COMP 551 — Applied Machine Learning
Lecture 14: Neural Networks

Instructor: Joelle Pineau (jpineau@cs.mcqill.ca)

Class web page: www.cs.mcgqill.ca/~jpineau/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.

Kaggle: Project 2

10

11

12

13

14

15

Apub Team Name Kernel Team Members Score Entries Last
- ..2045 2Rk B 0.81705 3 2
af Juicebox3.0 (Stay hydrated) sl B 0.81082 25 1d
1 zsv D 0.81067 23 1d
E Nothing but Nets 2 IR IR | 0.80600 24 4d
22 JaleLi e 0.80577 10 1d
1 DMT R NN 0.80414 29 1d
N NAS oI I 0.80290 24 1d
-2 AJGARS s 5 0.80271 25 1d
WL R A { 0.80071 28 2d
a2 Cereal Killer 2 5 0.79736 22 1d
v team-02-unmerged ‘\i 0.79712 2 1d
1 team-02 2 s 0.79712 15 1d
- LazyLearner q RN 0.79319 26 1d
a2 LR y 0.79234 24 2d
5 Epte q 0.79176 18 3d

Recall the perceptron

.v\'a=]

« We can take a linear combination and threshold it:

+1 ifx-w>0
hw(X) =sgn(x-w) =

—1 otherwise

« The output is taken as the predicted class.

COMP-551: Applied Machine Learning 3 Joelle Pineau

Decision surface of a perceptron

Xy A

(a) (b)
« Can represent many functions.

« To represent non-linearly separate functions (e.g. XOR), we could use
a network of perceptron-like elements.

« If we connect perceptrons into networks, the error surface for the
network is not differentiable (because of the hard threshold).

COMP-551: Applied Machine Learning 4 Joelle Pineau

Example: A network representing XOR

T @
XZ A N1 *I o
/ N2 |
+ - 02 os
» 0:2 »
/ i B
- — % 02 04 B
/ o1

COMP-551: Applied Machine Learning 5 Joelle Pineau

Recall the sigmoid function

ow:-x)= —

l+e

Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

* o is the sigmoid function: U(Z)=1+e‘z

« It has the following nice property: [w=a(z)(l—0(z))]
dz

We can derive a gradient descent rule to train:

— One sigmoid unit; Multi-layer networks of sigmoid units.

COMP-551: Applied Machine Learning 6 Joelle Pineau

Feed forward neural networks

Hidden Laye

) 10
L

I

[X/
(.
/)

Lir

A collection of neurons with sigmoid activation, arranged in layers.

Layer O is the input layer, its units just copy the input.

Last layer (layer K) is the output layer, its units provide the output.

Layers 1, .., K-1 are hidden layers, cannot be detected outside of network.

COMP-551: Applied Machine Learning 7 Joelle Pineau

Why this name?

« In feed-forward networks the output of units in layer kK become input

to the units in layers k+17, k+2, ..., K.

* No cross-connection between units in the same layer.

* No backward (“recurrent”) connections from layers downstream.

« Typically, units in layer k provide input to units in layer k+7 only.

* In fully-connected networks, all units in layer k provide input to all

units in layer k+17.

COMP-551: Applied Machine Learning 8 Joelle Pineau

Feed-forward neural networks

Notation: Hidden Layer

* wj; denotes weight on connection

from unit / to unit . Input 1
« By convention, Xjp = 1, Vj

* Output of unit j, denoted o, is
computed using a sigmoid:

j = o(Wj X))
where w; is vector of weights entering unit j
x; is vector of inputs to unit j

* By definition, x; = o;.

Given an input, how do we compute the output? How do we train the weights?

COMP-551: Applied Machine Learning 9 Joelle Pineau

Computing the output of the network

« Suppose we want network to make prediction about instance <x,y=7>.

Run a forward pass through the network.

