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Abstract

The related problems of transfer learning and multitask
learning have attracted significant attention, generating
a rich literature of models and algorithms. Yet most ex-
isting approaches are studied in an offline fashion, im-
plicitly assuming that data from different domains are
given as a batch. Such an assumption is not valid in
many real-world applications where data samples arrive
sequentially, and one wants a good learner even from
few examples. The goal of our work is to provide sound
extensions to existing transfer and multitask learning
algorithms such that they can be used in an anytime
setting. More specifically, we propose two novel on-
line boosting algorithms, one for transfer learning and
one for multitask learning, both designed to leverage
the knowledge of instances in other domains. The ex-
perimental results show state-of-the-art empirical per-
formance on standard benchmarks, and we present re-
sults of using our methods for effectively detecting new
seizures in patients with epilepsy from very few previ-
ous samples.

Introduction

Transfer learning has been extensively studied over the last
two decades (Pan and Yang 2010). By leveraging knowl-
edge from different but related domains (source domains)
and then applying it to the domain we are currently inter-
ested in (target domain), the learning performance can be
improved. This is especially beneficial when the training
samples in the target domain are limited while sufficient
knowledge of related source domains are available. Multi-
task learning is a closely related framework where the goal is
to simultaneously learn multiple related tasks, assuming that
some common knowledge can be shared across the tasks. In
some sense, multitask learning can be viewed as a symmet-
ric transfer learning problem where the source domain and
target domain are considered equally and are jointly learned.

Most existing transfer learning and multitask algorithms
apply primarily in batch mode (Dai et al. 2007; Eaton and
desJardins 2011; Caruana 1997; Argyriou, Evgeniou, and
Pontil 2007), where data from all tasks (source and target)
is made available at once. However there are many domains
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where data from either the source or target domains arrives
sequentially, and one wishes to achieve good performance
even with only a few examples. Our work is primarily mo-
tivated by the goal of developing effective patient-specific
seizure detection algorithms for individuals with epilepsy.
In this setting, when we encounter a new patient, we may
only have a few recorded seizures from this target patient,
yet we wish to achieve good detection accuracy by leverag-
ing annotated seizures from a library of source patients. As
we get more and more seizures from the target patient, we
would expect the accuracy of the patient-specific classifier
to improve and rely less on the source patients. This is the
online transfer learning setting we consider in this paper.

A different yet related scenario, which is also of interest,
is the following: imagine we have seizure recordings from a
large group of patients, and want to produce patient-specific
seizure detectors in a multitask setting. Yet we are unable to
apply traditional methods, which use all the data at once, due
to memory issues from the size of the dataset. Here again,
having an anytime solution to the multitask problem may be
very beneficial.

To tackle these problems, we propose two new any-
time boosting-based learning algorithms, one for transfer
learning and one for multitask learning. Our work is in-
spired by results on online boosting algorithms (Oza 2001;
Oza and Russell 2001). The main technical challenge is how
to generalize the existing online boosting algorithm to ap-
propriately deal with instances from different domains/tasks.
We first develop an online version of TrAdaBoost (Dai et al.
2007). There idea here is that at each time step, the base
learner receive a sample either from source domain or target
domain. The filtering mechanism of TrAdaBoost can auto-
matically select the samples that can be reused to benefit
the online learning process in target domain. We present the
algorithm and discuss its convergence properties, and and
evaluate empirical performance on benchmark datasets.

As a second contribution, we present an online multitask
boosting algorithm that extends previous work by (Eaton
and desJardins 2011). Our framework exploits task related-
ness by symmetrically generalizing transfer boosting algo-
rithm. We apply the proposed algorithm to a standard bench-
mark as well as to a complex seizure detection task.
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Technical Background

Problem Formulation

Transfer Learning Let SS = {(xS
1 , y

S
1 ), . . . , (x

S
NS

, yS
NS

)}
be samples from a source domain, and ST = {(xT

1 , y
T
1 ), . . . ,

(xT
NT

, yT
NT

)} be samples from a target domain, where
SS ,ST ∈ R

d × {0, 1}. For multiple source domains,
we denote by {S1, . . . ,SK} the K tasks, where Sk =
{(xk

1 , y
k
1 ), . . . , (x

k
Nk

, yk
Nk

)}, k ∈ {1, . . . ,K} are the instances
of the kth source domain. In the online transfer learning set-
ting, the instances from source domain and target domain
arrive alternately.1 The goal is to build an ensemble classi-
fier H of M base learners H(x) =

∑M
m=1 πmhm(x) that has

good generalization ability in the task domain ST , where hm

is the mth base learner, and πm is its weighting coefficient.

