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Abstract
When a transition probability matrix is represented
as the product of two stochastic matrices, swapping
the factors of the multiplication yields another tran-
sition matrix that retains some fundamental char-
acteristics of the original. Since the new matrix
can be much smaller than its precursor, replacing
the former for the latter can lead to significant sav-
ings in terms of computational effort. This strat-
egy, dubbed the “stochastic-factorization trick,” can
be used to compute the stationary distribution of a
Markov chain, to determine the fundamental ma-
trix of an absorbing chain, and to compute a de-
cision policy via dynamic programming or rein-
forcement learning. In this paper we show that the
stochastic-factorization trick can also provide ben-
efits in terms of the number of samples needed to
estimate a transition matrix. We introduce a prob-
abilistic interpretation of a stochastic factorization
and build on the resulting model to develop an al-
gorithm to compute the factorization directly from
data. If the transition matrix can be well approx-
imated by a low-order stochastic factorization, es-
timating its factors instead of the original matrix
reduces significantly the number of parameters to
be estimated. Thus, when compared to estimating
the transition matrix directly via maximum likeli-
hood, the proposed method is able to compute ap-
proximations of roughly the same quality using less
data. We illustrate the effectiveness of the proposed
algorithm by using it to help a reinforcement learn-
ing agent learn how to play the game of blackjack.

1 Introduction
Results from the supervised learning literature suggest that
general efficient learning is only possible if one exploits some
kind of regularity in the problem [Györfi et al., 2002]. When
learning a model that describes a stochastic process, one can
exploit, for example: a sparse or low-rank transition matrix,
a smooth transition kernel, or the fact that the data lies on a
lower dimensional manifold [Farahmand, 2011]. Such regu-
larities allow estimating parameters with a reasonable amount
of data [Györfi et al., 2002].

One type of structural regularity that has recently received
attention is stochastic factorization [Barreto and Fragoso,
2011]. In this case, a transition probability matrix of size
n×n is represented as the product of two stochastic matrices,
of sizes n×m andm×n, wherem < n. Interestingly, swap-
ping the factors of the multiplication yields another stochas-
tic matrix, of size m × m, which retains some fundamental
characteristics of its precursor [Barreto and Fragoso, 2011].
This makes it possible to use the new matrix instead of the
original—which can lead to significant savings in terms of
computational effort if m is considerably smaller than n.
This strategy, dubbed the “stochastic-factorization trick,” has
been used to compute the stationary distribution of a Markov
chain [Barreto and Fragoso, 2011], to determine the funda-
mental matrix of an absorbing chain [Barreto and Fragoso,
2011], and to compute decision policies in large problems
through dynamic programming [Barreto et al., 2014] and re-
inforcement learning [Barreto et al., 2011].

So far, the stochastic factorization problem has been ad-
dressed in the literature mainly from an “algebraic” point of
view: given a transition matrix, one must find two lower-order
stochastic matrices whose multiplication approximates the
original matrix as well as possible. In this paper we focus on
learning a stochastic factorization when the transition matrix
is not known, and we only have access to transitions sampled
from it. One possible approach in this case is to use the sam-
ples to compute an estimate of the transition matrix, which
takes use back to the scenario described above. However, this
approach has the disadvantage that many entries may need to
be estimated, perhaps from not much data. Instead, we would
like to estimate the factors directly from data, because this en-
tails potentially many fewer parameters. We introduce a prob-
abilistic interpretation of a stochastic factorization and build
on the resulting model to derive an expectation-maximization
algorithm that achieves this goal.

Since the order of the factorization (i.e., the value of m)
is a parameter of the proposed algorithm, by changing it one
can control the complexity of the resulting model, and thus
the trade off between the approximation and estimation er-
rors [Györfi et al., 2002]. This means that, if the transition
matrix can be well approximated by a low-order stochastic
factorization, the stochastic-factorization trick may provide
benefits not only from a computational point of view but also
in terms of the number of sample transitions needed in the



approximation. We empirically show that, when compared to
estimating the transition matrix directly via maximum like-
lihood, the proposed method is able to compute approxima-
tions of roughly the same quality using less data. To illustrate
the practical utility of the proposed approach, we use it to
learn a model of the game of blackjack.

2 Background and Notation
This section introduces the notation adopted and briefly re-
views some concepts that will be used throughout the paper.

Random variables are represented by capital letters; we
use the notation A1:τ to refer to a sequence of variables
A1, A2, ..., Aτ . Scalar variables are represented by small let-
ters; boldface capital letters and boldface small letters are
used to denote matrices and vectors, respectively. We will
need the following definitions:

Definition 1 A matrix P ∈ Rn×q is called stochastic if and
only if pij ≥ 0 for all i, j and

∑q
j=1 pij = 1 for all i. A

square stochastic matrix is called a transition matrix.

