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Abstract
Off-policy evaluation is the problem of evaluating a decision-making policy using data collected
under a different behavior policy. While several methods are available for addressing off-policy
problems, the existing literature does not offer much in terms of identifying the best-performing
ones. In this paper, we conduct an in-depth comparative study of off-policy evaluation methods
in non-bandit, finite-horizon MDPs, using a well-known Mallard population dynamics model (An-
derson, 1975). We find that un-normalized importance sampling can exhibit prohibitively large
variance in problems involving look-ahead longer than a few time steps, and that dynamic pro-
gramming methods perform better than Monte-Carlo style methods.

1. Introduction

One of the core competencies of most intelligent decision-making agents is the ability to properly
evaluate their decision-making strategy. In a reinforcement learning context, this is the policy eval-
uation problem, which involves the estimation of the expected return associated with a policy. The
ideal method for evaluating policies is to apply them in practice, observe the return, and estimate the
expected return (and its uncertainty) using this data. However, if data is expensive (or rare), or the
number of policies to evaluate is large, this may be infeasible. A popular alternative is to evaluate
the decision-making policy of interest (called the target policy) using data collected under a differ-
ent, behavior policy. This method is known as off-policy policy evaluation. Off-policy learning has
been used in a range of applications, such as energy systems (Hannah and Dunson, 2011), robotics
(Riedmiller, 2005), clinical studies (Pineau et al., 2009), and tax collection (Abe et al., 2010).

Existing off-policy estimators for discrete MDPs take two forms: model-based (Sutton and
Barto, 1998; Mannor et al., 2007), and importance sampling weighting of the returns (Precup et al.,
2000; Robins et al., 2000; Murphy, 2005). Methods for continuous MDPs that would fall in neither
category, such as LSTD, can be shown to reduce to a model-based estimator in the discrete setting
(Boyan, 2002). In this paper, we study the empirical bias and variance of existing model-based and
importance sampling estimators. We also propose two new estimators, per-step importance sam-
pling and normalized per-step importance sampling, which are extensions of existing importance
sampling methods that aim to reduce variance by taking advantage of the Markov property.

Previous comparative studies for off-policy estimators considered single-step contextual ban-
dit problems (Kang and Schafer, 2007; Dudik et al., 2011). We present an empirical study for
finite-horizon discrete MDPs with arbitrary horizon length (thus avoiding problems generated by a
non-Markovian state representation). We study the performance of the different off-policy estima-
tors on a natural resource management problem. Running controlled experiments in the real world
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for such problems ranges from difficult to downright unfeasible, so we use a simulated model of the
Mallard population dynamics first proposed by Anderson (1975) and subsequently used by Fonnes-
beck (2005). In order to mimic the type of situation that would arise in practice, we use the model
to generate the data, but do not provide any knowledge of the model to the estimation methods. This
setup is sufficient to highlight key differences between the various methods.

2. Finite-horizon MDPs

We adopt the framework of finite-horizon MDPs, defined as a tuple 〈S,A, P,R〉, where S is a set of
states; A is a set of actions; P : S × A× S → [0, 1] is the transition model, with P s

′
sa denoting the

conditional probability of a transition to state s′ given current state s and action a;R : S×A→ [0, 1]
is the reward function, with Rsa denoting the immediate expected reward for state s and action a.
A policy π : S × A → [0, 1] specifies how decisions are made. In a finite MDP, the model can
be represented using matrices P ∈ R|S×A|×|S| and R ∈ R|S×A|. Similarly, policies can also be
represented as block-diagonal matrices π ∈ R|S|×|S×A|.

The value of a policy π for a decision horizon of length K is defined as:

V π
K(s) = E[r0 + r1 + · · ·+ rK |s0 = s] =

∑
a

πsa

(
Rsa +

∑
s′

P s
′
saVK−1(s

′)

)
.

or, if we consider V π
K to be the vector of all state values,

V π
K = π(R+ PV π

K−1) = · · · =
K∑
k=0

(πP )kπR. (1)

3. Off-policy value function estimation

In practice, the model of the MDP is usually unknown, so Eq. (1) cannot be applied directly. Fur-
thermore, the user might not be able to obtain trajectories using policy π. In natural resource man-
agement, in particular, implementing a policy is not only expensive but also potentially unrealistic,
given that we are often interested in time horizons that may span decades. Instead, the user may
have access to data gathered under some existing policy b (or possibly, under several known poli-
cies from different geographic regions or different periods). Off-policy value function estimation
methods are designed to deal with this case.

All estimators used in this paper are summarized in Table 3. We will now describe the notation
and context for each of them.