(orlayerk=1 ... K \

1. Compute the output of all neurons in layer k:

0, = o(w;-Xx;),Vj € Layer k

2. Copy this output as the input to the next layer:
rji = 0i, Vi € Layer k,Vj € Layer k + 1

Qe output of the last layer is the predicted output y. /

COMP-551: Applied Machine Learning 10 Joelle Pineau

Learning in feed-forward neural networks

- Assume the network structure (units+connections) is given.

« The learning problem is finding a good set of weights to

minimize the error at the output of the network.

« Approach: gradient descent, because the form of the

hypothesis formed by the network, h,, is:

— Differentiable! Because of the choice of sigmoid units.

— Very complex! Hence direct computation of the optimal weights is
not possible.

COMP-551: Applied Machine Learning 11 Joelle Pineau

Gradient-descent preliminaries for NN

« Assume we have a fully connected network:
— N input units (indexed 7, ..., N)
— H hidden units in a single layer (indexed N+17, ..., N+H)

— one output unit (indexed N+H+1)

« Suppose you want to compute the weight update after seeing

instance <x, y>.

 Leto,i=1, ..., HtN+1 be the outputs of all units in the network

for the given input x.

« The sum-squared error function is:

1 , 1

J(w) = 5(?/ — hw(x))” = 5('3/ — 0N+H+1)2

COMP-551: Applied Machine Learning 12 Joelle Pineau

Gradient-descent update for output node

* Derivative with respects to the weights w,. ., entering o+
— Use the chain rule: dJ(w)/ow = (oJ(w)/da) - (6o/ow)

e o

OIW)O0 = (y-Opue) TP T Twe

do(z)
dz

=0(z)(1-0(z))

COMP-551: Applied Machine Learning 13 Joelle Pineau

Gradient-descent update for output node

* Derivative with respects to the weights w,. ., entering o+
— Use the chain rule: dJ(w)/ow = (oJ(w)/da) - (6o/ow)

e o

OIW)O0 = (y-Opue) TP T Twe

do(z)
dz

= 0(z)(1-0(2))

oJ

OWN+H+1,j

= —(y—0N+H+1)0N+H+1 (1—0N+H+1)(13N+H+1,j

COMP-551: Applied Machine Learning 14 Joelle Pineau

Gradient-descent update for output node

* Derivative with respects to the weights w,. ., entering o+
— Use the chain rule: dJ(w)/ow = (oJ(w)/da) - (6o/ow)

0.J

OWN +H+1,j

= _Ky_ON+H+1)0N+H+1 (1—0N+H+1ﬂmN+H+1*~"’

0J

OWN+H+1,5

 Hence, we can write: — £_5N+H+1}1N+H+1,j

where:
ONtH+1 = (y—onsmgei1)onsimgi1(l —onNiH11)

COMP-551: Applied Machine Learning 15 Joelle Pineau

Gradient-descent update for hidden node

* The derivative wrt the other weights, W, where j =1, ..., Nand
[=N+1, ..., N+H can be computed using chain rule:

oJ

dw g

= —(y—onyH+1)oN+H+1(1 —ONyH+1)

o

wy,;

(WN+H+1 ' xN+H+1)

d
C) wh . J

= —ON4H41WNFH41.1 TN+H+1.1

* Recall that x,..,, = 0. Hence we have:
s,

IN+H+1,l = Ol-(l — 01):17[,‘)'

a’UJl’j
« Putting these together and using similar notation as before:
o.J i
, = —01(1 — 01)ONFH41WN$H41,121,§ = —01X1 4
()wz,,‘.,-

COMP-424: Artificial intelligence 16 Joelle Pineau

Gradient-descent update for hidden node

* The derivative wrt the other weights, w, ; where j =1, ..., N.and
k =N+1, ..., N+H can be computed again using chain rule.