Definition 2 Given a stochastic matrix P ∈ Rn×q , the re-
lation P = DK is called a stochastic factorization of P if
D ∈ Rn×m and K ∈ Rm×q are also stochastic matrices.
The integer m > 0 is the order of the factorization.

Definition 3 The stochastic rank of a stochastic matrix P ∈
Rn×q , denoted by srk(P), is the smallest possible order of
the stochastic factorization P = DK.

Given a stochastic factorization of a transition matrix, P =
DK, swapping the factors of the factorization yields another
transition matrix P̄ = KD, potentially much smaller than the
original, which retains the basic topology of P—that is, the
number of recurrent classes and their respective reducibilities
and periodicities (see Barreto and Fragoso’s [2011] article for
formal definitions). Since P̄ can be considerably smaller than
P, the idea of replacing the latter with the former comes al-
most inevitably: this is the “stochastic-factorization trick.”

3 Stochastic Factorization as a Probabilistic
Model

So far, an algebraic view of stochastic factorization has pre-
vailed in the literature, with P, D, and K treated simply as
matrices with a particular structure. In this paper we intro-
duce a probabilistic interpretation of a stochastic factoriza-
tion. In particular, we see the factorization as a Markov model
that represents the joint distribution of a sequence of random
variables.

3.1 Stochastic Factorization Model
Let S ≡ {1, 2, ..., n}, H ≡ {1, 2, ...,m}, and
A ≡ {1, 2, ..., na}. Consider the stochastic process
(S1, A1, H1, S2, A2, H2, ...), where St ∈ S are observable
states, At ∈ A are observable actions (or decisions), and
Ht ∈ H are hidden states. Our probabilistic model builds
on the following Markov assumptions:

(i) Pr(St|Ht−1, At−1, St−1, ..., S1) = Pr(St|Ht−1, At−1);

(ii) Pr(Ht|At, St, Ht−1, ..., S1) = Pr(Ht|At, St);

(a) HMM (b) SFM with na = 1

Figure 1: Graphical models of HMMs and SFMs.

(iii) Pr(At|St, Ht−1, At−1, ..., S1) = Pr(At|St).

Given τ > 0, it is easy to compute the probability of any
sequence of length τ using (i), (ii), and (iii):

Pr(S1, A1, H1, ..., Sτ−1, Aτ−1, Hτ−1, Sτ ) =
= Pr(S1)

∏τ
t=2 Pr(St|Ht−1, At−1, ..., S1)×

×Pr(At−1|St−1, Ht−2, ..., S1)Pr(Ht−1|At−1, St−1, ..., S1)
= Pr(S1)

∏τ
t=2 Pr(St|Ht−1, At−1)Pr(At−1|St−1)×

×Pr(Ht−1|St−1, At−1).
(1)

Thus, in order to define our model we only need to represent
Pr(S1), Pr(St+1|Ht, At), Pr(At|St), and Pr(Ht|St, At).
This leads to the following definition:
Definition 4 A stochastic factorization model (SFM) is a tu-
ple F ≡ (Da,Ka,Π,µ), where Da ∈ Rn×m and Ka ∈
Rn×m are na stochastic matrices, one for each a ∈ A,
Π ∈ Rn×na is a stochastic matrix, and µ ∈ Rn is a distribu-
tion. Based on Assumptions (i), (ii), and (iii), the model rep-
resents the stochastic process (S1, A1, H1, S2, A2, H2, ...) as
daij = Pr(Ht = j|St = i, At = a), kaij = Pr(St+1 =
j|Ht = i, At = a), πia = Pr(At = a|St = i), and
µi = Pr(S1 = i).

It may be instructive to revisit the stochastic-factorization
trick in light of Definition 4. If Pa = DaKa, it should be
clear that paij = Pr(St+1 = j|St = i, At = a). Similarly,
if we apply the trick to obtain P̄a = KaDa, then we have
p̄aij = Pr(Ht+1 = j|Ht = i, At = a).

Note that a SFM with na = 1 is an uncontrolled system.
In order to provide some intuition about our model, in Fig-
ure 1 we compare it with another uncontrolled system, the
well known hidden Markov model (HMM) [Rabiner, 1989].
As shown, the main difference between the two models is the
fact that in a SFM knowledge of St is sufficient to define the
distribution of Ht.

3.2 Computing Probabilities
Recall that in a SFM only the variables St and At are ob-
servable. Let z1:τ = (s1, a1, s2, ..., aτ−1, sτ ). In order to
do inference with our model, we need to be able to com-
pute the probability of a given sequence happening, that is,
Pr(Z1:τ = z1:τ |λ), where λ ≡ (Da,Ka,Π,µ). In this
section we discuss how to compute this quantity. We base
our strategy on the forward-backward procedure to compute
probabilities in an HMM [Baum, 1972; Rabiner, 1989].