Importance sampling (Rubinstein, 1981) is a technique for sampling from one distribution by
weighting the samples generated from another distribution. It has been proposed as an off-policy
estimator for MDPs both in reinforcement learning (Precup et al., 2000) and in the clinical trial lit-
erature (Robins et al., 2000), where it is called inverse probability weighting. Importance sampling
methods typically assume that the behavior policy used to collect the data, denoted b, is known,
and that πsa > 0 =⇒ bsa > 0. The naive implementation of importance sampling for off-policy
evaluation weights entire trajectories. This existing estimator is the (un-normalized) per-trajectory
importance sampling (PTIS) in Table 3. It is computed based on ns trajectory fragments of length
K that start from state s in the batch, where the ith trajectory is denoted by:

(si:0 = s, ai:0, ri:0, si:1, ai:1, ri:1, ..., si:K , ai:K , ri:K),
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Un-normalized Normalized

Per-trajectory
importance
sampling

V̂ PTIS
K (s) =

1

ns

ns∑
i=1

 K∏
j=1

π(si:j , ai:j)

b(si:j , ai:j)

 K∑
l=1

ri:l

Instead of ns, divide by

ns∑
i=1

 K∏
j=1

π(si:j , ai:j)

b(si:j , ai:j)



Per-step
importance
sampling

V̂ PSIS
k (s) =

1

ns

∑
a

πsa
bsa

∑
i∈B(s,a)

[ri+V̂
PSIS
k−1 (s′i)]

Instead of ns, divide by∑
i∈B(s)

π(s, ai)

b(s, ai)
=
∑
a

nsa
πsa
bsa

Model-based V̂MB
K (s) =

∑
a

πsa

(
R̂sa +

∑
s′

P̂ s
′
saV̂

MB
K−1(s

′)

)
=

K∑
k=0

(πP̂ )kπR̂

Table 1: Off-policy estimators for discrete MDPs. All methods are consistent, but (un-
normalized) per-trajectory importance sampling is the only one that is unbiased.

The weights in the importance sampling estimator can be scaled to the [0, 1] interval by normal-
izing over their sum. This is seen as a way to reduce estimator variance, and leads to the normalized
per-trajectory importance sampling estimator in Table 3, which we will denote by V̂ PTIS−N . This
is also an existing estimator (Precup et al., 2000; Murphy, 2005).

In order to avoid the variance introduced by weighting entire trajectories, we introduce per-
step importance sampling as an alternative. Consider the more general setting where a sample i is
composed of start state si, action ai generated from b at si, and (ri, s

′
i) the response of the model

(P,R) at (si, ai). The (un-normalized) per-step importance sampling estimator, shown in Table 3,
uses ns, nsa, and nsas′ to denote the sizes of the subsets restricted by the start state s, action a and/or
next state s′, and B(s) and B(s, a) to denote the subsets of samples for which the start state and/or
action choice is s, a. If ns = 0, there is no data at this state, so we have to pre-define V̂ PSIS

k (s).
We also constructed a normalized version, which we will denote by V̂ PSIS−N

K .
The estimators in (Precup et al., 2000) are similar to the per-step estimators proposed here, but

introduce an additional weight on the trajectory prior to a state (rather than just weighting the next
step). This initial weighting can further increase variance, and is not required in order to obtain a
consistent estimator in discrete MDPs.

Model-based MDP estimators construct approximations P̂ and R̂ of the transition and reward
model, and then use standard methods such as dynamic programming to compute the value function
for the estimated model. For discrete MDPs, consistent estimators of the model are given by:

R̂sa =
1

nsa

∑
i∈B(s,a)

ri, P̂ s
′
sa =

nsas′

nsa
. (2)

3
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Similarly to per-step importance sampling, we have to use a pre-defined value if ns = 0 or nsa = 0.
The finite-horizon value function can then be estimated using the approximate model R̂, P̂ .

This estimator is intuitive and has a long history. However, we are only aware of one work on
its statistical properties, by Mannor et al. (2007). For infinite-horizon discrete MDPs with discount-
ing, Mannor et al. (2007) compute second-order approximations for the bias and variance of the
model-based estimator, and examine its empirical performance on a discretized version of a catalog
ordering problem.

