
COMP 551 – Applied Machine Learning
Lecture 17: Deep Learning (cont’d)

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.

Joelle Pineau2

Major paradigms for deep learning

• Deep neural networks: The model should be interpreted as a

computation graph.

– Supervised training: Feedforward neural networks.

– Unsupervised pre-training: Stacked autoencoders.

• Special architectures for different problem domains.

– Computer vision => Convolutional neural nets.

– Text and speech => Recurrent neural nets.

COMP-551: Applied Machine Learning

Joelle Pineau3

Neural models for sequences

COMP-551: Applied Machine Learning

• Several datasets contain sequences of data (e.g. time-series, text)
• Bag-of-words assumption looses the ordering information.

• E.g. Machine translation

From Phil Blumson’s slides:

Joelle Pineau4

Recurrent Neural Networks (RNNs)

COMP-551: Applied Machine Learning

RECURRENT NEURAL NETWORKS
• Compare to: Feed Forward Neural Networks:
‣ Information is propagated from the inputs to the outputs
‣ No notion of “time” necessary

x2 x3 x4 x5x1

1st hidden layer:

2nd hidden layer:

Output layer :

15

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

Feed-forward neural net Add cycles in network

Joelle Pineau5

Recurrent neural networks (RNNs)

• RNNs can have arbitrary topology.

– No fixed direction of information flow.

• Delays associated with connections.

– Every directed cycle contains a delay.

• What can we represent with cycles?

COMP-551: Applied Machine Learning

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

Add cycles in network

Joelle Pineau6

Recurrent neural networks (RNNs)

• RNNs can have arbitrary topology.

– No fixed direction of information flow.

• Delays associated with connections.

– Every directed cycle contains a delay.

• What can we represent with cycles?

– Store an internal dynamic state.

– Summarize/encode sequences, time-
series.

– Can capture oscillatory patterns.

– Can ignore some portion of sequence.

– Hard: Sequences with long dependencies.

COMP-551: Applied Machine Learning

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

Add cycles in network

Joelle Pineau7

Recurrent Neural Networks (RNNs)

• Can unroll the RNN in time to get a standard feedforward NN.

COMP-551: Applied Machine Learning

RECURRENT NEURAL NETWORKS
• How to make sense of recurrent connections.
‣ Assume a unit time delay with each connection

‣ We can unroll the RNN in time to get a standard feedforward net that reuse
the same weights at every layer.

18

w 1 w 2

w 3 w 4

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

Unroll

RNN:

time=1

time=2

time=0

time=3

18

Joelle Pineau8

Training RNNs
• Backpropagate through time on the unrolled RNN, with

constraint that corresponding weights are tied.

COMP-551: Applied Machine Learning

TRAINING RNNS
• RNNs are usually trained using the backpropagation through

time algorithm.
• Backpropagation through time: standard backprop through

the unrolled RNN with the constraint that weights are shared.

19

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

Fo
rw

ar
d

inp
ut

 p
ro

pa
ga

tio
n

Backward error propagation

time=1

time=2

time=0

time=3

19

Joelle Pineau9

Training RNNs
• Backpropagate through time on the unrolled RNN, with

constraint that corresponding weights are tied.

• Can specify the target in a few different ways:
– Desired final activation of all units
– Desired activations for all units for multiple time steps.
– Desired activity of a subset of units.

COMP-551: Applied Machine Learning

TRAINING RNNS
• RNNs are usually trained using the backpropagation through

time algorithm.
• Backpropagation through time: standard backprop through

the unrolled RNN with the constraint that weights are shared.

19

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

Fo
rw

ar
d

inp
ut

 p
ro

pa
ga

tio
n

Backward error propagation

time=1

time=2

time=0

time=3

19

Joelle Pineau10

Training RNNs
• Backpropagate through time on the unrolled RNN, with

constraint that corresponding weights are tied.

• Can specify the target in a few different ways:
– Desired final activation of all units
– Desired activations for all units for multiple time steps.
– Desired activity of a subset of units.

• Main challenge:
Exploding/vanishing gradients
(gradients shrink/grow quickly.)

=> Change the architecture.

COMP-551: Applied Machine Learning

TRAINING RNNS
• RNNs are usually trained using the backpropagation through

time algorithm.
• Backpropagation through time: standard backprop through

the unrolled RNN with the constraint that weights are shared.

19

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

w 1 w 2w 3 w 4

Fo
rw

ar
d

inp
ut

 p
ro

pa
ga

tio
n

Backward error propagation

time=1

time=2

time=0

time=3

19

Joelle Pineau11

Long short-term memory (LSTM) network

COMP-551: Applied Machine Learning

LONG SHORT-TERM MEMORY NETWORKS

29

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS

Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton

Department of Computer Science, University of Toronto

ABSTRACT

Recurrent neural networks (RNNs) are a powerful model for
sequential data. End-to-end training methods such as Connec-
tionist Temporal Classification make it possible to train RNNs
for sequence labelling problems where the input-output align-
ment is unknown. The combination of these methods with
the Long Short-term Memory RNN architecture has proved
particularly fruitful, delivering state-of-the-art results in cur-
sive handwriting recognition. However RNN performance in
speech recognition has so far been disappointing, with better
results returned by deep feedforward networks. This paper in-
vestigates deep recurrent neural networks, which combine the
multiple levels of representation that have proved so effective
in deep networks with the flexible use of long range context
that empowers RNNs. When trained end-to-end with suit-
able regularisation, we find that deep Long Short-term Mem-
ory RNNs achieve a test set error of 17.7% on the TIMIT
phoneme recognition benchmark, which to our knowledge is
the best recorded score.

Index Terms— recurrent neural networks, deep neural
networks, speech recognition

1. INTRODUCTION

Neural networks have a long history in speech recognition,
usually in combination with hidden Markov models [1, 2].
They have gained attention in recent years with the dramatic
improvements in acoustic modelling yielded by deep feed-
forward networks [3, 4]. Given that speech is an inherently
dynamic process, it seems natural to consider recurrent neu-
ral networks (RNNs) as an alternative model. HMM-RNN
systems [5] have also seen a recent revival [6, 7], but do not
currently perform as well as deep networks.

Instead of combining RNNs with HMMs, it is possible
to train RNNs ‘end-to-end’ for speech recognition [8, 9, 10].
This approach exploits the larger state-space and richer dy-
namics of RNNs compared to HMMs, and avoids the prob-
lem of using potentially incorrect alignments as training tar-
gets. The combination of Long Short-term Memory [11], an
RNN architecture with an improved memory, with end-to-end
training has proved especially effective for cursive handwrit-
ing recognition [12, 13]. However it has so far made little
impact on speech recognition.