We start by noting that, if we can compute Pr(Z1:τ =
z1:τ , Ht = i|λ), then we can compute the desired quantity by
marginalizing over Ht. Given z1:τ , we define the “forward
variable” αi(t) as:

αi(t) = Pr(Z1:t = z1:t, At = at, Ht = i|λ). (2)



αi(1) = µs1πs1a1d
a1
s1i

= Pr(S1 = s1)Pr(A1 = a1|S1 = s1)Pr(H1 = i|S1 = s1, A1 = a1)
= Pr(S1 = s1, A1 = a1)Pr(H1 = i|S1 = s1, A1 = a1) = Pr(S1 = s1, A1 = a1, H1 = i)

αj(t+ 1) =
∑
i αi(t)k

at
ist+1

πst+1at+1d
at+1

st+1j
=
∑
i Pr(Z1:t = z1:t, At = at, Ht = i)Pr(St+1 = st+1|At = at, Ht = i)×

×Pr(At+1 = at+1|St+1 = st+1)Pr(Ht+1 = j|St+1 = st+1, At+1 = at+1)
=
∑
i Pr(Z1:t = z1:t, At = at, Ht = i, St+1 = st+1)Pr(At+1 = at+1|St+1 = st+1)×

×Pr(Ht+1 = j|St+1 = st+1, At+1 = at+1)
=
∑
i Pr(Z1:t = z1:t, At = at, Ht = i, St+1 = st+1, At+1 = at+1)Pr(Ht+1 = j|St+1 = st+1, At+1 = at+1)

=
∑
i Pr(Z1:t = z1:t, At = at, Ht = i, St+1 = st+1, At+1 = at+1, Ht+1 = j)

= Pr(Z1:t+1 = z1:t+1, At+1 = at+1, Ht+1 = j)

βi(τ − 1) = k
aτ−1

isτ
= Pr(Sτ = sτ |hτ−1 = i, Aτ−1 = aτ−1) = Pr(Zτ :τ = zτ :τ |Hτ−1 = i, Aτ−1 = aτ−1)

βi(t− 1) =
∑
j βj(t)d

at
stj
πstatk

at−1

i,st
=
∑
j Pr(Zt+1:τ = zt+1:τ |Ht = j, At = at)Pr(Ht = j|St = st, At = at)×

×Pr(At = at|St = st)Pr(St = st|Ht−1 = i, At−1 = at−1)
=
∑
j Pr(Zt+1:τ = zt+1:τ |Ht = j, At = at, St = st)Pr(Ht = j|St = st, At = at)×

×Pr(At = at|St = st)Pr(St = st|Ht−1 = i, At−1 = at−1)
=
∑
j Pr(Ht = j, Zt+1:τ = zt+1:τ |St = st, At = at)Pr(At = at|St = st)Pr(St = st|Ht−1 = i, At−1 = at−1)

=
∑
j Pr(At = at, Ht = j, Zt+1:τ = zt+1:τ |St = st)Pr(St = st|Ht−1 = i, At−1 = at−1)

=
∑
j Pr(At = at, Ht = j, Zt+1:τ = zt+1:τ |St = st, Ht−1 = i, At−1 = at−1)Pr(St = st|Ht−1 = i, At−1 = at−1)

=
∑
j Pr(St = st, At = at, Ht = j, Zt+1:τ = zt+1:τ |Ht−1 = i, At−1 = at−1)

= Pr(St = st, At = at, Zt+1:τ = zt+1:τ |Ht−1 = i, At−1 = at−1) = Pr(Zt:τ = zt:τ |Ht−1 = i, At−1 = at−1)

αi(t)βi(t) = Pr(Z1:t = z1:t, At = at, Ht = i)Pr(Zt+1:τ = zt+1:τ |Ht = i, At = at)
= Pr(Z1:t = z1:t, At = at, Ht = i)Pr(Zt+1:τ = zt+1:τ |Ht = i, At = at, Z1:t = z1:t) = Pr(Z1:τ = z1:τ , Ht = i).

Table 1: Computing probabilities in a SFM; the dependence on λ is omitted to improve readability.

In Table 1 we show that, given a SFM, we can compute αi(t)
for any i and any t using the following recursive formulae:

αi(1) = µs1πs1a1d
a1
s1i ,

αj(t+ 1) =
∑
i αi(t)k

at
ist+1

πst+1at+1d
at+1

st+1j
.

We now define the “backward variable” βi(t) as:
βi(t) = Pr(Zt+1:τ = zt+1:τ |Ht = i, At = at, λ). (3)

As with αi(t), given a SFM, the variable βi(t) can be com-
puted recursively, in the following way (see Table 1):

βi(τ − 1) = k
aτ−1

isτ
,

βi(t− 1) =
∑
j βj(t)d

at
stj
πstatk

at−1

i,st
.

