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The deep learning objective

COMP-551: Applied Machine Learning
Figure 1: We would like the raw input image to be transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “right” representation should be for all these levels
of abstractions, although linguistic concepts might help guessing what the higher levels should implicitly
represent.
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Learning an autoencoder function
• Goal: Learn a compressed 

representation of the input data.

• We have two functions:

– Encoder:  h = fW(x) = sf (Wx)

– Decoder:  x’ = gW’(h) = sg (W’h)

where s() can be a sigmoid, linear, or other 
function and W, W’ are weight matrices.

x h x’

f g
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Learning an autoencoder function
• Goal: Learn a compressed 

representation of the input data.

• We have two functions:

– Encoder:  h = fW(x) = sf (Wx)

– Decoder:  x’ = gW’(h) = sg (W’h)

where s() can be a sigmoid, linear, or other 
function and W, W’ are weight matrices.

• To train, minimize reconstruction error:

Err(W,W’) = ∑i=1:n L [ xi , gW’ (fW(xi)) ]

using squared-error loss (continuous inputs) 
or cross-entropy (binary inputs).

x h x’

f g



Joelle Pineau5COMP-551: Applied Machine Learning

PCA vs autoencoders
In the case of a linear function:

fW(x) = Wx gŴ(h) = W’h ,

with squared-error loss:

Err(W,W’) = ∑i=1:n || xi – gW’ ( fW(xi ) ) || 2

we can show that the minimum error solution 

W yields the same subspace as PCA.

x h x’
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Stacked autoencoders

Key idea:  Apply greedy layerwise unsupervised pre-training.

COMP-551: Applied Machine Learning

http://www.dmi.usherb.ca/~larocheh/projects_deep_learning.html
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Regularization of autoencoders

• How can we generate sparse autoencoders?  (And also, why?)
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Regularization of autoencoders

• How can we generate sparse autoencoders?  (And also, why?)

• Weight tying of the encoder and decoder weights (W=W’) to 

explicitly constrain (regularize) the learned function.
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Regularization of autoencoders

• How can we generate sparse autoencoders?  (And also, why?)

• Weight tying of the encoder and decoder weights (W=W’) to 

explicitly constrain (regularize) the learned function.

• Directly penalize the output of the hidden units (e.g. with L1 

penalty) to introduce sparsity in the weights.
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Regularization of autoencoders

• How can we generate sparse autoencoders?  (And also, why?)

• Weight tying of the encoder and decoder weights (W=W’) to 

explicitly constrain (regularize) the learned function.

• Directly penalize the output of the hidden units (e.g. with L1 

penalty) to introduce sparsity in the weights.

• Penalize the average output (over a batch of data) to encourage it 

to approach a fixed target.

COMP-551: Applied Machine Learning
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Denoising autoencoders
• Idea:  To force the hidden layer to discover 

more robust features, train the autoencoder
with a corrupted version of the input.

COMP-551: Applied Machine Learning

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫

of “destruction”: for each input x, a fixed number ⌫d

of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f

✓

(x̃) = s(Wx̃+b) from which
we reconstruct a z = g

✓

0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(B

x

kB
z

) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.
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Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.
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So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d

0
< d

or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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Denoising autoencoders
• Idea:  To force the hidden layer to discover 

more robust features, train the autoencoder
with a corrupted version of the input.

• Corruption processes:
– Additive Gaussian noise
– Randomly set some input features to zero.
– More noise models in the literature.
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for propagating representations from the raw input to
higher-level representations. Note also that when layer
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Joelle Pineau13

Denoising autoencoders
• Idea:  To force the hidden layer to discover 

more robust features, train the autoencoder
with a corrupted version of the input.

• Corruption processes:
– Additive Gaussian noise
– Randomly set some input features to zero.
– More noise models in the literature.

• Training criterion:
Err(W,W’) = ∑i=1:n Eq(xi’|xi) L [ xi , gW’ (fW(xi’)) ]

where x is the original input, x’ is the corrupted 
input, and q() is the corruption process.
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So from the point of view of the stochastic gradient de-
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ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step
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2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
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not only on the input, but also recursively to interme-
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2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
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than random initialization of deep networks , achieving
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rion in eq. 5 instead of eq. 3. Note that the corrup-
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rupted version, a task known as denoising. The prob-
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Contractive autoencoders

• Goal:  Learn a representation that is robust to noise and 

perturbations of the input data, by regularizing the latent space 

(represented by L2 norm of the Jacobian of the encoded input.)

