
Methods of Moments for Learning Stochastic Languages: Unified

Presentation and Empirical Comparison

(Supplementary Material)

Borja Balle William L Hamilton Joelle Pineau

Reasoning and Learning Laboratory
School of Computer Science

McGill University
Montreal, QC, Canada

{bballe|whamil3|jpineau}@cs.mcgill.ca

1 Consistency of Tensor Decomposition Method

Let A = h↵0,↵1,T, {O
�

}
�2⌃i be a HMM with n |⌃| states. To prove the consistency of the algorithm

described in Section 3.3, we will show that the when given access to data computed from f = f

A

, the
algorithm returns a HMM identical to A modulo a permutation on the states.

Suppose that we are given sets of prefixes and su�xes P,S ⇢ ⌃? like in the algorithm. We start by
defining some notation. Let us write OP 2 RP⇥n with rows given by e>

u

OP = ↵>
0 Au

and S 2 RS⇥n with
rows given by e>

v

S = (A
v

↵1)>. For convenience we also define OS = ST>. To prove our results we
will need to make some assumption on f , P and S. These are in line with usual assumptions made in the
analysis of tensor-based methods of moments. Furthermore, we have reasons to believe that without such
assumptions the task is stastically and computationally hard [Anandkumar et al., 2012]. Thus, we suppose
that the following is satisfied.

Assumption 1. The matrices O, OP and OS have rank n, and for every i 2 [n] we have ↵1(i) < 1.

Our proof starts by obtaining expressions for the Hankel matrices and tensors computed by the algorithm
in terms of the parameters of A.

Lemma 1.1. The following are true for the Hankel matrices and tensors computed by the algorithm:

HP,⌃,S =
X

i2[n]

(OPei)⌦ (Oe
i

)⌦ (OSei) , (1)

H̄P,⌃ = OPDSO>
, (2)

H̄P,S = OPD⌃O
>
S , (3)

H̄⌃,S = OSDPO>
, (4)

HP,S = OPS>
, (5)

Hp
P,⌃ = OPO>

, (6)

where DS ,D⌃,DP 2 Rn⇥n are rank n diagonal matrices. Additionally, we have D⌃ = I � diag(↵1) and
rank(H̄P,S) = n.

1

Proof. The expression for HP,⌃,S follows from writing the following in tensor notation using the definitions
of OP , O, and OS :

HP,⌃,S(u,�, v) = ↵>
0 Au

A
�

A
v

↵1 = ↵>
0 Au

O
�

TA
v

↵1 . (7)

Now, using the expression for HP,⌃,S we get obtain the expressions for the three integrations as follows:

H̄P,⌃ = HP,⌃,S(I, I,1) (8)

=
X

i2[n]

(OPei)⌦ (Oe
i

)⌦ (1>OSei) (9)

=
X

i2[n]

wS(i)(OPei)⌦ (Oe
i

) (10)

= OP diag(wS)O> = OPDSO>
, (11)

H̄P,S = HP,⌃,S(I,1, I) (12)

=
X

i2[n]

(OPei)⌦ (1>Oe
i

)⌦ (OSei) (13)

=
X

i2[n]

w⌃(i)(OPei)⌦ (OSei) (14)

= OP diag(w⌃)O
>
S = OPD⌃O

>
S , (15)

H̄⌃,S = HP,⌃,S(1, I, I) (16)

=
X

i2[n]

(1>OPei)⌦ (Oe
i

)⌦ (>OSei) (17)

=
X

i2[n]

wP(i)(Oe
i

)⌦ (OSei) (18)

= O diag(wP)O>
S = ODPO>

S , (19)

where w>
S = 1>OS , w>

⌃ = 1>O, and w>
P = 1>OP . In particular, note that the HMM constraints imply

that w⌃(i) = 1 � ↵1(i) for every i. Thus, we have D⌃ = I � diag(↵1). Since Assumption 1 guarantees
that all entries in wP ,w⌃,wS are strictly positive, we see that matrices DP , D⌃, and DS must have full
rank.

