on the primal can be read off the double
dual.

We present two examples illustrating the constructions of this section. The
first is taken from [17]. It describes a simple navigation domain as shown in
Fig. 1.

The squares represent places where a robot could be. The heavy lines represent
walls that cannot be crossed; the walls are painted blue. The robot can take the
following actions: N,S,E and W. If it is already at the left end, say in square S1,
and attempts to move west (left) it will just stay where it is. It can also make
a observation of the colour of its immediate surroundings. If it is in either of
the squares S1 or S3 it will see blue with probability 1; in the squares S2 and
S4 it will see red or blue each with probability 0.5; the red reading represents a
curtain that it could see on the right corresponding to the lightly marked lines
on the extreme right edge of the picture. This is an example with deterministic
moves but noisy readings. The observations are state based in this case, but we
will present it in the POMDP framework.

The system may be represented by the automaton shown in Fig. 2

s1N,W ++

E

..

S

//

P (B) = 100

s2 N,E**W11

S

//

P (B) = 0.522 P (R) = 0.533

s3S,W ++

E

..

N

44

P (B) = 1
55

s4 S,E**W11

N

44

P (B) = 0.5
66

P (R) = 0.5
77

Fig. 2. The navigation domain as a transition system

We can calculate a part of the dual as shown in Fig. 3. The whole dual is
of course infinite and one cannot write it down explicitly. Here the states are
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[WR]

γ′(s) = 000

N,S,E,W ++ [NR]

γ′(s1) = γ′(s3) = 000

γ′(s2) = γ′(s4) = 0.5

N,S ++

E

))
W

88
[NB]N,S ++

γ′(s1) = γ′(s3) = 199

γ′(s2) = γ′(s4) = 0.5

W

))

E

%%!!!
!!!

!!!
!!
!!!

!!

[ER]

γ′(s) = 0.5
55

N,S,E,W ++ [WB]

γ′(s) = 1
::

N,S,E,W**

Fig. 3. Part of the dual of the navigation domain

labelled by (equivalence classes of) experiments on the original system, but the
transitions are labelled by the same actions as in the primal. The old states are
now the observations of the dual. We write γ(s) = 0 as short for γ(si) = 0 for
i = 1, 2, 3, 4.

The double dual, shown in Fig. 4, will of course collapse it to a minimal
representation. Since the navigation domain is up-down symmetric the collapsed
version will just have two states as shown below. This version will completely
predict all possible experimental outcomes of the original system.

S1N,S ++

E

..

55
γ′′([NR]) = 0
γ′′([NB]) = 1
γ′′([ER]) = 0.5
γ′′([WB]) = 1
γ′′([WR]) = 0

...

S2 N,S**W11

::
γ′′([NR]) = 0.5
γ′′([NB]) = 0.5
γ′′([ER]) = 0.5
γ′′([WB]) = 1
γ′′([WR]) = 0

. . .

Fig. 4. The double dual of the navigation domain

Our second example shows a situation where the observations depend on the
action as well as the target state. This can also be viewed as a four-square
navigation domain. There are two observations o1 and o2: exactly one of these
observations will be made as a transition is taken so we need only specify the
probability of one of them. The actions are N,S,E,W which stand for north,
south, east and west respectively. This is also a very symmetric domain with top
down symmetry.
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The primal is shown in Fig. 5.

S1W :P (o1)=0.5 ++

N:P (o1)=0.2

""
E:P (o1)=0.3 ..

S:P (o1)=0.6
//

S2 E:P (o1)=0.3**

N:P (o1)=0.2

""

W :P (o1)=0.511

S:P (o1)=0.6

//

S3W :P (o1)=0.7 ++

S:P (o1)=0.6

**

E:P (o1)=0.4 ..

N:P (o1)=0.2

44

S4 E:P (o1)=0.4**

S:P (o1)=0.6

**
W :P (o1)=0.711

N:P (o1)=0.2

44

Fig. 5. A POMDP with action dependent observations

The dual is infinite, of course; in Fig. 6 we show a fragment of the dual. We
have shown all the states corresponding to tests, i.e. experiments with a single
observation and we have suppressed the observations of the dual.

In the table shown in Fig. 7 we display some of the values of γ′ for two-
observation experiments and all of the values for tests. The first line says: given
that that the dual system is in state [NO1] the observation function for all the
si is the same and has the value 0.2. Note that, in fact, that for any sequence
of N actions followed by O1 these numbers are the same so all tests of the form
NkO1 are equivalent.

The double dual, shown in Fig. 8 has two states.

6 Related Work

Rivest and Schapire [33] present an approach to inferring the structure of a finite-
state automaton from its input-output behavior, by running “experiments” on
the automaton. They rely on an “update graph”, which is essentially the dual
in our representation, and on e-tests, of the form a1 . . . ano. They also present
experiments in which they infer an automaton based on Rubik’s cube using this
structure. Their work is limited to deterministic automata. Nevertheless, the fact
that they could deal with a system with 1019 states is very impressive. Their
work shows that a very large system can have a much more compact dual.