• Contractive autoencoder training criterion:

Err(W,W’) = ∑i=1:n L [ xi , gW’ (fW(xi’)) ] + λ||J(xi)||F2

where J(xi)=∂fW(xi)/∂xi is a Jacobian matrix of the encoder evaluated at 

xi, F is the Frobenius norm, and λ controls the strength of regularization.

Many more similar ideas in the literature…

COMP-551: Applied Machine Learning
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Supervised learning with deep models
Final step:  Train the full network with backpropagation using error on the 

predicted output, Err(W) = ∑i=1:n L [ yi , o(xi) ]

COMP-551: Applied Machine Learning

http://www.dmi.usherb.ca/~larocheh/projects_deep_learning.html
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Supervised learning with deep models
Alternatively:  Use the last representation layer (or concatenate all layers) 

as an input to a standard supervised learning predictor (e.g. SVM).

COMP-551: Applied Machine Learning

http://www.dmi.usherb.ca/~larocheh/projects_deep_learning.html

SVM
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Variety of training protocols
• Purely supervised:

– Initialize parameters randomly.
– Train in supervised mode (gradient descent w/backprop.)
– Used in most practical systems for speech and language.

COMP-551: Applied Machine Learning

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Variety of training protocols
• Purely supervised:

– Initialize parameters randomly.
– Train in supervised mode (gradient descent w/backprop.)
– Used in most practical systems for speech and language.

• Unsupervised, layerwise + supervised classifier on top:
– Train each layer unsupervised, one after the other.
– Train a supervised classifier on top, keeping other layers fixed.
– Good when very few labeled examples are available.

COMP-551: Applied Machine Learning

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Variety of training protocols
• Purely supervised:

– Initialize parameters randomly.
– Train in supervised mode (gradient descent w/backprop.)
– Used in most practical systems for speech and language.

• Unsupervised, layerwise + supervised classifier on top:
– Train each layer unsupervised, one after the other.
– Train a supervised classifier on top, keeping other layers fixed.
– Good when very few labeled examples are available.

• Unsupervised, layerwise + global supervised fine-tuning.
– Train each layer unsupervised, one after the other.
– Add a classifier layer, and retrain the whole thing supervised.
– Good when label set is poor.

• Unsupervised pretraining often uses regularized autoencoders. 

COMP-551: Applied Machine Learning

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Tip #1:  Dropout regularization

• Goal:  Learn model that generalizes well, robust to variability.

• Method:  Independently set each hidden unit activity to zero 

with probability p (usually p=0.5 works best).

• Effect:  Can greatly reduces overfitting.

COMP-551: Applied Machine Learning
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Tip #2:  Batch normalization

• Idea:  Feature scaling makes gradient descent easier.
• We already apply this at the input layer; extend to other layers.
• Use empirical batch statistics to choose re-scaling parameters.

• For each mini-batch of data, at each layer k of the network:

– Compute empirical mean and var independently for each dimension

– Normalize each input:

– Output has tunable parameters (𝛾,𝛽) for each layer:  

• Effect:  More stable gradient estimates, especially for deep networks.

COMP-551: Applied Machine Learning
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Major paradigms for deep learning

• Deep neural networks: The model should be interpreted as a 

computation graph.

– Supervised training:  Feedforward neural networks.

– Unsupervised pre-training:  Stacked autoencoders.

• Special architectures for different problem domains.

– Computer vision => Convolutional neural nets.

– Text and speech => Recurrent neural nets. Next class.

COMP-551: Applied Machine Learning
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ImageNet dataset

COMP-551: Applied Machine Learning

http://www.image-net.org
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Neural networks for computer vision

• Design neural networks that are specifically adapted to:

– Deal with very high-dimensional inputs
• E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB

– Exploit 2D topology of pixels (or 3D for video)

– Built-in invariance to certain variations we can expect
• Translations, illumination, etc.

COMP-551: Applied Machine Learning
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Convolution Neural Networks

COMP-551: Applied Machine Learning

Feedforward network Convolutional neural network (CNN)

From: http://cs231n.github.io/convolutional-networks/

• CNN characteristics:

– Input is a 3D tensor:  2D image x 3 colours

– Each layer transforms an input 3D tensor to an output 3D tensor 
using a differentiable function.
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Convolution Neural Networks

COMP-551: Applied Machine Learning

Feedforward network Convolutional neural network (CNN)

From: http://cs231n.github.io/convolutional-networks/

• Convolutional neural networks leverage several ideas.