For the other two Hankel matrices we see that the first expression follows immediately from HP,S(u, v) =
f(uv), and the second one follows from

Hp
P,⌃(u,�) = f(u�⌃?) =

X

x2⌃?

f(u�x) (20)

= ↵>
0 Au

A
�

X

x

A
x

!
↵1 (21)

= ↵>
0 Au

A
�

0

@
X

k�0

X

�

A
�

!
k

1

A↵1 (22)

= ↵>
0 Au

A
�

0

@
X

k�0

(I� diag(↵1))k Tk

1

A↵1 (23)

= ↵>
0 Au

A
�

(I� (I� diag(↵1))T)�1 ↵1 (24)

= ↵>
0 Au

O
�

T1 (25)

= ↵>
0 Au

O
�

1 . (26)

where we used that (I� (I� diag(↵1))T)1 = ↵1.

2

Note that because H̄P,S has rank n, we can find QP 2 Rn⇥P and QS 2 Rn⇥S such that H̃P,S =
QPH̄P,SQS is invertible. Using these, we define the matrices N = Q>

S H̃
�1
P,SQP , X⌃ = H̄⌃,SNH̄P,⌃, and

the tensor Y⌃ = HP,⌃,S(N>H̄>
⌃,S , I,NH̄P,⌃). The following result analyzes the eigenpairs found by the

tensor decomposition step on the whitened version of Y⌃.

Lemma 1.2. There exists W 2 R⌃⇥n such that W>X⌃W = I. Furthermore, the tensor Z⌃ = Y⌃(W,W,W) 2
Rn⇥n⇥n admits a robust eigendecomposition Z⌃ =

P
j2[n] �jz

⌦3
j

, where for each j 2 [n] we have

�

j

=
1p

wP(i)w⌃(i)wS(i)
, (27)

z
j

=

s
wP(i)wS(i)

w⌃(i)
W>Oe

i

, (28)

for some i 2 [n].

Proof. First we need to analyze the construction of matrix X⌃ and tensor Y⌃. By using the expressions
from Lemma 1.1 we can see that H̃�1

P,S = (O>
SQ

>
S)

�1D�1
⌃ (QPOP)�1. Therefore, we have the following

decomposition for X⌃:

X⌃ =
�
ODPO>

S
� �

Q>
S (O

>
SQ

>
S)

�1D�1
⌃ (QPOP)�1QP

� �
OPDSO>� (29)

= ODPD�1
⌃ DSO> (30)

=
X

i2[n]

wP(i)wS(i)
w⌃(i)

(Oe
i

)⌦ (Oe
i

) . (31)

Now we observe that because of Assumption 1, matrix X⌃ is positive definite of rank n. Thus there exists
W 2 R⌃⇥n such that W>X⌃W = I. By the decomposition of X⌃ given above, this implies that writing
w

X

(i) = wP(i)wS(i)/w⌃(i), we have

I = X⌃(W,W) =
X

i2[n]

(
p

w
X

(i)W>Oe
i

)⌦ (
p

w
X

(i)W>Oe
i

) . (32)

Thus, the vectors x
i

=
p
w

X

(i)W>Oe
i

2 Rn for i 2 [n] form an orthonormal basis.
To obtain an expression for Y⌃, we first check the following two equalities:

H̄⌃,SNOP =
�
ODPO>

S
� �

Q>
S (O

>
SQ

>
S)

�1D�1
⌃ (QPOP)�1QP

�
OP (33)

= ODPD�1
⌃ , (34)

O>
SNH̄P,⌃ = O>

S
�
Q>

S (O
>
SQ

>
S)

�1D�1
⌃ (QPOP)�1QP

�
OPDSO> (35)

= D�1
⌃ DSO>

. (36)

Combining these expressions with the definition of Y⌃ we obtain

Y⌃ = HP,⌃,S(N>H̄>
⌃,S , I,NH̄P,⌃) (37)

=
X

i2[n]

(H̄⌃,SNOPei)⌦ (Oe
i

)⌦ (H̄>
P,⌃N

>OSei) (38)

=
X

i2[n]

(ODPD�1
⌃ e

i

)⌦ (Oe
i

)⌦ (ODSD�1
⌃ e

i

) (39)

=
X

i2[n]

wP(i)wS(i)
w⌃(i)2

(Oe
i

)⌦ (Oe
i

)⌦ (Oe
i

) . (40)