RNNs are inherently deep in time, since their hidden state
is a function of all previous hidden states. The question that
inspired this paper was whether RNNs could also benefit from
depth in space; that is from stacking multiple recurrent hid-
den layers on top of each other, just as feedforward layers are
stacked in conventional deep networks. To answer this ques-
tion we introduce deep Long Short-term Memory RNNs and
assess their potential for speech recognition. We also present
an enhancement to a recently introduced end-to-end learning
method that jointly trains two separate RNNs as acoustic and
linguistic models [10]. Sections 2 and 3 describe the network
architectures and training methods, Section 4 provides exper-
imental results and concluding remarks are given in Section 5.

2. RECURRENT NEURAL NETWORKS

Given an input sequence x = (x1, . . . , xT), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT) and output vector sequence y =
(y1, . . . , yT) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [14]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional RNN

cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [15] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�⇤
h t = H

⇤
W

x
�⇤
h
xt +W�⇤

h
�⇤
h

�⇤
h t�1 + b�⇤

h

⌅
(8)

⇥�
h t = H

⇤
W

x
⇥�
h
xt +W⇥�

h
⇥�
h

⇥�
h t+1 + b⇥�

h

⌅
(9)

yt = W�⇤
h y

�⇤
h t +W⇥�

h y

⇥�
h t + by (10)

Combing BRNNs with LSTM gives bidirectional LSTM [16],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid HMM-
neural network systems is the use of deep architectures, which
are able to build up progressively higher level representations
of acoustic data. Deep RNNs can be created by stacking mul-
tiple RNN hidden layers on top of each other, with the out-
put sequence of one layer forming the input sequence for the
next. Assuming the same hidden layer function is used for
all N layers in the stack, the hidden vector sequences hn are
iteratively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

⇥
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward se-
quences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, the main architecture used in this
paper. As far as we are aware this is the first time deep LSTM
has been applied to speech recognition, and we find that it
yields a dramatic improvement over single-layer LSTM.

3. NETWORK TRAINING

We focus on end-to-end training, where RNNs learn to map
directly from acoustic to phonetic sequences. One advantage
of this approach is that it removes the need for a predefined
(and error-prone) alignment to create the training targets. The
first step is to to use the network outputs to parameterise a
differentiable distribution Pr(y|x) over all possible phonetic
output sequences y given an acoustic input sequence x. The
log-probability log Pr(z|x) of the target output sequence z
can then be differentiated with respect to the network weights
using backpropagation through time [17], and the whole sys-
tem can be optimised with gradient descent. We now describe
two ways to define the output distribution and hence train the
network. We refer throughout to the length of x as T , the
length of z as U , and the number of possible phonemes as K.

3.1. Connectionist Temporal Classification

The first method, known as Connectionist Temporal Classi-
fication (CTC) [8, 9], uses a softmax layer to define a sepa-
rate output distribution Pr(k|t) at every step t along the in-
put sequence. This distribution covers the K phonemes plus
an extra blank symbol ? which represents a non-output (the
softmax layer is therefore size K + 1). Intuitively the net-
work decides whether to emit any label, or no label, at every
timestep. Taken together these decisions define a distribu-
tion over alignments between the input and target sequences.
CTC then uses a forward-backward algorithm to sum over all

xt, ht−1xt, ht−1

xt, ht−1

x
t,
h
t−

1

Long short-term memory cell

LSTM cell equations:

29

Joelle Pineau12

LSTMs for speech recognition
Graves, Mohamed & Hinton (2013) used a bidirectional LSTM to
incorporate both previous and future contextual information to predict a
sequence of phonemes from the sequence of utterances.

COMP-551: Applied Machine Learning

• Graves, Mohamed & Hinton (2013) used a bidirectional LSTM to
incorporate both previous and future contextual information to predict
the sequence of phonemes from the sequence of utterances.

32

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional RNN

cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [15] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�⇤
h t = H

⇤
W

x
�⇤
h
xt +W�⇤

h
�⇤
h

�⇤
h t�1 + b�⇤

h

⌅
(8)

⇥�
h t = H

⇤
W

x
⇥�
h
xt +W⇥�

h
⇥�
h

⇥�
h t+1 + b⇥�

h

⌅
(9)

yt = W�⇤
h y

�⇤
h t +W⇥�

h y

⇥�
h t + by (10)

Combing BRNNs with LSTM gives bidirectional LSTM [16],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid HMM-
neural network systems is the use of deep architectures, which
are able to build up progressively higher level representations
of acoustic data. Deep RNNs can be created by stacking mul-
tiple RNN hidden layers on top of each other, with the out-
put sequence of one layer forming the input sequence for the
next. Assuming the same hidden layer function is used for
all N layers in the stack, the hidden vector sequences hn are
iteratively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

⇥
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward se-
quences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, the main architecture used in this
paper. As far as we are aware this is the first time deep LSTM
has been applied to speech recognition, and we find that it
yields a dramatic improvement over single-layer LSTM.

3. NETWORK TRAINING

We focus on end-to-end training, where RNNs learn to map
directly from acoustic to phonetic sequences. One advantage
of this approach is that it removes the need for a predefined
(and error-prone) alignment to create the training targets. The
first step is to to use the network outputs to parameterise a
differentiable distribution Pr(y|x) over all possible phonetic
output sequences y given an acoustic input sequence x. The
log-probability log Pr(z|x) of the target output sequence z
can then be differentiated with respect to the network weights
using backpropagation through time [17], and the whole sys-
tem can be optimised with gradient descent. We now describe
two ways to define the output distribution and hence train the
network. We refer throughout to the length of x as T , the
length of z as U , and the number of possible phonemes as K.

3.1. Connectionist Temporal Classification

The first method, known as Connectionist Temporal Classi-
fication (CTC) [8, 9], uses a softmax layer to define a sepa-
rate output distribution Pr(k|t) at every step t along the in-
put sequence. This distribution covers the K phonemes plus
an extra blank symbol ? which represents a non-output (the
softmax layer is therefore size K + 1). Intuitively the net-
work decides whether to emit any label, or no label, at every
timestep. Taken together these decisions define a distribu-
tion over alignments between the input and target sequences.
CTC then uses a forward-backward algorithm to sum over all

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional RNN

cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [15] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�⇤
h t = H

⇤
W

x
�⇤
h
xt +W�⇤

h
�⇤
h

�⇤
h t�1 + b�⇤

h

⌅
(8)

⇥�
h t = H

⇤
W

x
⇥�
h
xt +W⇥�

h
⇥�
h

⇥�
h t+1 + b⇥�

h

⌅
(9)

yt = W�⇤
h y

�⇤
h t +W⇥�

h y

⇥�
h t + by (10)

Combing BRNNs with LSTM gives bidirectional LSTM [16],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid HMM-
neural network systems is the use of deep architectures, which
are able to build up progressively higher level representations
of acoustic data. Deep RNNs can be created by stacking mul-
tiple RNN hidden layers on top of each other, with the out-
put sequence of one layer forming the input sequence for the
next. Assuming the same hidden layer function is used for
all N layers in the stack, the hidden vector sequences hn are
iteratively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

⇥
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward se-
quences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, the main architecture used in this
paper. As far as we are aware this is the first time deep LSTM
has been applied to speech recognition, and we find that it
yields a dramatic improvement over single-layer LSTM.