1. Local connectivity.

2. Parameter sharing.

3. Pooling hidden units.



Joelle Pineau27

Convolution Neural Networks
• A few key ideas:

1. Features have local receptive fields.
• Each hidden unit is connected to a patch of the input image.
• Units are connected to all 3 colour channels.

COMP-551: Applied Machine Learning

depth = # filters
(a hyperparameter)

depth
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Convolution Neural Networks
• A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units. 
• Constrain units within a depth slice (at all positions) to have same weights.
• Feature map can be computed via discrete convolution with a kernel matrix.

COMP-551: Applied Machine Learning
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Convolution Neural Networks
• A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units.

3. Pooling/subsampling of hidden units in same neighbourhood.

COMP-551: Applied Machine Learning

Example:

From: http://cs231n.github.io/convolutional-networks/
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Convolutional neural nets (CNNs)
• Alternate between convolutional, pooling, and fully connected layers.

– Fully connected layer typically only at the end. 

• Train full network using backpropagation.

COMP-551: Applied Machine Learning

CONVOLUTIONAL NETWORK

22

Topics: convolutional network

• Convolutional neural network alternates between the 
convolutional and pooling layers

Réseau de neurones à convolution: 
réseau complet 

!"#$%&'$ ()*+$,-.+/01221$ '&$

(image from Yann Lecun)

{

Fully
connected
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Convolutional neural nets (CNNs)

COMP-551: Applied Machine Learning

From: http://cs231n.github.io/convolutional-networks/
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Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Training results: ImageNet

• 96 learned low-level filters

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Image classification

• 95% accuracy (on top 5 predictions) among 1,000 

categories.  Better than average human.

© 2016 DIA, Inc. All rights reserved.

  

Validation classification
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Empirical results (2012)
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CONVNET IN ACTION
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ImageNet 1K competition, fall 2012
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012
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Empirical results for image retrieval
• Query items in leftmost column: 

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Empirical results (2015)

COMP-551: Applied Machine Learning

http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
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CNNs vs traditional computer vision

COMP-551: Applied Machine Learning

From: Razavian et al. CVPR workshop paper. 2014.
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Picture tagging (From clarifai.com)

© 2016 DIA, Inc. All rights reserved.
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Scene parsing

© 2016 DIA, Inc. All rights reserved.

(Farabet et al., 2013)
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Achieving super-human performance?
• Estimated 3% error in the labels.

• Differences between labeling process and human assessment:

– Labels acquired as binary task.  Is there a dog in this picture?

– Human performance measured on 1K classes (>120 species of 
dogs in the dataset).

– Labels acquired from experts (dog experts label the dogs, etc.).

• Machines and humans make different kinds of mistakes.

– Both have trouble with multiple objects in an image.

– Machines struggle with small/thin objects, image filters.

– Humans struggle with fine-grained recognition.
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http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Practical tips for CNNs

• Many hyper-parameters to choose!

• Architecture:  filters (start small, e.g. 3x3, 5x5), pooling, number 

of layers (start small, add more).

• Training:  learning rate, regularization, dropout rate (=0.5), initial 

weight size, batch size, batch norm.

• Read papers, copy their method, then do local search.

COMP-551: Applied Machine Learning
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Do we really need deep architectures?

• We can approximate any function to arbitrary levels of precision 

with shallow (2-level) architectures.

• Deep learning is more efficient for representing certain classes 

of functions, where there is certain types of structure.

– Natural signals (images, speech) typically have such structure.

• Deep learning architectures can represent more complex 

functions with fewer parameters.

– Trade-off (less) space for (more) time.

• So far, very little theoretical analysis of deep learning.

COMP-551: Applied Machine Learning
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Quick recap + more resources
• A good survey paper:

– Bengio, Courville, Vincent. Representation learning: A Review and New 
Perspectives. IEEE T-PAMI. 2013. http://arxiv.org/pdf/1206.5538v2.pdf

• Notes and images in today’s slides taken from:
• http://cs231n.github.io/convolutional-networks/
• http://www.cs.toronto.edu/~hinton/csc2535
• http://deeplearning.net/tutorial/
• http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
• http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
• http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
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What you should know

• Types of deep learning architectures:

– Stacked autoencoders

– Convolutional neural networks

• Typical training approaches (unsupervised / supervised).

• Examples of successful applications.

COMP-551: Applied Machine Learning