3

Now we can show that the whitened version of Y⌃ has a robust orthonormal decomposition:

Z⌃ = Y⌃(W,W,W) (41)

=
X

i2[n]

wP(i)wS(i)
w⌃(i)2

(W>Oe
i

)⌦ (W>Oe
i

)⌦ (W>Oe
i

) (42)

=
X

i2[n]

1p
wP(i)w⌃(i)wS(i)

x
i

⌦ x
i

⌦ x
i

. (43)

Therefore, any robust eigenpair (�, z) of Z⌃ must be of the form � = (wP(i)w⌃(i)wS(i))�1/2 and z = x
i

for some i 2 [n].

Next we show that the algorithm recovers weighted and permuted versions of the parameters of the target
HMM. Recall that each column of the matrix Õ 2 R⌃⇥n corresponds to �(W>)+z for some robust eigenpair
(�, z) of Z⌃. Thus, since

�(W>)+z =
1p

wP(i)w⌃(i)wS(i)
(W>)+(

p
w

X

(i)W>Oe
i

) (44)

=
1

w⌃(i)
Oe

i

(45)

for some i 2 [n], we get Õ = OD�1
⌃ ⇧ for some permutation matrix ⇧ 2 Rn⇥n. Next lemma gives expressions

for weighted and permuted versions of the parameters of A recovered by the algorithm

Lemma 1.3. The following expressions hold:

↵̃>
0 = ↵>

0 DSD⌃⇧ , (46)

↵̃1 = ⇧>D⌃DP↵1 , (47)

T̃ = ⇧>D�1
S TDSD⌃⇧ . (48)

Proof. We start by noting the two following identities for the matrices ÕP 2 RP⇥n and ÕS 2 RS⇥n used in
the algorithm:

ÕP = H̄P,⌃(Õ
>)+ (49)

= (OPDSO>)((O>)+D⌃⇧) (50)

= OPDSD⌃⇧ , (51)

Õ>
S = Õ+H̄⌃,S (52)

= (⇧>D⌃O
+)(ODPO>

S) (53)

= ⇧>D⌃DPO>
S . (54)

Now, since e>
�

OP = ↵>
0 , we get ↵̃>

0 = e>
�

ÕP = ↵>
0 DSD⌃⇧. Similarly, O>

S e� = ↵1 yields ↵̃1 = Õ>
S e� =

⇧>D⌃DP↵1.
Finally, we analyze the expression for T̃ 2 Rn⇥n as follows:

T̃ = Õ+
PH̄P,SH+

P,SÕP (55)

= (⇧>D�1
S D�1

⌃ O+
P)(OPD⌃TS)(S+O+

P)(OPDSD⌃⇧) (56)

= ⇧>D�1
S TDSD⌃⇧ . (57)

4

In the last stage of the algorithm the parameters given in the previous lemma are normalized to obtain
a proper HMM. These last steps are analyzed in the following result.

Lemma 1.4. The algorithm returns an HMM A

⇧ = h⇧↵0,⇧↵1,⇧>T⇧, {⇧>O
�

⇧}i equivalent to A

modulo a permutation on the states. In particular, we have f

A

= f

A

⇧ .

Proof. We basically have to show that the normalization steps recover the right parameters up to permuta-
tion. We first observe that D̃

�

= ⇧>D�1
P D�1

⌃ D�1
S ⇧ and

D̃S = Õ>Hp
P,⌃

+
ÕP (58)

= (⇧>D�1
⌃ O>)(O>+

O+
P)(OPD⌃DS⇧) (59)

= ⇧>DS⇧ . (60)

Therefore, the vector � has the following form:

� = D̃ST̃+D̃
�

↵̃1 (61)

= (⇧>DS⇧)(⇧>D�1
S D�1

⌃ T�1DS⇧)(⇧>D�1
S D�1

⌃ D�1
P ⇧)(⇧>DPD⌃T↵1) (62)

= ⇧>D�1
⌃ ↵1 . (63)

Recalling that D⌃ = diag(1� ↵1) we see that �(i)/(1 + �(i)) = (⇧>↵1)(i). Therefore, the final weights
returned by the algorithm correspond to ↵⇧

1 = ⇧>↵1. Furthermore, we can see that D̃⌃ = I�diag(↵⇧
1) =

⇧>D⌃⇧.
Now the recovered weighting matrices can be used to reweight the rest of parameters. Using the expres-

sions from Lemma 1.3 we get

↵⇧
0 = D̃+

S D̃
+
⌃↵̃0 = ⇧>↵0 , (64)

T⇧ = D̃ST̃D̃+
⌃D̃

+
S = ⇧>T⇧ , (65)

O⇧ = ÕD̃⌃ = O⇧ . (66)

Checking that the HMM A

⇧ realizes the same function as A is a rutinary computation.