Now that we are able to compute αi(t) and βi(t) for any i
and any t, we can compute the desired probability by simply
multiplying these variables, that is,

αi(t)βi(t) = Pr(Z1:τ = z1:τ , Ht = i|λ). (4)

The equality above is also justified in Table 1.

Scaling
Using the variables αi(t) and βi(t) we can compute
Pr(Z1:τ , ht = i|λ), which in turn allows us to compute the
probability of any sequence being generated by a SFM. How-
ever, since the variables αi(t) get very small as t → ∞
(and equivalently for βi(t) as t → 0), in practice the recur-
sive equations presented above may lead to numerical insta-
bility. We now present a simple workaround, based on Ra-
biner’s [1989] solution for a similar problem, which consists
in rescaling the variables αi(t) and βi(t) after each recursion.

Let wt =
∑
i αi(t). Starting with α̂i(1) = αi(1)/w1, we

will apply the following recursion, for t ≥ 2:
α′j(t) =

∑
i α̂i(t− 1)k

at−1

ist
πstatd

at
stj
,

α̂j(t) = α′j(t)/w
′
t,

(5)

where w′t =
∑
i α
′
i(t). Using induction, it is easy to show

that

α̂i(t) =

t∏
j=1

(w′j)
−1αi(t) = w−1

t αi(t), (6)

and thus the variables α̂i(t) define a distribution (and are
in general representable with standard machine precision).
From Table 1 we know that

Pr(Z1:τ |λ) =

m∑
i=1

αi(τ − 1)βi(τ − 1)

=

τ−1∏
j=1

w′j

m∑
i=1

α̂i(τ − 1)k
aτ−1

isτ
, (7)

which means that, as long as the variables w′j are available,
we can use the scaled forward variables to compute the prob-
ability of any sequence in a SFM.

Although we do not need the backward variables to com-
pute Pr(Z1:τ |λ), it will be convenient to also define their
scaled version. Starting with β̂i(τ − 1) = βi(τ − 1) and
β̂i(τ − 2) = βi(τ − 2)/wτ−1, we will apply the following
recursion, for t < τ − 2:

β′i(t− 1) =
∑
j β̂j(t)d

at
stj
πstatk

at−1

i,st
,

β̂i(t− 1) = β′i(t− 1)/w′t.
(8)



Note that, since the magnitude of β′i(t− 1) and α′i(t) is com-
parable, the computation of β̂i(t) will also be numerically
stable. One can show that

β̂i(t) =

τ−1∏
j=t+1

(w′j)
−1βi(t). (9)

From (6) and (9) we know that α̂i(t)β̂i(t) =∏τ−1
j=1 (w′j)

−1αi(t)βi(t), which, combined with (4), implies
that

α̂i(t)β̂i(t)∑
i α̂i(t)β̂i(t)

=
αi(t)βi(t)∑
i αi(t)βi(t)

= Pr(Ht = i|Z1:τ , λ). (10)

Equation (10) will be useful for learning a SFM from data, as
we discuss next.

4 Expectation-Maximization Algorithm
One of the motivations for introducing the SFM is to provide
a framework for the application of the stochastic-factorization
trick directly from data. The idea is as follows: given a se-
quence of observation-action pairs coming from a set of na
transition matrices Pa, instead of estimating the matrices Pa

directly, we estimate a SFM F ≡ (Da,Ka,Π,µ). By doing
so, we automatically have approximations DaKa ≈ Pa.

The strategy above has two benefits. First, by estimating
Da and Ka instead of Pa, we reduce the number of param-
eters we are estimating from n2 to 2nm. Second, once we
have the SFM, we do not need to actually compute the multi-
plication DaKa: instead, we compute P̄a = KaDa and use
this smaller matrix in place of Pa.

In this section we discuss how to compute a SFM di-
rectly from data. Since it is a latent-variable model, we
resort to the well know expectation-maximization (EM) al-
gorithm [Dempster et al., 1977]. We assume the reader
is familiar with the basic principles of EM; for good re-
views of the subject see for example Bishop’s [2006] book
or Bilmes’s [1998] tutorial.

4.1 Derivation
Given a sequence of observation-action pairs, z1:τ , our goal is
to compute a SFM that maximizes the likelihood of the data,
L(λ|z1:τ ) = Pr(z1:τ |λ). As well known, the EM algorithm
does this through the function

Q(λ, λ′) =
∑

h1:τ∈H1:τ

log Pr(h1:τ , Z1:τ |λ)Pr(h1:τ |Z1:τ , λ
′).