Multitask Learning In the online multitask learning set-
ting, the learner receives a sequence of instances, each be-
longing to one of K tasks {S1, . . . ,SK}. At each time step
n, an instance pair (x

κ(n)
n , y

κ(n)
n ) is presented to the learner,

where κ(n) ∈ {1, . . . ,K} is the corresponding task-id. The
goal is to build K ensemble classifiers {Hk}, one for each
task Sk.

AdaBoost and Online AdaBoost

AdaBoost is an ensemble learning framework that boosts
the generalization ability of a weak learner by carefully
reweighting training instances and constructing a series of
base learners accordingly (Freund and Schapire 1997).
More specifically, the weights of all examples are initially
equal, and then examples misclassified by hm are given in-
creased weight in the training set for the following learner
hm+1, whereas the correctly classified examples are given
less weight. To maintain the weights of instances to be a
valid distribution, a normalization step is required after each
weight update.

To implement online AdaBoost algorithm, the crucial step
is to approximate the normalization factor incrementally so
that the weight of each new arriving instance can be appro-
priately updated for each base learner. Oza et al. (Oza and
Russell 2001; Oza 2001) sidestep this issue by observing
that the weight update step of AdaBoost can be reformulated
as

Dm+1(n) = Dm ×
{

1
2(1−εm) , hm(xn) = yn
1

2εm
, hm(xn) �= yn

(1)

without normalization step, where Dm(n) is weight distri-
bution of (xn, yn), and εm is the weighted error of the mth
boosting iteration. In particular, their online AdaBoost algo-
rithm tracks the sum of correctly classified (λSC) and mis-
classified (λSW ) instances respectively. Then the error of
each base learner can be approximated by ε = λSW

λSC+λSW . As
a new instance (xn, yn) arrives, its weight λ is set to be 1 for
the first base learner, and then for next iteration it is updated
by λ ← λ

2(1−ε)
if it is classified, and λ ← λ

2ε
otherwise. Each

1If source domain instances are given a priori, we can simulate
the learning process by randomly sampling from the source domain
without replacement as an instance from the target domain arrives.

Algorithm 1 TrAdaBoost Algorithm (Dai et al. 2007)
Input: SS , ST ,M

1: Initialize D1(n) = 1
NS+NT

for all n ∈ {1, . . . , (NS + NT )}, β =
1

1+
√

2 lnNS/M

2: for m = 1, . . . ,M do

3: Train a base learner hm → Y using {SS ∪ ST } with distribution Dm

4: εm =

∑
n,xn∈ST

Dm(n)I(hm(xn) �=yn)

∑
n,xn∈ST

Dm(n)

5: βm = εm
1−εm

6: for n = 1, . . . , N do

7: Dm+1(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn ∈ SS

⎧⎨
⎩

Dm(n), hm(xn) = yn

βDm(n), hm(xn) �= yn

xn ∈ ST

⎧⎨
⎩

Dm(n), hm(xn) = yn

β−1
m Dm(n), hm(xn) �= yn

8: end for

9: Dm+1(n) =
Dm+1(n)

∑NS+NT
n=1 Dm+1(n)

for all n ∈ {1, . . . , (NS + NT )}

10: end for

Output: H(x) = argmax
y∈Y

M∑
m=�M/2�

log( 1−εm
εm

)I(hm(x) = y)

base learner is repeatedly updated k times using (xn, yn),
where k ∼ Poisson(λ). Oza et al. also prove that the on-
line AdaBoost algorithm with naive Bayes as base learners
converges to its batch mode counterpart (Oza 2001).