Back propagation of weights

Op — op(l — op)WN+H41. hON+H+1

ON+H+1 — o(1 —o)(y — o)

Image from: http.//openi.nim.nih.gov/detailedresult.php?img=2716495 bcr2257-1 &req=4‘
COMP-551: Applied Machine Learning 17 Joelle Pineau

Stochastic gradient descent

 [Initialize all weights to small random numbers. } Initialization

* Repeat until convergence:

— Pick a training example.
Forward
— Feed example through network to compute output 0 = Opyyy41/” pass

— For the output unit, compute the correction: ™
(51\r+H+1 A 0(1 o 0)(-2/ o 0) Backpro_
— For each hidden unit h, compute its share of the correction: pagation
Op Oh.(l — Oh)’UJN+H+1,/;5N+H+1 Y,
— Update each network weight:
Gradient
Whi < Wh,i T Qp g Opx h.i descent

COMP-551: Applied Machine Learning 18 Joelle Pineau

Organizing the training data

- Stochastic gradient descent. Compute error on a single

example at a time (as in previous slide).

- Batch gradient descent. Compute error on all examples.

— Loop through the training data, accumulating weight changes.

— Update all weights and repeat.

* Mini-batch gradient descent: Compute error on small subset.

— Randomly select a “mini-batch” (i.e. subset of training examples).

— Calculate error on mini-batch, apply to update weights, and repeat.

COMP-551: Applied Machine Learning 19 Joelle Pineau

Expressiveness of feed-forward NN

A single sigmoid neuron?

COMP-551: Applied Machine Learning 20 Joelle Pineau

Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

COMP-551: Applied Machine Learning 21 Joelle Pineau

Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?

COMP-551: Applied Machine Learning 22 Joelle Pineau

Learning the identity function

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

COMP-551: Applied Machine Learning

23

Joelle Pineau

Learning the identity function

 Neural network structure:

Input Hidden Layer Output
e Learned hidden 10000000 — .89 04 08 — 10000000
01000000 — 15 99 99 — 01000000
Iayer Weig hts: 00100000 — .01 97 27 — 00100000
00010000 — 99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .01 A1 88 — 00000100
00000010 — .80 .01 98 — 00000010
00000001 — .60 94 .01 — 00000001

COMP-551: Applied Machine Learning 24 Joelle Pineau

Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?

« Can represent every boolean function, but might require a number
of hidden units that is exponential in the number of inputs.

« Every bounded continuous function can be approximated with
arbitrary precision by a boolean function.

COMP-551: Applied Machine Learning 25 Joelle Pineau

Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?

« Can represent every boolean function, but might require a number
of hidden units that is exponential in the number of inputs.

« Every bounded continuous function can be approximated with
arbitrary precision by a boolean function.

A neural network with two hidden layers?

COMP-551: Applied Machine Learning 26 Joelle Pineau

Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?

« Can represent every boolean function, but might require a number
of hidden units that is exponential in the number of inputs.

« Every bounded continuous function can be approximated with
arbitrary precision by a boolean function.

A neural network with two hidden layers?

* Any function can be approximated to arbitrary accuracy by a

network with two hidden layers.

COMP-551: Applied Machine Learning 27 Joelle Pineau

Project 3: Visual add / multiply (due Nov.13)

* For each image, give the result of the equation.
— Ifit's an “A”, add the 2 digits. If it's an “M”, multiply the 2 digits.

COMP-551: Applied Machine Learning 28 Joelle Pineau

Final notes

» What you should know:

— Definition / components of neural networks.

— Training by backpropagation.

* Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:

http.//videolectures.net/deeplearning2017 _larochelle _neural _networks/
https.//drive.google.com/file/d/0ByUKRdICDK7-c2s2RjBiSms2UzA/Niew?usp=drive_web
https://drive.google.com/file/d/0ByUKRdICDK7-UXB1R1ZpX082MEk/view?usp=drive _web

e Tutorial 3 is today! TR3120, 6-7pm.

* Project #2 peer reviews will open next Monday on CMT.

COMP-551: Applied Machine Learning 29 Joelle Pineau