3. NETWORK TRAINING

We focus on end-to-end training, where RNNs learn to map
directly from acoustic to phonetic sequences. One advantage
of this approach is that it removes the need for a predefined
(and error-prone) alignment to create the training targets. The
first step is to to use the network outputs to parameterise a
differentiable distribution Pr(y|x) over all possible phonetic
output sequences y given an acoustic input sequence x. The
log-probability log Pr(z|x) of the target output sequence z
can then be differentiated with respect to the network weights
using backpropagation through time [17], and the whole sys-
tem can be optimised with gradient descent. We now describe
two ways to define the output distribution and hence train the
network. We refer throughout to the length of x as T , the
length of z as U , and the number of possible phonemes as K.

3.1. Connectionist Temporal Classification

The first method, known as Connectionist Temporal Classi-
fication (CTC) [8, 9], uses a softmax layer to define a sepa-
rate output distribution Pr(k|t) at every step t along the in-
put sequence. This distribution covers the K phonemes plus
an extra blank symbol ? which represents a non-output (the
softmax layer is therefore size K + 1). Intuitively the net-
work decides whether to emit any label, or no label, at every
timestep. Taken together these decisions define a distribu-
tion over alignments between the input and target sequences.
CTC then uses a forward-backward algorithm to sum over all

LSTM FOR SPEECH RECOGNITION

32

LSTM FOR SPEECH RECOGNITION
• Graves, Mohamed & Hinton (2013) used a bidirectional LSTM to

incorporate both previous and future contextual information to predict
the sequence of phonemes from the sequence of utterances. �

33

tends to ‘simplify’ neural networks, in the sense of reducing
the amount of information required to transmit the parame-
ters [23, 24], which improves generalisation.

4. EXPERIMENTS

Phoneme recognition experiments were performed on the
TIMIT corpus [25]. The standard 462 speaker set with all
SA records removed was used for training, and a separate
development set of 50 speakers was used for early stop-
ping. Results are reported for the 24-speaker core test set.
The audio data was encoded using a Fourier-transform-based
filter-bank with 40 coefficients (plus energy) distributed on
a mel-scale, together with their first and second temporal
derivatives. Each input vector was therefore size 123. The
data were normalised so that every element of the input vec-
tors had zero mean and unit variance over the training set. All
61 phoneme labels were used during training and decoding
(so K = 61), then mapped to 39 classes for scoring [26].
Note that all experiments were run only once, so the vari-
ance due to random weight initialisation and weight noise is
unknown.

As shown in Table 1, nine RNNs were evaluated, vary-
ing along three main dimensions: the training method used
(CTC, Transducer or pretrained Transducer), the number of
hidden levels (1–5), and the number of LSTM cells in each
hidden layer. Bidirectional LSTM was used for all networks
except CTC-3l-500h-tanh, which had tanh units instead of
LSTM cells, and CTC-3l-421h-uni where the LSTM layers
were unidirectional. All networks were trained using stochas-
tic gradient descent, with learning rate 10�4, momentum 0.9
and random initial weights drawn uniformly from [�0.1, 0.1].
All networks except CTC-3l-500h-tanh and PreTrans-3l-250h
were first trained with no noise and then, starting from the
point of highest log-probability on the development set, re-
trained with Gaussian weight noise (� = 0.075) until the
point of lowest phoneme error rate on the development set.
PreTrans-3l-250h was initialised with the weights of CTC-
3l-250h, along with the weights of a phoneme prediction net-
work (which also had a hidden layer of 250 LSTM cells), both
of which were trained without noise, retrained with noise, and
stopped at the point of highest log-probability. PreTrans-3l-
250h was trained from this point with noise added. CTC-3l-
500h-tanh was entirely trained without weight noise because
it failed to learn with noise added. Beam search decoding was
used for all networks, with a beam width of 100.

The advantage of deep networks is immediately obvious,
with the error rate for CTC dropping from 23.9% to 18.4%
as the number of hidden levels increases from one to five.
The four networks CTC-3l-500h-tanh, CTC-1l-622h, CTC-
3l-421h-uni and CTC-3l-250h all had approximately the same
number of weights, but give radically different results. The
three main conclusions we can draw from this are (a) LSTM
works much better than tanh for this task, (b) bidirectional

Table 1. TIMIT Phoneme Recognition Results. ‘Epochs’ is
the number of passes through the training set before conver-
gence. ‘PER’ is the phoneme error rate on the core test set.

NETWORK WEIGHTS EPOCHS PER
CTC-3L-500H-TANH 3.7M 107 37.6%
CTC-1L-250H 0.8M 82 23.9%
CTC-1L-622H 3.8M 87 23.0%
CTC-2L-250H 2.3M 55 21.0%
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%
TRANS-3L-250H 4.3M 112 18.3%
PRETRANS-3L-250H 4.3M 144 17.7%

Fig. 3. Input Sensitivity of a deep CTC RNN. The heatmap
(top) shows the derivatives of the ‘ah’ and ‘p’ outputs printed
in red with respect to the filterbank inputs (bottom). The
TIMIT ground truth segmentation is shown below. Note that
the sensitivity extends to surrounding segments; this may be
because CTC (which lacks an explicit language model) at-
tempts to learn linguistic dependencies from the acoustic data.

LSTM has a slight advantage over unidirectional LSTMand
(c) depth is more important than layer size (which supports
previous findings for deep networks [3]). Although the advan-
tage of the transducer is slight when the weights are randomly
initialised, it becomes more substantial when pretraining is
used.

5. CONCLUSIONS AND FUTURE WORK

We have shown that the combination of deep, bidirectional
Long Short-term Memory RNNs with end-to-end training and
weight noise gives state-of-the-art results in phoneme recog-
nition on the TIMIT database. An obvious next step is to ex-
tend the system to large vocabulary speech recognition. An-
other interesting direction would be to combine frequency-
domain convolutional neural networks [27] with deep LSTM.

Tanh RNN ⇒

�LSTMs

33

Joelle Pineau13

Tasks for which LSTMs are best

• LSTM architecture has existed for many years (Hochreiter &

Schmidhuber 1997).

• Several state-of-the-art results:

– Cursive handwriting recognition (Graves & Schmidhuber, 2009)

– Speech recognition (Graves, Mohamed & Hinton, 2013)

– Machine translation (Sutskever, Vinyals & Le, 2014)

– Question-answer (Weston et al., 2015)

– Unstructured dialogue response generation (Serban et al., 2016)

• Main model for language understanding & generation tasks.