Transfer Learning and Multitask Learning

The general aim of transfer learning is to leverage knowl-
edge from a source domain to improve learning performance
in a target domain. In (Pan and Yang 2010), transfer learning
algorithms are categorized into three classes based on differ-
ent settings of transfer: inductive transfer learning, transduc-
tive transfer learning, and unsupervised transfer learning. In
this paper, we focus on inductive instance-transfer learning
algorithms, where the labeled instances from target domain
are available, and the instances from source domain that ben-
efit the learning in target domain are selected. Among the
algorithms of this category, TrAdaBoost (Dai et al. 2007),
shown in Algorithm 1, is most popular and the first boosting-
based algorithm for transfer learning. By using different
weight update schemes for source domain and target domain
data sets at each boosting iteration (line 7), TrAdaBoost au-
tomatically filters out the samples from source domain that
are different from target domain while keeping the samples
contributing to the target domain. Later, TrAdaBoost is gen-
eralized for multiple-source transfer (Eaton and desJardins
2011; Yao and Doretto 2010) and regression (Pardoe and
Stone 2010) cases.

In this paper, we consider a simple generalization from
transfer learning to multitask learning by treating the multi-
task learning problem as a symmetric transfer learning prob-
lem, that is, any other task is considered as a task from a
source domain, and all the tasks are considered equally and
jointly learned. Therefore, the TrAdaBoost algorithm can
be readily extended to the multitask learning case. A po-
tential problem with this strategy is that it does not exploit
the relationship between tasks, and therefore may perform
poorly when tasks are not closely related. This problem is
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also known as negative transfer, and can be avoided by us-
ing a more selective transfer mechanism, as detailed in On-
line Multitask Boosting section below.

Online Transfer Boosting

Algorithm Outline

As stated above, the key step to implement an online ver-
sion of AdaBoost is to approximate the normalization factor
to maintain the weights of the instances seen so far to (ap-
proximately) be a valid distribution. Oza’s online boosting
algorithm sidestep this problem by reformulating AdaBoost
algorithm weight update step as (1) so that the normalization
step is not required. The main challenge to implement online
transfer boosting (OTB) is that the weight update step (line
7 of Algorithm 1) cannot be reformulated in a similar way
such that the normalization step can be avoided. Therefore,
we need to explicitly approximate the normalization factor∑NS+NT

n=1 Dm+1(n). Let εS,m =
∑

xn∈SS
Dm(n)I(hm(xn) �=

yn), εT,m =
∑

xn∈ST
Dm(n)I(hm(xn) �= yn) and DT,m =∑

xn∈ST
Dm(n). Then we have

NS+NT∑
n=1

Dm+1(n) = 1 +DT,m − (1− β)εS,m − 2εT,m.

As a result, the normalization step (line 9 in Algorithm 1)
can be explicitly expressed in terms of εS,m, εT,m and DT,m.
Note that if there is no data from source domain, DT,m = 1,
εS,m = 0, TrAdaboost reduces to AdaBoost.

Now we are ready to present our OTB algorithm, de-
tailed in Algorithm 2. Consider λSC

T,m, λSW
T,m, λSC

S,m, λSW
S,m

respectively to track the sum of weights of correctly clas-
sified (SC) and misclassified (SW) samples from target do-
main (T) and source domain (S) by the mth base learner
during the online learning process. Then εS,m, εT,m, DT,m

can be approximated online by λSW
S,m

λSC
T,m

+λSW
T,m

+λSC
S,m

+λSW
S,m

,

λSW
T,m

λSC
T,m

+λSW
T,m

+λSC
S,m

+λSW
S,m

and λSC
T,m+λSW

T,m

λSC
T,m

+λSW
T,m

+λSC
S,m

+λSW
S,m

respec-

tively. For the first base learner, all the samples are uniformly
sampled, corresponding to λ = 1. For the following base
learners, referring to the weight update step of batch TrAd-
aBoost (line 7 of Algorithm 1), the weight can be updated
by

λ =

{
λ

1+DT,m−(1−β)εS,m−2εT,m
, hm(xn) = yn

βλ
1+DT,m−(1−β)εS,m−2εT,m

, hm(xn) �= yn
(2)

for a sample from source domain, and

λ =

{
λ

1+DT,m−(1−β)εS,m−2εT,m
, hm(xn) = yn

λ(DT,m−εT,m)

εT,m(1+DT,m−(1−β)εS,m−2εT,m)
, hm(xn) �= yn

(3)

for a sample from target domain.