Note that the MB estimator can be expressed in the same form as the per-step importance sam-
pling estimators, but with an estimate of b as surrogate:

V̂MB
k (s) =

1

ns

∑
a

πsa
nsa/ns

∑
i∈B(s,a)

(
ri + V̂MB

k−1 (s
′
i)
)

(3)

Results from (Rubinstein, 1981) can be used to show that both PTIS and PTIS-N are consis-
tent estimators. PTIS is also unbiased; however, normalization can introduce bias, while typically
reducing variance. The dynamic programming estimators (PSIS, PSIS-N and MB) are also consis-
tent. This can be proven using Slutsky’s theorem (Dudewicz and Mishra, 1988), by noting that all
of them can be written in the form

V̂K =
K∑
k=0

(πZP̂ )kπZR̂, (4)

where Z is a diagonal matrix with entries

ZPSISsa = (nsa/ns)/bsa ZPSIS−Nsa = (nsa/W (s))/bsa ZMB
sa = 1,

with W (s) denoting the normalization term for PSIS-N.

4. Empirical results

In this section we study the empirical performance of the different off-policy estimators on a natural
resource management problem. In order to make sure that our error estimates are not affected by
extraneous factors, we need a controlled experiment, whereby we can measure the performance of
the target policy precisely, and compare this to estimates obtained using the off-policy algorithms.
Hence, we use a simulated model, described below.

4.1. Mallard population model

Anderson’s model is formulated as a Markov Decision Process with yearly time increments, two-
dimensional state, and continuous actions. The state variables are the adult population Nt and the
number of ponds Pt (both expressed in millions), while the action Ht represents the proportion of
animals to be harvested in year t. The state transitions are defined by the following equations:

Nt+1 = Nt(1− 0.37e2.78Ht) +

(
1

12.48
P 0.851
t +

0.519

Nt

)−1
(1− 0.49e0.9Ht)

Pt+1 = −2.76 + 0.391Pt + 0.233εt
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where εt ∼ N(16.46, 4.41) is a normally distributed random variable describing the amount of
precipitation during year t (in inches). The reward is defined as the number of birds harvested in a
given year, computed as

R(Nt, Pt, Ht) = Ht

(
0.92Nt +

(
1

12.48
P 0.851
t +

0.519

Nt

)−1)
.

Anderson constructed and validated this model based on real data about the evolution of the Mallard
population. For more details, including model justification, we refer the reader to (Anderson, 1975).

For our experiments, we used a discretized version of the model. Since the states where the bird
population is close to 0 are particularly important, we used a discretization with higher resolution
in that region of the state space. More precisely, we divided Nt into intervals of length 2 when
Nt > 2, and length 0.25 when Nt ≤ 2. Pt was divided into four intervals of unit length. We also
assumed that state features are bounded, so Nt ∈ [0, 17] and Pt ∈ [0, 4]. This resulted in 64 states.
We generated 10 million transitions from the original MDP by sampling starting states uniformly
randomly; then, we used the data to estimate a transition matrix and reward function for the discrete
MDP. The transition function was estimated using maximum likelihood estimation, whereas the
reward function was defined as a Gaussian for each discretized interval, with its mean and variance
estimated from the generated data. This produced the MDP that we used as “ground truth”; that is,
we investigated how well our methods estimate the value function for this discretized MDP.

4.2. Experimental setup
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(a) Probabilities of being in different states after
20 steps, under the three different policies
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tors based on a 500-sample trajectory with
state-dependent hunting as the target.

Figure 1: State probabilities (left) and standard deviations of three estimators (right). Results av-
eraged over 100, 000 runs. Note the logarithmic scale for the y axis in the right panel.

We considered three policies, all selecting from two actions: a1 representing Ht = 0 and
a2 representing Ht = 0.3. The first policy, which we call discourage hunting, selects a1 with
probability 0.2 and a2 with probability 0.8. The second policy, which we call state-dependent
hunting, prescribes reduced hunting when the mallard population or the number of ponds is low,
and larger amounts of hunting otherwise; more precisely, it selects a1 with probability 0.8 in the
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discrete states corresponding to [0, 12]× [0, 1], [0, 8]× [1, 2], [0, 4]× [2, 3], and [0, 2]× [3, 4], and a2
with probability 0.8 for the rest of the state space. The third policy, called encourage hunting, selects
a2 with probability 0.8 in all states. Throughout the experiments, we used discourage hunting as the
behavior policy, and used the discrete state corresponding to Nt = 7 and Pt = 1.5 as the starting
state s0. Each batch of training data was generated as a single, uninterrupted trajectory starting in
s0, with actions selected according to the behavior policy. Hence, the number of samples in a batch
is the length of this trajectory. We present results estimating the value of the start state s0 under all
policies. Unless otherwise specified, the results are averages over 1000 batches.

As seen in Figure 1(a), the three policies tend to visit different regions of the state space. In
particular, the distribution of states under encourage hunting leads predominantly to states corre-
sponding to low population numbers, which is very different from the other two policies. Intuitively,
this discrepancy should make estimating the value function for encourage hunting particularly chal-
lenging, given that discourage hunting is used as the behavior policy. This intuition is confirmed by
our empirical results.