COMP-551: Applied Machine Learning

Joelle Pineau14

Neural Language Modelling

• Given sequence of words:
x1, x2, …., xt-1, xt

• Neural Language Modelling
p(xt | xt-n,...,xt-1) = fx(xt-n,...,xt-1)

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

Joelle Pineau15

Neural Language Modelling

• Given sequence of words:
x1, x2, …., xt-1, xt

• Neural Language Modelling
p(xt | xt-n,...,xt-1) = fx(xt-n,...,xt-1)

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

Joelle Pineau16

Neural Language Modelling

• Given sequence of words:
x1, x2, …., xt-1, xt

• Neural Language Modelling
p(xt | xt-n,...,xt-1) = fx(xt-n,...,xt-1)

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
20

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)1-of-K encoding of each word
(2)Continuous space word representation

(3)Nonlinear hidden layer

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

xt0

st0 = W

>
xt0 , where W 2 R|V |⇥d

h =tanh(U> [st�1; st�2; · · · ; st�n] + b)

, where U 2 Rnd⇥d0
and b 2 Rd0

LANGUAGE MODELLING
21

Topics: Neural Language Modelling

• Building a neural language model (Bengio et al., 2000)

(1)Unnormalized probabilities

(2)Softmax normalization
1-

of
-K

 c
od

in
gC

on
tin

uo
us

-s
pa

ce
W

or
d

R
ep

re
se

nt
at

io
n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

p(x
t

|x
t�n

, . . . , x

t�1) = f

xt(xt�n

, . . . , x

t�1)

y =V h+ c, where V 2 R|V |⇥d0
and c 2 R|V |

p(xt = i|xt�n, . . . , xt�1) =
exp(yi)

P|V |
j=1 exp(yj)

Joelle Pineau17

Neural Language Modelling

• Continuous space representation - Embeddings

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
23

Topics: Continuous-space representation — Embeddings

1-
of

-K
 c

od
in

gC
on

tin
uo

us
-s

pa
ce

W
or

d
R

ep
re

se
nt

at
io

n

W
or

d
Ss

am
pl

e

ui

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

Softmax

Nonlinear projection

Continuous-Space Representation –
so-called Word Embeddings

I
W: a lookup table of word
embeddings

I
z: a phrase representation?

Continuous-Space Representation –
so-called Word Embeddings

I
W: a lookup table of word
embeddings

I
z: a phrase representation?

Joelle Pineau18

Language modelling from recursion

• Directly model the conditional probabilities.

• Recursive Construction:

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

Joelle Pineau19

Language modelling from recursion

• Directly model the conditional probabilities.

• Recursive Construction:

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
29

Topics: Language Modelling via Recursion
• Example:

(1) Initialization:
(2) Recursion

(1)
(2)
(3)

(3) Readout:

• It works for any number of context words

h0 = 0

h1 = f(h0, the)

h2 = f(h1, cat)
h3 = f(h2, is)

p(eating|the, cat, is) = g(h3)

p(eating|the, cat, is)

Joelle Pineau20

Language modelling from recursion

• Directly model the conditional probabilities.

• Recursive Construction:

We call ht an internal hidden state,
or memory, which summarizes history from x1 up to xt-1.

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
28

Topics: Language Modelling via Recursion
• Directly model the original conditional probabilities

• Recursive Construction of
• Initial Condition:
• Recursion:

• We call an internal hidden state or memory

• summarizes/memorizes the history from up to

p(x1, x2, . . . , xT) =
TY

t=1

p(xt | x1, . . . , xt�1)

f

ht = f(xt�1, ht�1)

h0 = 0

ht

ht x1 xt�1

ht

xt�1

f

LANGUAGE MODELLING
29

Topics: Language Modelling via Recursion
• Example:

(1) Initialization:
(2) Recursion

(1)
(2)
(3)

(3) Readout:

• It works for any number of context words

h0 = 0

h1 = f(h0, the)

h2 = f(h1, cat)
h3 = f(h2, is)

p(eating|the, cat, is) = g(h3)

p(eating|the, cat, is)

Joelle Pineau21

Recurrent neural language model

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
32

Topics: Recurrent neural network language model
• Example:

• Read, Update and Predict

p(the, cat, is, eating)

h0 h1 h2 h3

p(the) p(cat| . . .) p(is| . . .) p(eating| . . .)

the cat is

LANGUAGE MODELLING
33

Topics: Building an RNN Language Model
• What do we need?

• Transition Function
• Output/Readout Function

ht = f(ht�1, xt�1)

h0 h1 h2 h3

p(the) p(cat| . . .) p(is| . . .) p(eating| . . .)

the cat is

p(xt = w|x1, . . . , xt�1) = gw(ht)

Joelle Pineau22

Training an RNN language model

• Loss function:

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
40

Topics: Cost Function
• Log-Probability of a sentence

• Train an RNN LM to maximize the log-prob’s of training sentences
• Given a training set of sentences:

log p(x1, x2, . . . , xT) =

TX

t=1

log p(xt | x1, . . . , xt�1)

(x1, x2, . . . , xT)

N
�
(x1

1, . . . , x
1
T1
), . . . , (xN

1 , . . . , x

N
TN

)

J(⇥)

maximize⇥
1

N

NX

n=1

log p(x

n
1 , . . . , x

n
Tn

)

() minimize⇥J(⇥) = � 1

N

NX

n=1

TnX

t=1

log p(x

n
t |xn

1 . . . , x
n
t�1)

Joelle Pineau23

Training an RNN language model

• Loss function:

• Train an RNN LM to maximize the log-prob’s of training sentences.

COMP-551: Applied Machine Learning

LANGUAGE MODELLING
40

Topics: Cost Function
• Log-Probability of a sentence

• Train an RNN LM to maximize the log-prob’s of training sentences
• Given a training set of sentences:

log p(x1, x2, . . . , xT) =

TX

t=1

log p(xt | x1, . . . , xt�1)

(x1, x2, . . . , xT)

N
�
(x1

1, . . . , x
1
T1
), . . . , (xN

1 , . . . , x

N
TN

)

J(⇥)

maximize⇥
1

N

NX

n=1

log p(x

n
1 , . . . , x

n
Tn

)

() minimize⇥J(⇥) = � 1

N

NX

n=1

TnX

t=1

log p(x

n
t |xn

1 . . . , x
n
t�1)

LANGUAGE MODELLING
40

Topics: Cost Function
• Log-Probability of a sentence

• Train an RNN LM to maximize the log-prob’s of training sentences
• Given a training set of sentences:

log p(x1, x2, . . . , xT) =

TX

t=1

log p(xt | x1, . . . , xt�1)

(x1, x2, . . . , xT)

N
�
(x1

1, . . . , x
1
T1
), . . . , (xN

1 , . . . , x

N
TN

)