Convergence Analysis

The asymptotic property of OTB can be proved by extending
the work of (Oza 2001). The following theorem states that
the classification function H returned by OTB with naive
Bayes as the base learners converges to its batch counterpart.

Algorithm 2 Online Transfer Boosting
Input: SS , ST ,M

1: Initialize λSC
S,m = 0, λSW

S,m = 0, λSC
T,m = 0, λSW

T,m = 0 for all
m ∈ {1, . . . ,M}, β = 1

1+
√

2 lnNS/M

2: for n = 1, 2, . . . do
3: Receive (xn, yn)
4: Set λ = 1
5: for m = 1, . . . ,M do
6: Let k ∼ Poisson(λ)
7: Do k times
8: Update the base learner hm → Y using (xn, yn)
9: if (xn, yn) ∈ ST then

10: if hm(xn) = yn then

11: λSC
T,m ← λSC

T,m + λ
12: else
13: λSW

T,m ← λSW
T,m + λ

14: end if
15: else
16: if hm(xn) = yn then

17: λSC
S,m ← λSC

S,m + λ
18: else
19: λSW

S,m ← λSW
S,m + λ

20: end if
21: end if

22: εT,m ← λSW
T,m

λSC
T,m

+λSW
T,m

+λSC
S,m

+λSW
S,m

23: εS,m ← λSW
S,m

λSC
T,m

+λSW
T,m

+λSC
S,m

+λSW
S,m

24: DT,m ← λSC
T,m+λSW

T,m

λSC
T,m

+λSW
T,m

+λSC
S,m

+λSW
S,m

25: if (xn, yn) ∈ ST then
26: if hm(xn) = yn then

27: λ ← λ
1+DT,m−(1−β)εS,m−2εT,m

28: else
29: λ ← λ(DT,m−εT,m)

εT,m(1+DT,m−(1−β)εS,m−2εT,m)

30: end if
31: else
32: if hm(xn) = yn then

33: λ = λ
1+DT,m−(1−β)εS,m−2εT,m

34: else
35: λ = βλ

1+DT,m−(1−β)εo
S,m

−2εT,m

36: end if
37: end if
38: end for
39: end for

Output:

H(x) = argmax
y∈Y

M∑
m=�M/2�

log(
DT,m−εT,m

εT,m
)I(hm(x) = y)

Theorem 1. As NS → ∞ and NT → ∞, if the base learn-
ers are naive Bayes classifiers, OTB converges to its batch
mode counterpart.

The theorem can be proven by induction in a similar way
as in (Oza 2001). The main challenge is the proof of conver-
gence of weight distribution of OTB since the update mech-
anism of OTB is different from online AdaBoost. We omit
the proof due to the space limitation. The details are in the
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Online Multitask Boosting

As stated above, the OTB algorithm can be generalized for
the multitask setting by simply treating one task Sk as target
domain, and all the other tasks S\k as source domains. To
avoid the risk of negative transfer, we propose a simple on-
line multitask boosting (OMB) algorithm motivated by the
selective mechanism originally proposed for dealing with in-
stance transfer with multiple sources (Eaton and desJardins
2011).

The key point of the selective mechanism is to cap-
ture task relatedness (also referred to as transferability in
(Eaton, desJardins, and Lane 2008; Eaton and desJardins
2011)) between target domain and multiple source domains.
More specifically, at iteration m, K + 1 auxiliary classifiers
{hk

m} and ĥm are trained on K + 1 different training sets,
{Sk ∪ ST } and ST with {Dk,m ∪DT,m} and DT,m, where
Dk,m is the distribution of the kth source domain at iteration
m. Then the relatedness between Sk and ST is measured by
αk
m = ε̂m − ε̃km, where ε̂m is the weighted error of ĥm, and

ε̃km is the weighted error of hk
m, both on ST . The algorithm

first updates the weights of instances as in the standard Ad-
aBoost algorithm, and then for instances from the kth source
domain, it further reweighs them by a factor of exp(αk

m).
The multitask boosting algorithm can be developed by di-

rectly generalizing the selective mechanism by treating Sk
as the target domain, and {S\k} as the source domains.
However, directly implementing this approach with K tasks
requires O(MK2) auxiliary classifiers, which is computa-
tionally expensive if the number of tasks is large. To avoid
this computational issue, we consider the following sim-
plification. First, we use αk