4.3. Bias and variance

Figure 1(b) contains a plot of the standard deviations of the different estimators when state-dependent
hunting is the target policy. Even for a target policy that induces a state distribution fairly close to
the one under the behavior policy, PSIS and PTIS can have very large variance for horizons longer
than a few time steps.
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Figure 2: RMSEs and biases of different estimators as a function of the horizon.

For the remainder of this section, we further investigate the performance of PSIS-N, PTIS-N,
and MB. We examine the performance of these three estimators in terms of bias and root mean
squared error, when either state-dependent hunting or encourage hunting is the target policy. Figure
2 illustrates how the length of the horizon affects performance. The performance of all methods
degrades as the horizon increases. This is expected, as increasing the horizon while maintaining
the same number of samples means that we effectively have fewer samples per time step, which
increases the variance. However, the rates at which performance degrades differ: when state-
dependent hunting is the target policy, PSIS-N exhibits the slowest rate of degradation, whereas
for encourage hunting, the model-based method is best. These results suggest that PSIS-N per-
forms better when the behavior and target policies are relatively close, whereas MB deals better
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with very different behavior and target policies. Given that MB can be viewed as estimating b,
these results are intuitive from the point of view of existing statistical work on single-stage inverse
probability weighting (Tsiatis, 2006).

PTIS-N exhibits the poorest performance in all settings. This is interesting, because PTIS-N
is commonly used as an evaluation method in medical applications (Robins et al., 2000; Murphy,
2005). One reason for its use in such settings may be that sequential clinical trials typically have
very short horizon lengths (two and three stage trials are common), and for such short horizons the
difference between the methods’ performance is not as large.
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Figure 3: RMSEs and biases of different estimators as a function of the sample size. The RMSE and
bias of PTIS-N also decreases eventually, but after orders-of-magnitude more samples.

For a particular horizon, we can get more insight into the methods’ behavior if we examine
the dependence of their performance on the amount of data available, as illustrated in Figure 3. As
expected, the performance of both methods improves when increasing the size of the batch, although
much slower if the target policy is very different from the behavior policy.

5. Discussion

We studied several off-policy learning algorithms, including two new estimators, PSIS and PSIS-N,
that are per-step versions of importance sampling which take advantage of Markov assumptions
about the model. We briefly discussed the estimators’ bias and consistency, and presented a detailed
empirical analysis of their performance in a case study pertaining to the management of an animal
species. We found that the model-based estimator and the normalized per-step estimator (PSIS-N)
performed particularly well.

We emphasize that the importance sampling estimators require a fixed and known behavior pol-
icy. If the behavior policy is instead estimated from data, we obtain the model-based estimator (as
shown). Cases in which the data is gathered according to multiple behavior policies (e.g. gath-
ered from different geographic locations), could also be easily incorporated in the estimators by
appropriate weighting of the different data batches.

The bias and variance of the off-policy estimators were illustrated through the empirical results.
From a theoretical standpoint, there are challenges in providing a formal analysis of the weighted
estimators in the sequential case (horizon > 1). This is an interesting area for future work, though
we expect it may be difficult to obtain closed-form expressions for these quantities.
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As shown in our experiments, it is crucial to assess values for longer time horizons, as the
horizon impacts the value of a policy, as well as the ordering of policies. Our results suggest that
the horizon length should also be an important factor when choosing an estimator. Some decision-
making domains, notably in medicine, deal with relatively short horizons, and in those cases es-
timators such as PTIS, which have large variance over long horizons but are unbiased, may be
preferable. In domains with longer decision horizons, estimators such as PSIS-N tend to have lower
error (though the error increases with horizon length).

We focused on discrete MDPs because such models are easier to interpret, hence often used in
practice. In continuous MDPs, off-policy learning can also be applied, but generates further compli-
cations. In particular, the discrepancy between the probability of a trajectory under the behavior and
the target policy cannot be ignored for estimators whose values are guaranteed to converge. Several
algorithms have been proposed in order to account for trajectory distribution discrepancies. Precup
et al. (2001) use importance sampling weights to correct for the probability of reaching a specific
point in a trajectory. The resulting estimators are consistent (in the space of representable value
functions) but tend to have high variance. Sutton et al. (2009) address the problem of off-policy
learning from on-line data. The main idea is to estimate a secondary set of parameters (in addi-
tion to those describing the value function), which are used to stabilize the value function weights
and prevent divergence. In discrete MDPs, however, all these estimators are more conservative and
hence less sample-efficient than those we propose.
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