2 Implementation Details

This section outlines important implementation details. All methods were implemented using a combination
of Python (with the SciPy [Jones et al., 2001] stack) and C++. We note that for all methods separate hyper-
parameter optimization was performed to optimize for the two contrasting metrics (i.e., WER and perplex-
ity). All code is available at: https://github.com/ICML14MoMCompare/MoMs-for-StochasticLanguages.

2.1 The Spectral Method

The spectral method implementation closely mirrors the description in the primary text. However, random-
ized SVD [Halko et al., 2011] is used in place of an exact truncated SVD, as the randomized method is known
to provide robust empirical performance while drastically reducing computational costs [Halko et al., 2011].
In addition, the feature-variances of the estimated Hankel matrices are normalized by independently scaling
each row and column by a factor c

u

, given by:

c

u

=

r
m

count(u) +

, (67)

where u is the prefix/su�x corresponding to the row/column, count(u) is the number of times that pre-
fix/su�x occurs in the training data, m is the number of strings in the training set, and is a smoothing

5

constant (following Cohen et al. [2013], a value of = 5 was used). This scaling serves to normalize the
estimates such that the empirical variances for estimates of frequently encountered prefixes/su�xes and
infrequently encountered prefixes/su�xes are roughly equal (see Cohen et al. [2013] for justification of this
technique in the context of spectral learning).

For the spectral methods, the model-size hyper-parameter selection is performed via a two-stage grid
search. In the first stage, models of sizes 10 through 70 (inclusive) are examined (incrementing by 10).
Following this, the grid search is performed over sizes in the range [n-9,n+9], where n is the best size
determined from the first phase.

2.1.1 Spec-Str

For the Spec-Str method, where estimates f̂
S

are used, we set |P| = |S| = 10000, including the top k = 10000
prefixes/su�xes according to their empirical frequency. Using such large bases requires operations on very
large sparse matrices; thus numerous sparse representations provided by the SciPy and Eigen [Guennebaud
et al., 2010] libraries are exploited in this method.

2.1.2 Spec-Sub

For the Spec-Sub method, where estimates f̂

s
S

are used, we set |P| = |S| = 500, as this provided accurate
results with minimal computational cost. Again the top k = 500 prefixes/su�xes according to empirical fre-
quency were selected; however, in this case the max length of a substring prefix/su�x was set to four (shorter
sequences are more frequent so this choice did not have significant impact on the selected prefixes/su�xes).
We note that in this setting the Hankel estimates are dense; thus, computations involving the matrices are
considerably more expensive (justifying the smaller choice of basis compared to Spec-Str).

2.2 Convex Optimization

The convex optimization method required significant implementation work compared to the other methods.
In this work, we chose to use the alternating direction method of multipliers (ADMM) [Boyd et al., 2011] as
the convex optimization routine, as this approach has desirable speed and convergence properties. Details
of this convex optimization routine can be found in Boyd et al. [2011].

However, despite the e�ciency of ADMM, the CO moment-based algorithm is quite slow without addi-
tional implementation tweaks, as the optimization requires an SVD of the Hankel matrix to be performed
at each iteration. In order to increase computational e�ciency, we implemented an over-relaxed version of
ADMM with inexact proximal operators, where a randomized truncated SVD is used instead of a full SVD.
During these truncated steps, only the top 50 singular values are used. This version essentially uses an
(more e�cient) approximate proximal gradient operator during the ADMM updates, a technique which still
guarantees convergence under some conditions (see Boyd et al. [2011] for details). After running a number
of iterations of this modified ADMM (stopping either via convergence or an iteration limit), we then applied
four iterations using a full SVD.