1 to approximate αk
m, ∀m =

1, . . . ,M , based on the intuition that relatedness between
tasks does not depend on weight distribution very much.
Second, instead of training O(K2) auxiliary classifiers on
{Si ∪Sj}, ∀i, j = 1, . . . ,K, we only train K auxiliary clas-
sifiers on {Sk}. The intuition is if two tasks are closely re-
lated, the classifier trained on one task should also perform
well on the other, and vice versa. Therefore, we simply de-
fine the relatedness parameter between task i and task j by

αi,j = ε̂ii − ε̂ij (4)

where ε̂ij is the error of ĥi on the jth task, ĥi being the auxil-
iary classifier that only trained on the ith task. In practice, we
have found that the differences between exp(αi,j)’s are not
significant since the values are typically narrowly distributed
near the mid-point, resulting in insufficient punishment for
negative transfer. To avoid this issue, we also rescale αi,j to
the range [0, 1].

After defining the relatedness parameter, the rest of the
multitask boosting algorithm follows the learning strategy
of TransferBoost algorithm in (Eaton and desJardins 2011).
Since our goal is to design an online multitask boosting al-
gorithm, we need to approximate the normalization factor
online. Note that for the ensembles of the kth task, the nor-

2Available online at https://sites.google.com/site/borriewang/

Algorithm 3 Online Multitask Boosting
Input: {S1, . . . ,SK},M
1: Initialize λSC

k,j,m = 0, λSW
k,j,m = 0, ηSC

k,j = 0, ηSW
k,j = 0, for all

m ∈ {1, . . . ,M}, and k, j ∈ {1, . . . ,K}
2: for n = 1, 2, . . . do

3: Receive (x
κ(n)
n , y

κ(n)
n )

4: Let j = κ(n). Update the jth auxiliary classifier ĥj

5: for k = 1, . . . ,K do

6: if ĥk(xj
n) = yj

n then

7: ηSC
k,j = ηSC

k,j + 1
8: else
9: ηSW

k,j = ηSW
k,j + 1

10: end if

11: ε̂kj =
ηSW
k,j

ηSC
k,j

+ηSW
k,j

12: end for
13: Update αk,j and αj,k for all k = {1, . . . ,K} using (4)
14: Set λk = 1 for all k ∈ {1, . . . ,K}
15: for m = 1, . . . ,M do
16: for k = 1, . . . ,K do
17: Let nk ∼ Poisson(λk)
18: Do nk times
19: Update base learner hk,m → Y using (xj

n, y
j
n)

20: if hk,m(xj
n) = yj

n then

21: λSC
k,j,m ← λSC

k,j,m + λk

22: else
23: λSW

k,j,m ← λSW
k,j,m + λk

24: end if
25: for i = 1, . . . ,K do

26: εki,m =
λSW
k,i,m∑K

t=1(λ
SC
k,t,m

+λSW
k,t,m

)

27: Dk
i,m =

λSW
k,i,m+λSC

k,i,m∑K
t=1(λ

SC
k,t,m

+λSW
k,t,m

)

28: end for

29: εkm =
∑K

i=1 ε
k
i,m, βk

m =
1−εkm
εkm

30: Zk,m =
∑K

i=1{exp(αk,i)(Di,m − (1− βk
m)εki,m)}

31: if hk,m(xj
n) = yj

n then

32: λk ← λkαk,j

Zk,m

33: else

34: λk ← λkαk,jβ
k
m

Zk,m

35: end if
36: end for
37: end for
38: end for

Output: H(xk) = argmax
y∈Y

M∑
m=1

log(
1−εk,m

εk,m
)I(hk,m(xk) = y)

malization factor is given by

Zk
m =

K∑
i=1

αk,i

(
Dk

i,m − (1− βk
m)εki,m

)
(5)

where Dk
i,m and εki,m are respectively the distribution and

the weighted error of the ith task in the kth ensemble. βk
m =

1−εkm
εkm

with εkm =
∑K

i=1 ε
k
i,m. Therefore, we can approximate

Zk
m by tracking Dk

i,m, εki,m and αk,i respectively. The full
pseudo-code of OMB is shown in Algorithm 3.
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Figure 1: Learning curves on different target tasks.

