COMP 551 — Applied Machine Learning
Lecture 16: Deep Learning

Instructor: Joelle Pineau (jpineau@cs.mcqill.ca)

Class web page: www.cs.mcgqill.ca/~jpineau/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




The deep learning objective
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Learning an autoencoder function

 Goal: Learn acompressed

representation of the input data.

« We have two functions:
— Encoder: h =f,/(x) = s;(Wx)
— Decoder: x’=gy.(h) =s,(Wh)

where s() can be a sigmoid, linear, or other
function and W, W’ are weight matrices.
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Learning an autoencoder function

Goal: Learn a compressed Inputs Outputs

representation of the input data.

We have two functions:
— Encoder: h =1f,/(x) = s;(Wkx)
— Decoder: x’=gy.(h) =s,(Wh)
where s() can be a sigmoid, linear, or other

function and W, W’ are weight matrices.

To train, minimize reconstruction error:

Err(W,W') =% -1 L[ X;, 9w (fuf(X) ]
using squared-error loss (continuous inputs)

or cross-entropy (binary inputs).
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PCA vs autoencoders

In the case of a linear function:
fu(x) = Wx gw(h) = Wh,
with squared-error loss:
Err(WW) = Y ictn | Xi= 9w (fudX;) ) |1 2
we can show that the minimum error solution

W yields the same subspace as PCA.
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Stacked autoencoders

Key idea: Apply greedy layerwise unsupervised pre-training.
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http://www.dmi.usherb.ca/~larocheh/projects deep learning.html
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Regularization of autoencoders

* How can we generate sparse autoencoders? (And also, why?)
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Regularization of autoencoders

* How can we generate sparse autoencoders? (And also, why?)

«  Weight tying of the encoder and decoder weights (W=W") to

explicitly constrain (regularize) the learned function.
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Regularization of autoencoders

*  How can we generate sparse autoencoders? (And also, why?)

«  Weight tying of the encoder and decoder weights (W=W") to

explicitly constrain (regularize) the learned function.

 Directly penalize the output of the hidden units (e.g. with L1

penalty) to introduce sparsity in the weights.
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Regularization of autoencoders

*  How can we generate sparse autoencoders? (And also, why?)

«  Weight tying of the encoder and decoder weights (W=W") to

explicitly constrain (regularize) the learned function.

 Directly penalize the output of the hidden units (e.g. with L1

penalty) to introduce sparsity in the weights.

« Penalize the average output (over a batch of data) to encourage it

to approach a fixed target.
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Denoising autoencoders

- ldea: To force the hidden layer to discover
more robust features, train the autoencoder
with a corrupted version of the input.
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Denoising autoencoders

- ldea: To force the hidden layer to discover
more robust features, train the autoencoder
with a corrupted version of the input.

(elele)

« Corruption processes: T

— Additive Gaussian noise

— Randomly set some input features to zero. [X Q X Q ,Q }

— More noise models in the literature. - T
X

(O0000)
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Denoising autoencoders

- ldea: To force the hidden layer to discover
more robust features, train the autoencoder
with a corrupted version of the input.

(elele)

« Corruption processes: T

— Additive Gaussian noise

— Randomly set some input features to zero. [X Q X Q ,Q }

— More noise models in the literature. - T
X

« Training criterion: ~
Err(W\W) =% iet:n Equitg) L [ Xi5 9w (ff(Xi) 1 [Q Q Q Q Q]

where Xx is the original input, x’ is the corrupted
input, and q() is the corruption process.
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Contractive autoencoders

 Goal: Learn a representation that is robust to noise and
perturbations of the input data, by regularizing the latent space

(represented by L2 norm of the Jacobian of the encoded input.)

« Contractive autoencoder training criterion:

Erm(WW) = Y et L[ X, 9w (Fn(X7)) 1+ MY
where J(x;)=0df ,(x;)/0x; is a Jacobian matrix of the encoder evaluated at

x;, F is the Frobenius norm, and A controls the strength of regularization.

Many more similar ideas In the literature...
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Supervised learning with deep models

Final step: Train the full network with backpropagation using error on the

predicted output, Err(W) = _,., L [y;, o(x) ]
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http://www.dmi.usherb.ca/~larocheh/projects deep learning.html
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Supervised learning with deep models

Alternatively: Use the last representation layer (or concatenate all layers)

as an input to a standard supervised learning predictor (e.g. SVM).
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Variety of training protocols

* Purely supervised:

— Initialize parameters randomly.
— Train in supervised mode (gradient descent w/backprop.)
— Used in most practical systems for speech and language.