J(⇥)

maximize⇥
1

N

NX

n=1

log p(x

n
1 , . . . , x

n
Tn

)

() minimize⇥J(⇥) = � 1

N

NX

n=1

TnX

t=1

log p(x

n
t |xn

1 . . . , x
n
t�1)

Joelle Pineau24

Neural Machine Translation

COMP-551: Applied Machine Learning

NEURAL MACHINE TRANSLATION
60

e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d

R
ep

re
se

nt
at

io
n

si

wi

R
ec

ur
re

nt
St

at
e hi

W
or

d
Ss

am
pl

e

ui

R
ec

ur
re

nt
St

at
ez i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
or

d
Pr

ob
ab

ili
ty

Encoder

D
ecoder

(Chrisman, 1991;
Forcada&Ñeco, 1997;
Castaño&Casacuberta, 1997;
Kalchbrenner&Blunsom, 2013;
Sutskever et al., 2014;
Cho et al., 2014)

NEURAL MACHINE TRANSLATION
60

e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d

R
ep

re
se

nt
at

io
n

si

wi

R
ec

ur
re

nt
St

at
e hi

W
or

d
Ss

am
pl

e

ui

R
ec

ur
re

nt
St

at
ez i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
or

d
Pr

ob
ab

ili
ty

Encoder

D
ecoder

(Chrisman, 1991;
Forcada&Ñeco, 1997;
Castaño&Casacuberta, 1997;
Kalchbrenner&Blunsom, 2013;
Sutskever et al., 2014;
Cho et al., 2014)

Joelle Pineau25

Dialogue management

Dialogue System

Automatic
Speech

Recognizer

Natural
Language
Interpreter

Text-To-
Speech

Synthesizer

Natural
Language
Generator

Dialogue
State

Tracker

Dialogue
Response
Selection

External
Knowledge

+
Memory

+
User Model

+
…

COMP-551: Applied Machine Learning

Joelle Pineau26

Dialogue datasetsCurrent Dialogue Datasets

Dataset Type Task # Dialogues # Utterances Description

Switchboard [2] Human-human Various 2,400 — Telephone conversations
spoken on pre-specified topics

DSTC1 [9] Human-computer State 15,000 210,000 Bus ride information
spoken tracking system

DSTC2 [4] Human-computer State 3,000 24,000 Restaurant booking
spoken tracking system

DSTC3 [3] Human-computer State 2,265 15,000 Tourist information
spoken tracking system

DSTC4 [5] Human-human State 35 — 21 hours of tourist info
spoken tracking exchange over Skype

Twitter Human-human Next utterance 1,300,000 3,000,000 Post/ replies extracted
Corpus [6] micro-blog generation from Twitter
Twitter Triple Human-human Next utterance 29,000,000 87,000,000 A-B-A triples from
Corpus [8] micro-blog generation Twitter replies
Sina Weibo [7] Human-human Next utterance 4,435,959 8,871,918 Post/ reply pairs extracted

micro-blog generation from Weibo
Ubuntu Dialogue Human-human Next utterance 932,429 7,189,051 Extracted from Ubuntu
Corpus chat classification Chat Logs

Table: A selection of structured and unstructured large-scale datasets applicable
to dialogue systems. Faded datasets are not publicly available. The last entry is
our contribution.

Ryan Lowe*, Nissan Pow*, Iulian Serban†, Joelle Pineau* (*McGill University †Université de Montréal)Samsung Presentation June 13, 2015 4 / 19

Current Dialogue Datasets

Dataset Type Task # Dialogues # Utterances Description

Switchboard [2] Human-human Various 2,400 — Telephone conversations
spoken on pre-specified topics

DSTC1 [9] Human-computer State 15,000 210,000 Bus ride information
spoken tracking system

DSTC2 [4] Human-computer State 3,000 24,000 Restaurant booking
spoken tracking system

DSTC3 [3] Human-computer State 2,265 15,000 Tourist information
spoken tracking system

DSTC4 [5] Human-human State 35 — 21 hours of tourist info
spoken tracking exchange over Skype

Twitter Human-human Next utterance 1,300,000 3,000,000 Post/ replies extracted
Corpus [6] micro-blog generation from Twitter
Twitter Triple Human-human Next utterance 29,000,000 87,000,000 A-B-A triples from
Corpus [8] micro-blog generation Twitter replies
Sina Weibo [7] Human-human Next utterance 4,435,959 8,871,918 Post/ reply pairs extracted

micro-blog generation from Weibo
Ubuntu Dialogue Human-human Next utterance 932,429 7,189,051 Extracted from Ubuntu
Corpus chat classification Chat Logs

Table: A selection of structured and unstructured large-scale datasets applicable
to dialogue systems. Faded datasets are not publicly available. The last entry is
our contribution.

Ryan Lowe*, Nissan Pow*, Iulian Serban†, Joelle Pineau* (*McGill University †Université de Montréal)Samsung Presentation June 13, 2015 4 / 19

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 196–205,
Denver, Colorado, May 31 – June 5, 2015. c�2015 Association for Computational Linguistics

A Neural Network Approach to
Context-Sensitive Generation of Conversational Responses

Alessandro Sordoni1⇤† Michel Galley2† Michael Auli3⇤ Chris Brockett2

Yangfeng Ji4⇤ Margaret Mitchell2 Jian-Yun Nie1⇤ Jianfeng Gao2 Bill Dolan2

1DIRO, Université de Montréal, Montréal, QC, Canada
2Microsoft Research, Redmond, WA, USA

3Facebook AI Research, Menlo Park, CA, USA
4Georgia Institute of Technology, Atlanta, GA, USA

Abstract

We present a novel response generation sys-
tem that can be trained end to end on large
quantities of unstructured Twitter conversa-
tions. A neural network architecture is used
to address sparsity issues that arise when in-
tegrating contextual information into classic
statistical models, allowing the system to take
into account previous dialog utterances. Our
dynamic-context generative models show con-
sistent gains over both context-sensitive and
non-context-sensitive Machine Translation and
Information Retrieval baselines.

1 Introduction

Until recently, the goal of training open-domain con-
versational systems that emulate human conversation
has seemed elusive. However, the vast quantities
of conversational exchanges now available on so-
cial media websites such as Twitter and Reddit raise
the prospect of building data-driven models that can
begin to communicate conversationally. The work
of Ritter et al. (2011), for example, demonstrates that
a response generation system can be constructed from
Twitter conversations using statistical machine trans-
lation techniques, where a status post by a Twitter
user is “translated” into a plausible looking response.

However, an approach such as that presented in Rit-
ter et al. (2011) does not address the challenge of

*The entirety of this work was conducted while at Microsoft
Research.

†Corresponding authors: Alessandro Sordoni (sor-
donia@iro.umontreal.ca) and Michel Galley (mgal-
ley@microsoft.com).

context
because of your game ?

message
yeah i’m on my

way nowresponse
ok good luck !