Experiments

In this section, we evaluate the proposed algorithms on three
data sets, one for transfer learning and two for multitask
learning. In all experiments, we vary the proportion of train-
ing data, and use the rest of data as test data. The results
have been averaged over 10 runs for random permutations
of training data and test data. The naive Bayes classifier is
used as the base learner for boosting.

Document Classification

We evaluate OTB algorithm on the 20 newsgroups data
set, containing approximately 20,000 documents, grouped
by seven top categories and 20 subcategories. The transfer
learning task involves the top-level classification problem,
while the training data and test data come from different sub-
categories. The source and target data sets are generated in
the same way as in (Dai et al. 2007).

Although the asymptotic properties of OTB have been
stated in Theorem 1, in practice, the samples, especially the
ones from target domain, are very limited. Therefore, we are
particularly interested in the following questions:

• How close is the performance of OTB to batch TrAd-
aBoost?

• What can we observe empirically about convergence
speed for OTB versus the batch TrAdaBoost?

• Can OTB benefit from instance transfer as batch TrAd-
aBoost? If so, is the improvement significant?

• How does the number of instances from source domain
affect the prediction performance in target domain.

To answer these questions, we compare the performances of
OTB (onlineTrErr) with batch TrAdaBoost (batchErr), on-
line AdaBoost (onlineErr), and batch AdaBoost (batchTr-
Err), as shown in Figure 1. By comparing the red and black
curves, it can be concluded that OTB is as good as batch
TrAdaBoost even with very few instances from the target
domain, which confirms the effectiveness and efficiency of
the online learning algorithm. By comparing the green and
black curves, as well as blue and red curves, we observe that
OTB benefits even more from the instance-transfer, as on-
line AdaBoost performs rather poorly at the early stage of
learning process, while OTB performs as well as its batch
mode counterpart with the help of source domain instances.
As more instances from source domain are received (∼20%
in this data set), the instances from source are enough to
train the classifier, and all the algorithms converge to a sim-
ilar point.

In the experiments above, we use all instances from
source domain while varying the amounts of target domain
instances. To examine the last question, we fix the amount
of target domain instances and evaluate the prediction per-
formances with different percentages of source domain in-
stances, as shown in Figure 2. The leftmost points corre-
spond to the testing error without transfer, while the right-
most points correspond the testing error with full trans-
fer (i.e., 100% source domain instances are used). The re-
sults confirm that the learning process can be accelerated by
adding more source data, up to some amount, but the effects
decrease after a point.
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Figure 2: Learning curves with different number of trans-
ferred samples.

Land Mine Detection

We evaluate the OMB algorithm on the landmine dataset,
which contains 29 tasks from two types of lands, and the
amounts of instances for each task vary from 400 to 600.
The experimental setting is the same as (Xue et al. 2007),
where 19 tasks are used, with a first 10 tasks from foli-
ated regions and the remaining tasks from desert regions.
We vary the training instances of each task from 20 to 200,
and measure the AUC as shown in Figure 3, where OMB is
the proposed online multitask boosting algorithm described
in Algorithm 3. OMBsel is the OMB algorithm based on the
direct generalization of selective TransferBoost (Eaton and
desJardins 2011) where O(MK2) auxiliary classifiers are
used. OMBtra is the OMB algorithm based on the direct gen-
eralization of TrAdaBoost (Dai et al. 2007). Pool-task is an
online boosting algorithm that learns a common ensemble
for all tasks, and single-task is the online boosting algorithm
that learns an ensemble for each task individually.

We observe that when the number of training instances for
each task is small, the single-task approach performs much
worse than any other. The three OMB algorithms have sim-
ilar performance, as does Pool-task. As the number of train-
ing instances increases, the data for each task are sufficient
for individual supervised learning. Therefore, the single-task
approach outperforms OMBtra and Pool-task, since these
two approaches ignore differences between tasks. By ex-
ploiting the task relationship, OMB and OMBsel perform
consistently better than the other approaches.