From: http.//www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Variety of training protocols

* Purely supervised:

— Initialize parameters randomly.
— Train in supervised mode (gradient descent w/backprop.)
— Used in most practical systems for speech and language.

« Unsupervised, layerwise + supervised classifier on top:

— Train each layer unsupervised, one after the other.
— Train a supervised classifier on top, keeping other layers fixed.
— Good when very few labeled examples are available.

From: http.//www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

COMP-551: Applied Machine Learning 18 Joelle Pineau



Variety of training protocols

* Purely supervised:

— Initialize parameters randomly.
— Train in supervised mode (gradient descent w/backprop.)
— Used in most practical systems for speech and language.

« Unsupervised, layerwise + supervised classifier on top:

— Train each layer unsupervised, one after the other.
— Train a supervised classifier on top, keeping other layers fixed.
— Good when very few labeled examples are available.

* Unsupervised, layerwise + global supervised fine-tuning.

— Train each layer unsupervised, one after the other.
— Add a classifier layer, and retrain the whole thing supervised.
— Good when label set is poor.

« Unsupervised pretraining often uses regularized autoencoders.

From: http.//www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Tip #1. Dropout regularization

« Goal: Learn model that generalizes well, robust to variability.

 Method: Independently set each hidden unit activity to zero

with probability p (usually p=0.5 works best).

- Effect: Can greatly reduces overfitting.
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Tip #2: Batch normalization

* |dea: Feature scaling makes gradient descent easier.

« We already apply this at the input layer; extend to other layers.
« Use empirical batch statistics to choose re-scaling parameters.

« For each mini-batch of data, at each layer k of the network:

— Compute empirical mean and var independently for each dimension

— Normalize each input: 3k _ xW—E[x"]
v/ VAR[x®)]

— OQutput has tunable parameters (y,[) for each layer: y/" — yk.)%(k) + /ik

« Effect: More stable gradient estimates, especially for deep networks.
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Major paradigms for deep learning

 Deep neural networks: The model should be interpreted as a

computation graph.

— Supervised training: Feedforward neural networks.

— Unsupervised pre-training: Stacked autoencoders.

« Special architectures for different problem domains.

— Computer vision => Convolutional neural nets.

— Text and speech => Recurrent neural nets. Next class.
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ImageNet dataset

© Numbers in brackets: (the number of
synsets in the subtree ).

ImageNet 2011 Fall Release (32326)

Treemap Visualization

A  ImageNet 2011 Fall Release
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Neural networks for computer vision

« Design neural networks that are specifically adapted to:

— Deal with very high-dimensional inputs
« E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB

— Exploit 2D topology of pixels (or 3D for video)

— Built-in invariance to certain variations we can expect

* Translations, illumination, etc.
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Convolution Neural Networks

Feedforward network Convolutional neural network (CNN)
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« CNN characteristics:

— Inputis a 3D tensor: 2D image x 3 colours

— Each layer transforms an input 3D tensor to an output 3D tensor
using a differentiable function.

From: http.//cs231n.github.io/convolutional-networks/
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Convolution Neural Networks

Feedforward network Convolutional neural network (CNN)
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« Convolutional neural networks leverage several ideas.

1. Local connectivity.
2. Parameter sharing.

3. Pooling hidden units.

From: http.//cs231n.github.io/convolutional-networks/
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Convolution Neural Networks

« A few key ideas:

1. Features have local receptive fields.

« Each hidden unit is connected to a patch of the input image.

 Units are connected to all 3 colour channels.

= receptive field

Vi
IF

—=00000

depth

depth = # filters
(a hyperparameter)
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Convolution Neural Networks

« A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units.

«  Constrain units within a depth slice (at all positions) to have same weights.
« Feature map can be computed via discrete convolution with a kernel matrix.

feature map I: feature map 2 : . feature map 3 :

\ :
e color N\
same color :

same matrix
of connections
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Convolution Neural Networks

« A few key ideas:

1. Features have local receptive fields.
2. Share matrix of parameters across units.

3. Pooling/subsampling of hidden units in same neighbourhood.

224x224x64
s Example:
112x112x64
pool
- " Single depth slice
Jl11]1]2)4
max pool with 2x2 filters
l A 516 |78 and stride 2 6
3(2(1]o0 ] 3
> 112 1| 2 B
224 downsampling !
132 .
224 y

From: http.//cs231n.github.io/convolutional-networks/
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Convolutional neural nets (CNNs)

- Alternate between convolutional, pooling, and fully connected layers.

— Fully connected layer typically only at the end.

« Train full network using backpropagation.