Figure 1: Example of three consecutive utterances occur-
ring between two Twitter users A and B.

generating responses that are sensitive to the context
of the conversation. Broadly speaking, context may
be linguistic or involve grounding in the physical or
virtual world, but we here focus on linguistic context.
The ability to take into account previous utterances
is key to building dialog systems that can keep con-
versations active and engaging. Figure 1 illustrates
a typical Twitter dialog where the contextual infor-
mation is crucial: the phrase “good luck” is plainly
motivated by the reference to “your game” in the first
utterance. In the MT model, such contextual sensitiv-
ity is difficult to capture; moreover, naive injection
of context information would entail unmanageable
growth of the phrase table at the cost of increased
sparsity, and skew towards rarely-seen context pairs.
In most statistical approaches to machine translation,
phrase pairs do not share statistical weights regard-
less of their intrinsic semantic commonality.

We propose to address the challenge of context-
sensitive response generation by using continuous
representations or embeddings of words and phrases
to compactly encode semantic and syntactic simi-
larity. We argue that embedding-based models af-

196

COMP-551: Applied Machine Learning

Joelle Pineau27

Ubuntu chat corpus

Initial chat room log:

COMP-551: Applied Machine Learning

Joelle Pineau28

Ubuntu chat corpus

Initial chat room log:

Disentangled into 2-

way conversation:

COMP-551: Applied Machine Learning

Joelle Pineau29

Ubuntu dialogue corpus

Key properties:

Histogram of number

of turns per dialogue:

tended recipient of the message is not always triv-
ial.

3.2.1 Recipient Identification
While in most cases the recipient is the first word
of the utterance, it is sometimes located at the end,
or not at all in the case of initial questions. Fur-
thermore, some users choose names correspond-
ing to common English words, such as ‘the’ or
‘stop’, which could lead to many false positives.
In order to solve this issue, we create a dictionary
of usernames from the current and previous days,
and compare the first word of each utterance to its
entries. If a match is found, and the word does
not correspond to a very common English word6,
it is assumed that this user was the intended recip-
ient of the message. If no matches are found, it is
assumed that the message was an initial question,
and the recipient value is left empty.

3.2.2 Utterance Creation
The dialogue extraction algorithm works back-
wards from the first response to find the initial
question that was replied to, within a time frame
of 3 minutes. A first response is identified by the
presence of a recipient name (someone from the
recent conversation history). The initial question
is identified to be the most recent utterance by the
recipient identified in the first response.

All utterances that do not qualify as a first re-
sponse or an initial question are discarded; initial
questions that do not generate any response are
also discarded. We additionally discard conversa-
tions longer than five utterances where one user
says more than 80% of the utterances, as these are
typically not representative of real chat dialogues.
Finally, we consider only extracted dialogues that
consist of 3 turns or more to encourage the model-
ing of longer-term dependencies.

To alleviate the problem of ‘holes’ in the dia-
logue, where one user does not address the other
explicitly, as in Figure 5, we check whether each
user talks to someone else for the duration of their
conversation. If not, all non-addressed utterances
are added to the dialogue. An example conversa-
tion along with the extracted dialogues is shown
in Figure 5. Note that we also concatenate all con-
secutive utterances from a given user.

We do not apply any further pre-processing (e.g.
tokenization, stemming) to the data as released in
the Ubuntu Dialogue Corpus. However the use of

6We use the GNU Aspell spell checking dictionary.

Figure 1: Plot of number of conversations with a
given number of turns. Both axes use a log scale.

dialogues (human-human) 930,000
utterances (in total) 7,100,000

words (in total) 100,000,000
Min. # turns per dialogue 3
Avg. # turns per dialogue 7.71

Avg. # words per utterance 10.34
Median conversation length (min) 6

Table 2: Properties of Ubuntu Dialogue Corpus.

pre-processing is standard for most NLP systems,
and was also used in our analysis (see Section 4.)

3.2.3 Special Cases and Limitations
It is often the case that a user will post an ini-
tial question, and multiple people will respond to
it with different answers. In this instance, each
conversation between the first user and the user
who replied is treated as a separate dialogue. This
has the unfortunate side-effect of having the ini-
tial question appear multiple times in several dia-
logues. However the number of such cases is suf-
ficiently small compared to the size of the dataset.

Another issue to note is that the utterance post-
ing time is not considered for segmenting conver-
sations between two users. Even if two users have
a conversation that spans multiple hours, or even
days, this is treated as a single dialogue. However,
such dialogues are rare. We include the posting
time in the corpus so that other researchers may
filter as desired.

3.3 Dataset Statistics

Table 2 summarizes properties of the Ubuntu Dia-
logue Corpus. One of the most important features
of the Ubuntu chat logs is its size. This is cru-
cial for research into building dialogue managers
based on neural architectures. Another important

turns3 100

COMP-551: Applied Machine Learning

Joelle Pineau30

Task 1: Next utterance classification

Context:
….

“any apache hax around ? I just deleted all of _path_ - which package
provides it?”

“reconfiguring apache do n’t solve it?”

Response 1: “does n’t seem to, no”

Response 2: “you can log in but not transfer files?”

COMP-551: Applied Machine Learning

Joelle Pineau31

The Dual Encoder model

P(flag=1|c,r)

[Lowe, Pow, Serban, Pineau, SIGdial 2015]

Context
encoder

Response
encoder

COMP-551: Applied Machine Learning

Joelle Pineau32

Results: Dual Encoder model on Ubuntu dataset

3
2

learned model parameters. This can be thought
of as a generative approach; given some input re-
sponse, we generate a context with the product
c

0
= Mr, and measure the similarity to the actual

context using the dot product. This is converted
to a probability with the sigmoid function. The
model is trained by minimizing the cross entropy
of all labeled (context, response) pairs [33]:

L = � log

Y

n

p(flag
n

|c
n

, r

n

) +

�

2

||✓||F2

where ||✓||F2 is the Frobenius norm of ✓ = {M, b}.
In our experiments, we use � = 0 for computa-
tional simplicity.

For training, we used a 1:1 ratio between true re-
sponses (flag = 1), and negative responses (flag=0)
drawn randomly from elsewhere in the training
set. The RNN architecture is set to 1 hidden layer
with 50 neurons. The W

h

matrix is initialized us-
ing orthogonal weights [23], while W

x

is initial-
ized using a uniform distribution with values be-
tween -0.01 and 0.01. We use Adam as our opti-
mizer [15], with gradients clipped to 10. We found
that weight initialization as well as the choice of
optimizer were critical for training the RNNs.