The hyper-parameter optimization for the ⌧ regularization constant was performed analogously to the
spectral methods, with values in the range [10�5

, ⇣] examined, with

⇣ =

p
|P||S|�H

1p
m

, (68)

where �

H
1 is the largest singular value of the empirical Hankel matrix and m is the number of strings in the

training set. See Balle [2013] for justification of this upper-bound.
We use the top-k frequent sequences with |P| = |S| = 50 in this work for optimization for perplexity and

|P| = |S| = 200 for WER, as preliminary experiments demonstrated that a smaller basis was advantageous
for accuracy according to perplexity and the larger basis for WER. We note that bases of sizes larger
than 200 become prohibitively expensive, given the computational requirements of the ADMM optimization.
Moreover, the final learned representation of the CO method scales linearly with the size of the bases used, so

6

using large bases introduces significant overhead. As with Spec-Sub, estimates f̂ s
S

are used and prefix/su�x
sequences are limited to a max-length of four.

2.3 Tensor Decomposition

The implementation of the tensor method largely follows from the description in the primary text. As stated
in the primary text, the tensor power method of Anandkumar et al. [2013] is used as the decomposition
method. The maximum number of tensor power iterations was set to 100. In contrast to the description
in Anandkumar et al. [2013], we did not use random restarts during the power iterations, as this was not
observed to increase the quality of the solutions and introduces extra computational costs.

Moreover, in order to make the algorithm scalable it is necessary to exploit the extreme sparsity of the
estimated Hankel matrices. The sparse matrix representations used are identical to those used with the
Spec-Str method. In addition to these sparse representations, we utilize the sparse LSQR method [Paige
and Saunders, 1982] for solving least-squares. This method is used to implicitly compute the pseudoinverse,
H+

P,S , as explicitly representing H+
P,S is prohibitively expensive given that the pseudoinverses of sparse

matrices are, in general, not sparse.
We use a sparse SVD via the Lanczos algorithm (provided by SciPy) to compute the QP and QS

matrices. Random projections could also be used, but we found the SVD generated matrices to give superior
performance.

As with the Spec-Str method, a basis size of |P| = |S| = 10000 is used (with the most empirically frequent
sequences selected). For this method, one grid search is used to determine the optimal model size, as the
space of possible model sizes is restricted to [1, |⌃|].

2.4 EM

The Treba library [Hulden, 2012] with the default convergence criterion was used in conjunction with a
hand-coded hyper-parameter optimization scheme (Treba does not provide such optimization). For hyper-
parameter optimization, model sizes in the set {5,10,20,30,40} are examined. For each model-size, we first
run five random-restarts for N1/n (where n is the model-size and N1 a constant) iterations, selecting the
best-performing model for further optimization. Following this, optimization is interleaved with validation to
check for overfitting. Specifically, every N1/n iterations, the model is scored. If the model is not improving
for three such checks then training is terminated, and the top-performing model among all validation checks
is returned. In addition, a maximum of N2/n such validation-checks are performed. We set N1 = 100 and
N2 = 1000, as this led to reasonable runtimes (and the routine rarely reached the maximum iteration limit).
The number of iterations (both between validations and in total) being inversely proportional to model size
is a pragmatic specification, as the larger models were significantly (several orders-of-magnitude) slower to
train.

2.5 EM-Tensor

For EM initialized with the solution of the tensor method, we simply interleave five iterations of Baum-
Welch EM optimization with validation checks and stop training when there is no improvement for three
validation-checks (the top-performing models being successively stored).

References

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learning latent
variable models. CoRR, abs/1210.7559, 2012.

A. Anandkumar, R. Ge, D. Hsu, and S. Kakade. A tensor spectral approach to learning mixed membership
community models. In COLT, 2013.

7

B. Balle. Learning Finite-State Machines: Algorithmic and Statistical Aspects. PhD thesis, Universitat
Politècnica de Catalunya, 2013.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral learning of
latent-variable PCFGs. In NAACL-HLT, 2013.

Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

M. Hulden. Treba: E�cient numerically stable EM for PFA. In ICGI, 2012.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001.
URL http://www.scipy.org/.

C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software, 8(1):43–71, 1982.

8