(11)
In the “E” step we use the current parameter values λ′ to com-
pute the expectation above; in the “M” step we maximize the
expectation we computed with respect to λ. In this section we
will show how to derive update equations to compute a SFM
based on the above framework. In order to improve readabil-
ity we will drop the subscript 1 : τ throughout the section,
that is, we will use h, Z, and z to refer to h1:τ , Z1:τ , and z1:τ .

As shown in (1), in the case of a SFM we have

Pr(h, Z|λ) = µs1

τ−1∏
t=1

πstatd
at
stht

kathtst+1
. (12)

Substituting (12) in (11), the Q function becomes

Q(λ, λ′) =
∑
h∈H

logµs1Pr(h|Z, λ′)+

+
∑
h∈H

(
τ−1∑
t=1

log πstat

)
Pr(h|Z, λ′)+

+
∑
h∈H

(
τ−1∑
t=1

log datstht

)
Pr(h|Z, λ′)︸ ︷︷ ︸

∆D

+

+
∑
h∈H

(
τ−1∑
t=1

log kathtst+1

)
Pr(h|Z, λ′)︸ ︷︷ ︸

∆K

(recall that here H represents the space of all possible se-
quences h of length τ ). We will focus on the third term of
the equation above, tagged as “∆D,” to show how to derive
update equations for the elements of the matrices Da; the
update equations for the remaining parameters of a SFM are
obtained in an analogous way. Our derivation closely follows
that of Bilmes [1998].

Given z, suppose that st = i and at = u. Then, for
each value of j ∈ {1, 2, ...,m}, the corresponding term
log duij appearing in ∆D will multiply Pr(h|Z, λ′) if and
only if the tth element in h is j—that is, duij will multiply∑
h∈H Pr(h|Z, λ′)1{ht = j} = Pr(Ht = j|Z, λ′) (here

1{·} is the indicator function). Thus, we can rewrite ∆D as:

∆D =

na∑
u=1

n∑
i=1

m∑
j=1

log duij

τ−1∑
t=1

Pr(Ht = j|Z, λ′)1{st = i, at = u}.

We want to maximizeQ(λ, λ′) with respect to λ. One way to
do so is to add the Lagrange multipliers κui to account for the
constraints

∑
j d

u
ij = 1, which leads to

∆′D = ∆D −
na∑
u=1

n∑
i=1

κui

(
m∑
j=1

duij − 1

)
.

Now, if we make ∂∆′D/∂d
u
ij = 0, we have a necessary con-

dition for duij to be an extreme point of Q. Since

∂∆′D
∂duij

=
1

duij

τ−1∑
t=1

Pr(Ht = j|Z, λ′)1{st = i, at = u} − κui ,

we know that

duij =

(
τ−1∑
t=1

Pr(Ht = j|Z, λ′)1{st = i, at = u}

)
/κui . (13)

If we sum (13) over j, using the fact that
∑
j d

u
ij = 1, we

obtain κui =
∑τ−1
t=1 1{st = i, at = u}. Substituting κui back

in (13), we have the following update rule for duij :

duij =

∑τ−1
t=1 Pr(Ht = j|Z, λ′)1{st = i, at = u}∑τ−1

t=1 1{st = i, at = u}
. (14)

If we follow the same steps as above replacing ∆D with ∆K
we arrive at the following update equation for kuij :

kuij =

∑τ−1
t=1 Pr(Ht = i|Z, λ′)1{st+1 = j, at = u}∑τ−1

t=1 Pr(Ht = i|Z, λ′)1{at = u}
. (15)



As discussed in Section 3.2, we can compute Pr(Ht =
i|Z, λ′) using (10).

Update equations (14) and (15) make intuitive sense:
loosely speaking, they are the equations for computing the
relative frequency of events with the occurrence of Ht = i
replaced by its probability. Based on this insight, and follow-
ing Rabiner’s [1989] reasoning, we can extend our algorithm
to the case in which we have c sequences of observations and
actions, zl1:τl = {sl1, al1, ..., alτl−1, s

l
τl
}, with l = 1, 2, ..., c.

In this case we have the following update rules:

duij =

∑c
l=1

∑τl−1
t=1 Pr(Ht = j|Z = zl, λ′)1{slt = i, alt = u}∑c

l=1

∑τl−1
t=1 1{slt = i, alt = u}

.

(16)

kuij =

∑c
l=1

∑τl−1
t=1 Pr(Ht = i|Z = zl, λ′)1{slt+1 = j, alt = u}∑c
l=1

∑τl−1
t=1 Pr(Ht = i|Z = zl, λ′)1{alt = u}

.

(17)

In principle, we could follow the steps above to derive up-
date equations for µi and πiu. Note though that since these
parameters are based on observable quantities, the associated
update equations will be simply the relative frequency of the
corresponding events, that is:

µi =

∑c
l=1 1{sl1 = i}

c
and πiu =

∑c
l=1

∑τl−1
t=1 1{slt = i, alt = u}∑c

l=1

∑τl−1
t=1 1{slt = i}

.