4.3 LSTM

In addition to the RNN model, we consider the
same architecture but changed the hidden units
to long-short term memory (LSTM) units [12].
LSTMs were introduced in order to model longer-
term dependencies. This is accomplished using a
series of gates that determine whether a new in-
put should be remembered, forgotten (and the old
value retained), or used as output. The error sig-
nal can now be fed back indefinitely into the gates
of the LSTM unit. This helps overcome the van-
ishing and exploding gradient problems in stan-
dard RNNs, where the error gradients would oth-
erwise decrease or increase at an exponential rate.
In training, we used 1 hidden layer with 200 neu-
rons. The hyper-parameter configuration (includ-
ing number of neurons) was optimized indepen-
dently for RNNs and LSTMs using a validation
set extracted from the training data.

5 Empirical Results

The results for the TF-IDF, RNN, and LSTM mod-
els are shown in Table 4. The models were eval-
uated using both 1 (1 in 2) and 9 (1 in 10) false

examples. Of course, the Recall@2 and Recall@5
are not relevant in the binary classification case.

Method TF-IDF RNN LSTM
1 in 2 R@1 65.9% 76.8% 87.8%
1 in 10 R@1 41.0% 40.3% 60.4%
1 in 10 R@2 54.5% 54.7% 74.5%
1 in 10 R@5 70.8% 81.9% 92.6%

Table 4: Results for the three algorithms using var-
ious recall measures for binary (1 in 2) and 1 in 10
(1 in 10) next utterance classification %.

We observe that the LSTM outperforms both
the RNN and TF-IDF on all evaluation metrics.
It is interesting to note that TF-IDF actually out-
performs the RNN on the Recall@1 case for the
1 in 10 classification. This is most likely due to
the limited ability of the RNN to take into account
long contexts, which can be overcome by using the
LSTM. An example output of the LSTM where the
response is correctly classified is shown in Table 5.

We also show, in Figure 3, the increase in per-
formance of the LSTM as the amount of data used
for training increases. This confirms the impor-
tance of having a large training set.

Context
""any apache hax around ? i just deleted all of
__path__ - which package provides it ?",
"reconfiguring apache do n’t solve it ?"
Ranked Responses Flag
1. "does n’t seem to, no" 1
2. "you can log in but not transfer files ?" 0

Table 5: Example showing the ranked responses
from the LSTM. Each utterance is shown after pre-
processing steps.

6 Discussion

This paper presents the Ubuntu Dialogue Corpus,
a large dataset for research in unstructured multi-
turn dialogue systems. We describe the construc-
tion of the dataset and its properties. The availabil-
ity of a dataset of this size opens up several inter-
esting possibilities for research into dialogue sys-
tems based on rich neural-network architectures.
We present preliminary results demonstrating use
of this dataset to train an RNN and an LSTM for
the task of selecting the next best response in a
conversation; we obtain significantly better results
with the LSTM architecture. There are several in-
teresting directions for future work.

learned model parameters. This can be thought
of as a generative approach; given some input re-
sponse, we generate a context with the product
c

0
= Mr, and measure the similarity to the actual

context using the dot product. This is converted
to a probability with the sigmoid function. The
model is trained by minimizing the cross entropy
of all labeled (context, response) pairs [33]:

L = � log

Y

n

p(flag
n

|c
n

, r

n

) +

�

2

||✓||F2

where ||✓||F2 is the Frobenius norm of ✓ = {M, b}.
In our experiments, we use � = 0 for computa-
tional simplicity.

For training, we used a 1:1 ratio between true re-
sponses (flag = 1), and negative responses (flag=0)
drawn randomly from elsewhere in the training
set. The RNN architecture is set to 1 hidden layer
with 50 neurons. The W

h

matrix is initialized us-
ing orthogonal weights [23], while W

x

is initial-
ized using a uniform distribution with values be-
tween -0.01 and 0.01. We use Adam as our opti-
mizer [15], with gradients clipped to 10. We found
that weight initialization as well as the choice of
optimizer were critical for training the RNNs.

4.3 LSTM

In addition to the RNN model, we consider the
same architecture but changed the hidden units
to long-short term memory (LSTM) units [12].
LSTMs were introduced in order to model longer-
term dependencies. This is accomplished using a
series of gates that determine whether a new in-
put should be remembered, forgotten (and the old
value retained), or used as output. The error sig-
nal can now be fed back indefinitely into the gates
of the LSTM unit. This helps overcome the van-
ishing and exploding gradient problems in stan-
dard RNNs, where the error gradients would oth-
erwise decrease or increase at an exponential rate.
In training, we used 1 hidden layer with 200 neu-
rons. The hyper-parameter configuration (includ-
ing number of neurons) was optimized indepen-
dently for RNNs and LSTMs using a validation
set extracted from the training data.

5 Empirical Results

The results for the TF-IDF, RNN, and LSTM mod-
els are shown in Table 4. The models were eval-
uated using both 1 (1 in 2) and 9 (1 in 10) false

examples. Of course, the Recall@2 and Recall@5
are not relevant in the binary classification case.

Method TF-IDF RNN LSTM
1 in 2 R@1 65.9% 76.8% 87.8%
1 in 10 R@1 41.0% 40.3% 60.4%
1 in 10 R@2 54.5% 54.7% 74.5%
1 in 10 R@5 70.8% 81.9% 92.6%

Table 4: Results for the three algorithms using var-
ious recall measures for binary (1 in 2) and 1 in 10
(1 in 10) next utterance classification %.

We observe that the LSTM outperforms both
the RNN and TF-IDF on all evaluation metrics.
It is interesting to note that TF-IDF actually out-
performs the RNN on the Recall@1 case for the
1 in 10 classification. This is most likely due to
the limited ability of the RNN to take into account
long contexts, which can be overcome by using the
LSTM. An example output of the LSTM where the
response is correctly classified is shown in Table 5.

We also show, in Figure 3, the increase in per-
formance of the LSTM as the amount of data used
for training increases. This confirms the impor-
tance of having a large training set.

Context
""any apache hax around ? i just deleted all of
__path__ - which package provides it ?",
"reconfiguring apache do n’t solve it ?"
Ranked Responses Flag
1. "does n’t seem to, no" 1
2. "you can log in but not transfer files ?" 0

Table 5: Example showing the ranked responses
from the LSTM. Each utterance is shown after pre-
processing steps.

6 Discussion

This paper presents the Ubuntu Dialogue Corpus,
a large dataset for research in unstructured multi-
turn dialogue systems. We describe the construc-
tion of the dataset and its properties. The availabil-
ity of a dataset of this size opens up several inter-
esting possibilities for research into dialogue sys-
tems based on rich neural-network architectures.
We present preliminary results demonstrating use
of this dataset to train an RNN and an LSTM for
the task of selecting the next best response in a
conversation; we obtain significantly better results
with the LSTM architecture. There are several in-
teresting directions for future work.