More recently, predictive state representations [24, 34] (PSR), introduced in
the AI community, generalized the work of Rivest and Schapire to the case of
stochastic automata. The representation is based on the prediction of s-tests,
which are of the form a1o1 . . . anon. In the work of Littman et al. [24], each
state in a POMDP is viewed as represented by an infinite set of predictions, for
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[NO1]N,S,E,W ++ [EO1]W,E ++

N

##

S

))

[WO1] W,E**

S

##

N

))

[SO1] N,S,E,W**

[NEO1]

N,S,E,W

""

[SWO1]

N,S,E,W

""

[SEO1]

N,S,E,W

**
[NWO1]

N,S,E,W

**

Fig. 6. Part of the dual of the POMDP in Fig. 5

State [t] γ′([t], s1) γ′([t], s2) γ′([t], s3) γ′([t], s4)
[NO1] 0.2 0.2 0.2 0.2
[SO1] 0.6 0.6 0.6 0.6
[EO1] 0.3 0.3 0.4 0.4
[WO1] 0.5 0.5 0.7 0.7
[NEO1] 0.3 0.3 0.3 0.3
[SWO1] 0.7 0.7 0.7 0.7
[SEO1] 0.4 0.4 0.4 0.4
[NWO1] 0.5 0.5 0.5 0.5

[NO1NO1] 0.04 0.04 0.04 0.04
[SO1SO1] 0.36 0.36 0.36 0.36
[SO1NO1] 0.12 0.12 0.12 0.12
[NO1EO1] 0.06 0.06 0.06 0.06
[NO1WO1] 0.1 0.1 0.1 0.1
[EO1EO1] 0.09 0.09 0.16 0.16
[WO1WO1] 0.25 0.25 0.49 0.49

. . . . . . . . . . . . . . .

Fig. 7. Table of observation probabilities in the dual
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S1

E

""

W

**

S

..
N ++

;;

γ′′([NO1]) = 0.2
γ′′([SO1]) = 0.6
γ′′([EO1]) = 0.3
γ′′([WO1]) = 0.5

. . .

S3

E

""

W

**N

11 S**

//

γ′′([NO1]) = 0.2
γ′′([SO1]) = 0.6
γ′′([EO1]) = 0.4
γ′′([WO1]) = 0.7

. . .

Fig. 8. The double dual

each possible test. However, there exists a finite number of linearly independent
tests whose predictions are sufficient to compute the prediction for any other
tests. Moreover, the number of such “core tests” is at most equal to the num-
ber of states in the POMDP. Singh et al. [34] then generalized this approach
by considering predictions of s-tests based on histories. They also showed how
different frameworks can be represented with a finite number of “core tests.”
From the point of view presented in this paper, we can view the PSRs as a way
of representing the dual or the double dual of a system using the set of linearly
independent columns. This view has the advantage of a finite representation, e.g.
if the original system is a POMDP. However, this representation does not lend
itself easily to approximations. It is our hope that by working directly with the
dual or the double-dual, one can develop more easily a theory of approximation
for such system.

It seems likely that the best setting to understand the categorical context
is that of Chu spaces [5], at least for the deterministic automaton case. Our
quotient construction on automata is closely related to the process of forming
separated extensional Chu spaces [6]. There is also some similarity to the work
of Pratt [31] though there the duality is between states and trajectories (which
he calls “schedules”).

There are several discussions in the literature on duality in systems theory; see,
for example, the excellent paper by Bainbridge [4] and the several very interesting
chapters in the book by Kalman, Farb and Arbib [21]. In systems theory one is
concerned with controlling a system to obtain a desired behaviour. As with our
POMDPs, the systems are partially observable; one does not see the state. One
only has a readout map that maps the states into observables. The “fundamental
duality” in this subject is the duality between controllability: the ability to steer
a system into a known state, and observability: the ability to determine the
state after a series of observations. There has been a rich categorical treatment
of this subject: for example, there are several papers by Arbib and Manes on
this topic [1–3]. These are largely concerned with the nonprobabilistic situation;
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the papers by Arbib and Manes hint at the probabilistic case but we have never
seen this spelled out satisfactorily.

There is a whole plethora of dualities in mathematics. The Stone-type duali-
ties establish a duality between logics and transition systems. This has appeared
in denotational semantics and is due to Plotkin and Smyth [36]. They establish
a relationship between “forward” state-transformer semantics and “backwards”
predicate-transformer semantics. Kozen [22] established similar results in the
case of probabilistic programs and probabilistic dynamic logic. More recently,
there has been very interesting work by Mislove, Ouaknine, Pavlovic and Wor-
rell [28] and by Pavlovic, Mislove and Worrell [13] on duality for labelled Markov
processes (LMPs). These are like POMDPs but they do not have the notion of ob-
servation. Other research on duality for logics and for transitions systems include
the work by Bidoit, Hennicker and Kurz [7] and Bonsangue and Kurz [9].

7 Conclusions

We have shown that, in some informal sense, there is a duality between state
and observation, or, more precisely, between state and experiment. In this view
a state is an equivalence class of experimental data. It frees us from having to
work with arbitrary preconceived notions of state. This view, we hope, will unify
many ideas that are currently being investigated for representing systems with
hidden state.

It is important to clarify what we mean by minimal. Of course the “minimal”
gadget that we construct is larger than the POMDP that one starts with; the
latter is finite and the former is infinite. But, among the class of deterministic
systems with stochastic observations that represent the same behaviour it is min-
imal in the following sense. Minimal means that it is the “most highly quotiented
version possible.” More precisely, suppose that we have a system S of some kind.
One can “reduce its size” by defining an appropriate equivalence relation ∼ and
constructing S/ ∼. We can say that a system S′ is a minimal realization of S if
it is behaviourally equivalent and if it is the quotient of S by some equivalence
relation and if there is any other system X which is also a quotient of S then X
can be further quotiented to yield S′. In the companion categorical paper this
is formalized as a couniversal property and comes out naturally. For finite-state
systems this is indeed the same as having as few states as possible.

There is much to be investigated from the algorithmic point of view. Perhaps
the most pressing issue is a pleasant approximation theory. The dual and the
double-dual are both based on exact equivalences. This raises the possibility of
working with metric notions [15] and constructing more compact representations
based on identifying “nearby” experiments.

Finally, everything has been worked out here for discrete systems. Clearly, for
realistic applications one would need to extend the theory to continuous state
spaces, and, even more importantly, to continuous observations.
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