(18)
Since the quantities appearing in (18) do not depend on the
parameters of the SFM, the estimates of µ and Π will be fixed
throughout the EM iterations. Note that in scenarios where
we have control over the collection of data we generally know
µ and Π, which means that these parameters do not have to
be estimated at all.

To conclude, we note that for both practical and theoreti-
cal reasons the stochastic-factorization trick is sometimes ap-
plied with a single D or a single K (see Barreto et al., 2011
and Barreto et al., 2014, respectively). One can easily spe-
cialize the proposed method to these particular cases. Having
a single K, for example, corresponds to replacing Assump-
tion (ii) with Pr(Ht|At, St, Ht−1, ..., S1) = Pr(Ht|St). The
resulting update equation will be expression (17) without the
restriction alt = u.

4.2 Algorithm
Algorithm 1 shows a step by step description of the pro-
posed method, which we call EMSF. The pseudo-code uses
two matrices to represent the forward and backward vari-
ables: α ∈ Rτ−1×m, where αti = α̂i(t), and β ∈ Rτ−1×m,
where βti = β̂i(t). For each sequence zl1:τl , EMSF first com-
putes α using (5) and then computes β using (8). Then,
α and β are multiplied element-wise, giving rise to matrix
C ∈ Rτ−1×m. After the rows of C have been normalized,
as shown in line 39 of Algorithm 1, we have cti = Pr(Ht =
i|Z1:τl = zl, λ′) (see (10)). These values are then used to
compute the numerator of update equations (16) and (17),
which are accumulated in the auxiliary matrices D̂a ∈ Rn×m
and K̂a ∈ Rm×n. After all the sequences have been pro-
cessed, the rows of D̂a and K̂a are normalized (lines 51
and 52 of Algorithm 1), which corresponds to completing the
application of (16) and (17) to obtain the new estimates of Da

Algorithm 1 EMSF

1: Input:

{z1
1:τ1 , z

2
1:τ2 , ..., z

c
1:τc} . Data

m ∈ N . Order of the factorization
µ ∈ Rn . Initial distribution
Π ∈ Rn×|A| . Exploration policy
ε > 0 . Stop criterion

2: Output: DaKa ≈ Pa, for a ∈ A
3:
4: for each a ∈ A do
5: Da ← random stochastic matrix in Rn×m
6: Ka ← random stochastic matrix in Rm×n
7:
8: L← 0; L′ ←∞ . L is the data log likelihood
9: while |L− L′| > ε do

10: L′ ← L ; L← 0
11:12: for each a ∈ A do D̂a ← 0 ∈ Rn×m; K̂a ← 0 ∈ Rm×n
13:14: for l← 1 to c do
15: τ ← τl
16: s← {sl1, sl2, ..., slτ} . Extract sli:τl from zl1:τl

17: a← {al1, al2, ..., alτ−1} . Extract ali:τl−1 from zl1:τl

18: α← 0 ∈ Rτ−1×m

19: β ← 0 ∈ Rτ−1×m

20: w′ ← 0 ∈ Rτ−1

21: . Compute α
22:
23: (α)1 ← µ1πs1a1(Da1)s1 . (α)i is α’s ith row
24: w′1 ←

∑
i α1i

25: (α)1 ← (α)1/w
′
1

26: for t← 2 to τ − 1 do
27: (α)t ←

(∑
i α(t−1)ik

at−1

ist

)
πstat(D

at)st
28: w′t ←

∑
i αti

29: (α)t ← (α)t/w
′
t

30: . Compute β
31:
32: (β)τ−1 ← (Kaτ−1)sτ . (K)i is K’s ith column
33: for t← τ − 2 to 1 do
34: (β)t ←

∑
i β(t+1)id

at+1

(st+1)iπ(st+1)(at+1)(K
at)st+1

35: (β)t ← (β)t/w
′
t+1

36: . Update D̂a and K̂a

37:
38: C← α⊗ β . Element-wise multiplication
39: for i ∈ 1, 2, ..., τ − 1 do (C)i ← (C)i/

∑
j cij

40: for t← 1 to τ − 1 do
41: (D̂at)st ← (D̂at)st + (C)t
42: (K̂at)st+1 ← (K̂at)st+1 + (C)t

43:
44: . Update L based on (7)
45:
46: L← L +

∑
i logw′i + log ((α)τ−1(Kaτ−1)sτ )

47:
48: . Update Da and Ka

49:
50: for each a ∈ A do
51: for i ∈ 1, 2, ..., n (D̂a)i ← (D̂a)i/

∑
j d̂

a
ij

52: for i ∈ 1, 2, ...,m (K̂a)i ← (K̂a)i/
∑
j k̂

a
ij

53: Da ← D̂a; Ka ← K̂a

54:
55: return Da and Ka, with a ∈ A



and Ka. The process continues until the decrease on the data
log likelihood falls below a given threshold.