(image from Yann Lecun) Layer 3
256@6x6 Layer 4 o
Layer 1 utput
256 @1x1
. 64x75x75 Layer 2 101
Input 64@14x14
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- 6x6 pooling >
luti : p g
convorution 5x5 subsampling (4096 kernels) —'I Ax4 subsamp | FUlly
(64 kernels) P connected
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Convolutional neural nets (CNNs)
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From: http.//cs231n.github.io/convolutional-networks/
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Example: ImageNet

« SuperVision (a.k.a. AlexNet, 2012):
=

T

Deep: 7 hidden “weight” layers

Learned: all feature extractors initialized at
white Gaussian noise and learned from the
data

Entirely supervised
More data = good

O Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

/Image/ Fully-connected layer: applies linear

filters to its input, then applies point-
wise non-linearity

From: http.//www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Example: ImageNet

« SuperVision (a.k.a. AlexNet, 2012):

'?’
Trained with stochastic gradient descent on
! two NVIDIA GPUs for about a week

650,000 neurons

60,000,000 parameters

630,000,000 connections

Final feature layer: 4096-dimensional

O Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

/Image/ Fully-connected layer: applies linear
/ /. filters to its input, then applies point-
wise non-linearity

From: http.//www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Training results: ImageNet

96 learned low-level filters

O Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

From: http.//www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Image classification

*  95% accuracy (on top 5 predictions) among 1,000

categories. Better than averag
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Empirical results (2012)

" ImageNet |K competition, fall 2012
3 Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2012
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Empirical results for image retrieval

* Query items in leftmost column:

pas) e
S A 5 ’ r o TR

N TR S - - X - - - <
¥ e . T e T . i . et o : *
o 5 Nty S ~ s -

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Empirical results (2015)

ILSVRC top-5 error on ImageNet

30
22.5
15

7.5

2010 2011 2012 2013 2014 Human ArXiv 2015

http.//devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
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CNNs vs traditional computer vision

Learn Extract Features
Normalized RGB, gradient, &
=0 — i

100}
80t
60}

401

From: Razavian et al. CVPR workshop paper. 2014.
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Picture tagglng (From clarifai.com)

Predicted Tags:
food (16.00%)
dinner (8.10%)
bbqg (2.90%)
market (2.50%)
meal (1.40%)
turkey (1.40%)
grill (1.30%)
pizza (1.30%)
eat (1.10%)
holiday (1.00%)
Stats:

Size: 247.24 KB
Time: 110 ms

© 2016 DIA, Inc. All rights reserved.
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Scene parsing

! - il : sheepk
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(Farabet et al., 2013)

© 2016 DIA, Inc. All rights reserved.
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Achieving super-human performance?

« Estimated 3% error in the labels.

- Differences between labeling process and human assessment:

— Labels acquired as binary task. Is there a dog in this picture?

— Human performance measured on 1K classes (>120 species of
dogs in the dataset).

— Labels acquired from experts (dog experts label the dogs, etc.).

« Machines and humans make different kinds of mistakes.

— Both have trouble with multiple objects in an image.
— Machines struggle with small/thin objects, image filters.

— Humans struggle with fine-grained recognition.

http.//karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Practical tips for CNNs

« Many hyper-parameters to choose!

« Architecture: filters (start small, e.g. 3x3, 5x5), pooling, number

of layers (start small, add more).

- Training: learning rate, regularization, dropout rate (=0.5), initial

weight size, batch size, batch norm.

Read papers, copy their method, then do local search.
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Do we really need deep architectures?

- We can approximate any function to arbitrary levels of precision

with shallow (2-level) architectures.

- Deep learning is more efficient for representing certain classes

of functions, where there is certain types of structure.

— Natural signals (images, speech) typically have such structure.

« Deep learning architectures can represent more complex

functions with fewer parameters.

— Trade-off (less) space for (more) time.

So far, very little theoretical analysis of deep learning.
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Quick recap + more resources

« A good survey paper:

— Bengio, Courville, Vincent. Representation learning: A Review and New
Perspectives. IEEE T-PAMI. 2013. http.//arxiv.org/pdf/1206.5538v2.pdf

* Notes and images in today’s slides taken from:

* http://cs231n.github.io/convolutional-networks/

* http://www.cs.toronto.edu/~hinton/csc2535

* http.//deeplearning.net/tutorial/
 http.//www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

 http.//www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
* http.//www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
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What you should know

« Types of deep learning architectures:

— Stacked autoencoders

— Convolutional neural networks

« Typical training approaches (unsupervised / supervised).

«  Examples of successful applications.
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