RNNTF-IDF

TF-IDF : Term frequency – inverse document frequency
TF(t,d) = frequency of a word t in a document d
IDF(t,D) = measure of how much information the word t

provides across corpus of documents D
TF-IDF(t,d,D) = TF(t,d) x IDF(t,D)

Joelle Pineau33

User study

Context:
“Hello. anybody could help? __EOS__”
“You need to say what your problem is, first.”

Response: “the text of some of my applications' menu are not well displayed”
Response: “do you know if cs:s runs good on it?”
Response: “he wants emerald theme...”
Response: “i dont have a cd-rom drive.”
Response: “But wont the number be part? eg., sda4 is always '4'?”

COMP-551: Applied Machine Learning

Joelle Pineau34

User study

Context:
“Hello. anybody could help? __EOS__”
“You need to say what your problem is, first.”

Response: “the text of some of my applications' menu are not well displayed”
Response: “do you know if cs:s runs good on it?”
Response: “he wants emerald theme...”
Response: “i dont have a cd-rom drive.”
Response: “But wont the number be part? eg., sda4 is always '4'?”

COMP-551: Applied Machine Learning

Joelle Pineau35

Task 2: Large corpus next-utterance retrieval

• Search full dataset for a good response: 1 in 106 R@10

• Pre-compute the response encoding for all candidate utterances.

• Output ranked list of responses based on P(flag=1|c,r) = σ(cTMr).

COMP-551: Applied Machine Learning

Joelle Pineau363
6

Query("why is my laptop losing battery so fast")

Top 10 likely responses in order

[[0.99915196]] i wonder if it ' s a heat issue. or it ' s draining the battery so fast that your laptop will shutdown

[[0.99909478]] didnt know that there is a page for apm , thanks :d. well , apm is not quite what i needed . my
battery is going low too fast - although it should work at least __number__ hours (up to __number__) , it is
unknown empty at ~ 1:40 . it is a toshiba m50 satellite and i think that i have to **unknown** something to
spare some energy . the notebook an the accu are __number__ hours old ...

[[0.9989985]] sorry rodd !. how long does it stay on without being plugged in ?. and how old is battery roughly ?

[[0.99867463]] any ideas as to why nothing changes ?. yes to all ?. ok , here ' s what i ' ve got __url__. i followed
this guide : __url__ to install the **unknown** i do n't mind restarting , i can check the bios and see what the temp
is according to it. brb. nothing changed , cpu temp according to bios is the __organization__ temp in sensors and
__organization__ temp is the __organization__ cpu temp. nothing changed , cpu temp according to bios is the
__organization__ temp in sensors and __organization__ temp is the __organization__ cpu tem

[[0.99856425]] i will seriously give you , free of charge , a __number__ ghz athlonxp on an a7v8x with roughly
__number__ gb ram. why do you people have such horrid hardware ?

[[0.99848473]] i have this other computer , mobo is a asus **unknown** and no network card ive tried in it will
work , i have a cheap network hub that is ok , this comp is in it , i got another old one going on it , but it refuses to
use it. ive tried about 10-12 different network adaptors and short of trying to put in a **unknown** system for it im
out of ideas. so far infact , i only have a intel adaptor on a older asus based comp and the __number__ 3com card
in this computer going , most of the other ones i tried were infact , identical models to the 3com in this computer ,
and i tested them to work fine at school ...

[[0.99823273]] blast ... forgot about the __organization__ settings , have n't checked them ... will reboot & have a
look @ bios . thanks !. homebuilt - __person__ a7n8x-e mobo , 1gb ddr , __number__ ghz amd xp-m cpu

Dual Encoder model

Joelle Pineau37

Query("why is my laptop losing battery so fast", "tfidf")

[1] come again ?. you might want to check __url__

[2] ibm thinkpad t22 ?

[3] __gpe__ to know :)

[4] i tried there but there isnt my problem

[5] i guess is another problem .

[6] __gpe__ , np . thanks for your time :)

[7] try livecd , most likely it is hardware issue

[8] this shows my how much time is left . but i would like to see the actual discharge rate

[9] __gpe__ prob not. your __organization__ probably limits charging above a certain % too (why it says
__number__ minutes vs say __number__)

[10] that is correct. fast user switching seems to work better for me (it uses the __organization__ package for
doing it . it is probably a newer version in __gpe__)

Tf-idf match on query

Joelle Pineau38

Measuring response retrieval quality

• BLEU score from Machine Translation analyzes co-occurrence of

n-grams in 2 sentences.

Score computed between true response and generated response.

Dual Encoder model 17.08 (high variance)

Tf-idf 5.81

Random response 0.20

COMP-551: Applied Machine Learning

Joelle Pineau39

Generative modeling of responses

COMP-551: Applied Machine Learning

Joelle Pineau40

Task 3: Natural language response generation
[Serban, A. Sordoni, Y. Bengio, A. Courville, J. Pineau, AAAI 2015]

Hierarchical Encoder-Decoder
– Encode each utterance + Encode the conversation
– Decode response into natural language

COMP-551: Applied Machine Learning

Joelle Pineau41

Results

COMP-551: Applied Machine Learning

Joelle Pineau42

Results

Conclusion?
• Neural models are better than n-gram models.
• HRED is better than RNNs (handles longer dialogues)
• Incorporating Word2Vec and SubTle improves performance.

COMP-551: Applied Machine Learning

Joelle Pineau43

Evaluation metrics

COMP-551: Applied Machine Learning

✅ Perplexity, word error rate

Word overlap metrics: Count number of overlapping word subsets

between generated and reference response.

– From machine translation: BLEU, METEOR

– From text summarization: ROUGE

Joelle Pineau44

Correlation with human judgment

4
4

BLEU-2 Between humans

[Liu, Lowe, Serban, Noseworthy, Charlin, Pineau, EMNLP 2016]

Joelle Pineau45

Task design

Context:
Hello. anybody could help? __EOS__
You need to say what your problem is, first.

Response 1: the text of some of my applications' menu are not well
displayed (ubuntu 8.10) .
Response 2: do you know if cs:s runs good on it?
Response 3: he wants emerald theme...
Response 4: i dont have a cd-rom drive.
Response 5: But wont the number be part? eg., sda4 is always '4'?

Space of acceptable next utterances is large!

It’s hard to pick a good loss function!

COMP-551: Applied Machine Learning

Joelle Pineau46

Automatic Dialogue Evaluation Model (ADEM)

• Given context, model response, and reference response,

ADEM tries to predict the human score for that response.

• Minimize:

4
6

Joelle Pineau47

What you should know

• Types of deep learning architectures:

– Stacked autoencoders

– Convolutional neural networks

– Recurrent neural networks

• Examples of successful applications.

• From more on Deep Learning, see invited talks at DLSS’16:

https://sites.google.com/site/deeplearningsummerschool2016/speakers

(Some material from today’s lecture taken from Kyunghyun Cho’s talk.)

COMP-551: Applied Machine Learning