EMSF is an expectation-maximization algorithm, and thus
it will only converge to a local maximum of L. The solu-
tion the algorithm converges to is determined by the initial
values of Da and Ka. Besides its initialization, the approxi-
mation computed by EMSF depends only on one parameter,
m. The parameter m controls the complexity of the SFM
computed by EMSF, and thus it can be seen as a “regular-
izer” of the approximations DaKa ≈ Pa (see discussion in
Section 5) [Hastie et al., 2002; Bishop, 2006].

As for computational complexity, each iteration of EMSF
is O(τm), where τ =

∑
l τl. Thus, the cost of the algorithm

is not a direct function of n, the size of the matrices Pa be-
ing estimated. Of course, n will play a role in the definition
of an appropriate value for τ , since EMSF estimates 2nanm
parameters.

5 Experiments
In this section we present computational experiments to illus-
trate the properties and usefulness of our algorithm. The first
experiment is a “proof of concept”: we generated transition
matrices P ∈ R100×100, with srk(P) = 20, and tried to re-
cover them with EMSF using different values for m. We then
compared EMSF’s results with those obtained by directly es-
timating P via maximum likelihood (referred to in the plots
as CNT, for “counting”). The results are shown in Figure 2.

Since EMSF estimates fewer parameters than CNT, its ap-
proximation error decreases faster with the number of sam-
ple transitions. However, since the EM algorithm only con-
verges to a local maximum ofL, EMSF’s approximation error
stagnates at a positive value, even when m = srk(P), while
CNT’s approximation keeps improving as τ →∞.

These results are exactly as expected. As CNT is statis-
tically consistent, we know that its approximation error will
converge to zero, but this comes at the price of higher estima-
tion errors at lower values of τ . EMSF reduces the estimation
error by enforcing a specific structure on P—in terms of the
classical bias-variance analysis, EMSF increases bias and de-
creases variance when m < n [Hastie et al., 2002].

This view of EMSF also helps to explain the impact of the
parameter m over its performance. Since m directly con-
trols the trade off between bias and variance, when comput-
ing a stochastic factorization from data the “optimal” value
for this parameter depends not only on srk(P), but also on
the amount of data available. In general, as the number of
transitions increases so does the best value for m. This is,
again, exactly the trend observed in Figure 2.

It is clear then that EMSF can be seen as a strategy to reg-
ularize the approximation of P in order to reduce the number
of transitions needed for learning. An interesting question is
whether the structure imposed on P by our algorithm really
arises in practice. In order to answer this question, we used
EMSF to help a reinforcement learning agent learn how to
play blackjack.

The game of blackjack was implemented exactly as de-
scribed in Section 5.1 of Sutton and Barto’s [1998] book. The
experiments were carried out in the following way. First, us-
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Figure 2: ‖ P−P̃ ‖F, where ‖ · ‖F is the Frobenius norm and
P̃ is an estimate of P. Here P = DK, with D ∈ R100×20

and K ∈ R20×100 generated by sampling their elements from
a uniform distribution and then normalizing. Results were
averaged over 50 runs.

ing CNT we computed estimates of both the transition ma-
trices Pa and the expected-reward vectors ra of the Markov
decision process (MDP) describing the game. Policy itera-
tion (PI) was then used with the resulting model to compute
a policy, which was evaluated on 106 games of blackjack.

In order to evaluate EMSF we used an algorithm intro-
duced by Barreto et al. [2014] called policy iteration based
on stochastic factorization (PISF). Given DaK ≈ Pa and
Dar̄ ≈ ra, PISF computes an approximation of the MDP’s
value function, ṽ ≈ v∗, in O(n) time per iteration; Bar-
reto et al. [2014] have shown that ‖ v∗ − ṽ ‖∞ → 0 as
‖DaK−Pa ‖∞ → 0 and ‖Dar̄−ra ‖∞ → 0 for all a ∈ A.
We used EMSF to compute the factorization used by PISF.
Since in blackjack the rewards are completely defined by the
end state of a transition, we can compute r̄ as r̄ = Kr̂,
where r̂i is an estimate of the reward associated with tran-
sitions ending in state i. This is clear when we note that
ra = Par̂ ≈ DaKr̂.