Figure 3: Average AUC on 19 tasks with different number
of training instances.

Epileptic Seizure Detection

Finally, we apply OMB on epileptic seizure detection task.
The dataset consists of patients suffering from medically in-
tractable focal epilepsy at the Epilepsy Center of the Univer-
sity Hospital of Freiburg, in Germany (Freiburg University
2012). The experimental setting is the same as (Saulnier-
Comte 2013), where the ECoG data from 18 of 21 patients
are used for analysis. A total of 450 hours of ECoG record-
ings containing 79 seizures were processed for the experi-
ments. For each patient we randomly split the ECoG seg-
ments that contain seizure events into three folds. Then, we
selected uniformly at random an amount of non-seizure seg-
ments equal to the total duration of the seizure segments.
We also separated these segments across the three sets.
The training set used for each fold consist of the segments
present in a pair of sets, such that all possible pairs were
considered. The task is to detect as many seizures as possi-
ble while maintain a low false positive rate.

Figure 4 compares the seizure detection performance of
different algorithms. We observe that OMB outperforms
Pool-task for any fixed false positive rate. Given a fixed
number of detected seizures, the single-task approach has
much higher false positive rate than other two approaches,
and it only performs best for a false positive rate larger than
1.7 per hour, which is much too high for clinical accept-
able. In summary, OMB’s improvement over single-task and
pool-task approaches appears significant.

Figure 4: Seizure detection performance with different false
positive rate.

Related Work

While both online learning and transfer learning have been
studied extensively, the effort in simultaneously dealing with
these two issues is limited. The first online transfer learning
framework generalizes the Prediction with Expert Advice
framework (Zhao and Hoi 2010). Later, Ge et al. (Ge, Gao,
and Zhang 2013) proposed an online transfer algorithm that
learns a linear combination of models trained on different
source domains within an online convex optimization frame-
work. Our OTB algorithm is a totally different approach in
the following sense. First, OTB is an instance-transfer algo-
rithm while the other two are model-transfer algorithms. The
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instance-transfer approach is generally considered a more
direct application of knowledge. Second, both previous ap-
proaches assume the knowledge (i.e., the models trained
on source domains) from source domains is given a priori,
while our approach does not have such a constraint.

An online multitask learning algorithm was proposed in
(Dekel, Long, and Singer 2006), where tasks are linked
by a shared loss function. Later, another global loss func-
tion based on matrix regularization is proposed in (Kakade,
Shalev-Shwartz, and Tewari 2012). While both approaches
properly formulate the online multitask learning problem as
online optimization of a global loss function, they do not
explore the task relatedness explicitly. In (Cavallanti, Cesa-
Bianchi, and Gentile 2010), the task relationship is explic-
itly represented by an interaction matrix, which is fixed dur-
ing the learning process. This work is then generalized to
learn task relatedness for the special case of the perceptron
learner (Saha et al. 2011). Our OMB algorithm also learns
the relationship, but with a different generalization bias, and
allows more flexible base learners.

Conclusion

In this paper, we propose a boosting-based framework for
online transfer and multitask learning. The proposed learn-
ing framework allows flexible base learners that indeed can
have different generalization bias. Thus we can readily con-
vert any online learner to the transfer/multiclass case, this
is in contrast to other methods for transfer/multitask learn-
ing that are restricted to specific learners (e.g., perceptron).
The core idea is to approximate the normalization factor of
the boosting-based algorithms so that the batch mode trans-
fer/multitask boosting algorithms can be generalized to the
online setting. We focus primarily on the single source trans-
fer case, however the multiple source transfer learning algo-
rithm can be derived in a similar way by generalizing (Eaton
and desJardins 2011) or (Yao and Doretto 2010). Results are
provided for both benchmark domains and a real-world case
of significant clinical importance.

In addition, in many real-world applications, the distribu-
tion between the classes of instances is highly imbalanced
(e.g., land mine detection and seizure detection problems).
In these situations, we can take different misclassification
costs into consideration by combining OTB/OMB with the
recent proposed online cost-sensitive boosting algorithms
(Wang and Pineau 2013), which is left to future work.
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