Figure 3 compares the results obtained by CNT+PI and
EMSF+PISF on blackjack. Both methods are contrasted with
an agent that uses the same strategy used by the game’s
dealer [Sutton and Barto, 1998]. Note how the results shown
in Figure 3 reproduce the trend seen in Figure 2. In par-
ticular, after playing only 3000 games, all the EMSF+PISF
agents have already outperformed the dealer’s strategy, while
CNT+PI needs twice as many games to reach the same
level of playing. The superior performance of EMSF+PISF
is maintained up until 300000 games played. These re-
sults show that the structural assumption underlying EMSF, a
stochastic factorization, do arise in real applications—which
in turn suggests that our algorithm can be useful in practice.

6 Related Work
Stochastic factorization is a particular case of nonnegative
matrix factorization [Paatero and Tapper, 1994; Lee and Se-
ung, 1999]. In fact, Cohen and Rothblum [1991] have shown
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Figure 3: Results on the game of blackjack. The values cor-
respond to the expected return obtained by each agent, esti-
mated on 106 games. Error bars represent one standard error
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that one can always derive a stochastic factorization from a
nonnegative factorization of a stochastic matrix. In principle,
thus, any algorithm designed for the latter can also be used to
compute the former (see discussion in Barreto et al.’s [2014]
paper). Note though that algorithms designed for nonnega-
tive matrix factorization assume that we have access to the
elements of P (or at least to a subset of them). In contrast,
EMSF has no access to any element of P, only to data ex-
tracted from this matrix (this is possible precisely because of
the extra structure assumed by stochastic factorization, since
it is not clear how to extract data from a nonnegative matrix
that is not stochastic).

As mentioned in the introduction, in the scenario consid-
ered here it is possible to start from an estimate of P and
then use it to compute D and K through a nonnegative matrix
factorization algorithm. Similar ideas have been explored by
Finesso et al. [2010], Lakshminarayanan and Raich [2010],
and Cybenko and Crespi [2011] in the context of HMM
learning—except that instead of estimating P these authors
estimate alternative matrix representations of the observation
dynamics. A potential problem with applying these or similar
approaches to learn a SFM is that the matrices representing
the observation dynamics are at least n×n, which amounts to
estimating O(n2) parameters or more—exactly what EMSF
is trying to avoid.

EMSF has clear similarities with the well known Baum-
Welch algorithm, an EM method to compute the parameters
of an HMM from data [Baum, 1972]. Given this similarity,
and considering the connection between SFMs and HMMs,
shown in Figure 1, it is natural to ask whether other methods
to learn an HMM could also be adapted to compute a stochas-
tic factorization (since the literature on this subject is vast, we
redirect the reader to Cappé et al.’s [2005] book to serve as a
starting point).

Looking at SFMs from a broader perspective, they are a
particular instance of latent variable models. Recently, there
has been renewed interest in the development of algorithms to

learn the parameters of such models, motivated by a reduction
of the problem to a singular value decomposition of some ma-
trix representing the observation dynamics [Hsu et al., 2009;
Siddiqi et al., 2010; Song et al., 2010; Bailly, 2011; Balle et
al., 2012]. Unlike EM, these so-called “spectral methods” al-
ways converge to a global optimum, and are also statistically
consistent (under some reasonable assumptions). As with the
algorithms that learn an HMM based on a nonnegative matrix
factorization, the main difficulty in adapting spectral methods
to learn a SFM is the fact that they build on the decomposition
of a matrix that is at least n × n, which means they require
estimating at least n2 parameters. In any case, the develop-
ment of alternative methods to learn a SFM that overcome the
limitations of EM is a promising topic for future research.

7 Conclusion
This paper introduced SFM, a probabilistic model that
encompasses a stochastic factorization, and presented an
expectation-maximization algorithm, EMSF, to compute the
model’s parameters from data. Our algorithm has a single pa-
rameter, m, which can be seen as a practical mechanism to
control the bias-variance trade off in the approximation of a
transition matrix. This makes it possible to adjust the com-
plexity of the model to the amount of data available; if the
transition matrix is factorizable or nearly so, one can compute
good approximations using less data than would be needed
for direct maximum likelihood estimation. Our experiments
suggest that factorizable transition matrices arise in practice.

One interesting direction for future research is to extend
the ideas presented in this paper to continuous state spaces.
Another promising line of investigation is to develop an in-
cremental version of EMSF which makes it possible to incor-
porate new data to the model without the need to store the
sample transitions already used [Khreich et al., 2012]. This
extension would allow EMSF to scale to much larger datasets
and also to be applied on-line, potentially using the model
already constructed to guide the collection of new sample
transitions [Kearns and Singh, 1998; Brafman and Tennen-
holtz, 2003]. Finally, another interesting direction for future
investigations is the study of SFMs with factored dynamics,
in which the model’s probabilities can be represented by a dy-
namic Bayesian network [Guestrin et al., 2003]. This would
bridge the gap between “factorizable” and “factored” mod-
els, potentially decreasing even further the number of samples
needed to learn a transition matrix [Barreto et al., 2014].
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