
COMP 551 – Applied Machine Learning
Lecture 14: Neural Networks

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Kaggle:  Project 2
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Recall the perceptron

• We can take a linear combination and threshold it:

• The output is taken as the predicted class.
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Decision surface of a perceptron

• Can represent many functions.

• To represent non-linearly separate functions (e.g. XOR), we could use 
a network of perceptron-like elements.

• If we connect perceptrons into networks, the error surface for the 
network is not differentiable (because of the hard threshold).
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Example:  A network representing XOR
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Recall the sigmoid function

Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

• s is the sigmoid function:

• It has the following nice property:

We can derive a gradient descent rule to train:
– One sigmoid unit; Multi-layer networks of sigmoid units.

€ 

dσ(z)
dz

=σ (z)(1−σ(z))

€ 

σ(z) =
1

1+ e−z

€ 

σ(w ⋅ x) =
1

1+ e−w⋅x



Joelle Pineau7COMP-551: Applied Machine Learning

Feed forward neural networks

• A collection of neurons with sigmoid activation, arranged in layers.

• Layer 0 is the input layer, its units just copy the input.

• Last layer (layer K) is the output layer, its units provide the output.

• Layers 1, .., K-1 are hidden layers, cannot be detected outside of network.
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Why this name?

• In feed-forward networks the output of units in layer k become input 

to the units in layers k+1, k+2, …, K.

• No cross-connection between units in the same layer.

• No backward (“recurrent”) connections from layers downstream.

• Typically, units in layer k provide input to units in layer k+1 only.

• In fully-connected networks, all units in layer k provide input to all 

units in layer k+1.
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Feed-forward neural networks
Notation:

• wji denotes weight on connection
from unit i to unit j.

• By convention, xj0 = 1, " j

• Output of unit j, denoted oj is
computed using a sigmoid:

oj = s(wj· xj)

where wj is vector of weights entering unit j
xj is vector of inputs to unit j

• By definition, xji = oi .

Given an input, how do we compute the output? How do we train the weights?
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• Suppose we want network to make prediction about instance <x,y=?>.

Run a forward pass through the network.

For layer k = 1 … K

1.  Compute the output of all neurons in layer k:

2.  Copy this output as the input to the next layer:

The output of the last layer is the predicted output y.
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Computing the output of the network
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Learning in feed-forward neural networks

• Assume the network structure (units+connections) is given.

• The learning problem is finding a good set of weights to 

minimize the error at the output of the network.

• Approach: gradient descent, because the form of the 

hypothesis formed by the network, hw is:

– Differentiable!  Because of the choice of sigmoid units.

– Very complex! Hence direct computation of the optimal weights is 
not possible.
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Gradient-descent preliminaries for NN

• Assume we have a fully connected network:
– N input units (indexed 1, …, N)

– H hidden units in a single layer (indexed N+1, …, N+H)

– one output unit (indexed N+H+1)

• Suppose you want to compute the weight update after seeing 

instance <x, y>.

• Let oi, i = 1, …, H+N+1 be the outputs of all units in the network 

for the given input x.

• The sum-squared error function is:
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Gradient-descent update for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule:    ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

∂J(w)/∂σ = -(y-oN+H+1) 
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Gradient-descent update for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule:    ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

∂J(w)/∂σ = -(y-oN+H+1) 
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Gradient-descent update for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule:    ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

• Hence, we can write:

where:
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Gradient-descent update for hidden node
• The derivative wrt the other weights, wl,j where j = 1, …, N and 

l = N+1, …, N+H can be computed using chain rule:

• Recall that xN+H+1,l = ol. Hence we have:

• Putting these together and using similar notation as before:
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Gradient-descent update for hidden node
• The derivative wrt the other weights, wk,j where j = 1, …, N and 

k = N+1, …, N+H can be computed again using chain rule.

Image from: http://openi.nlm.nih.gov/detailedresult.php?img=2716495_bcr2257-1&req=4
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Stochastic gradient descent
• Initialize all weights to small random numbers.

• Repeat until convergence:

– Pick a training example.

– Feed example through network to compute output o = oN+H+1.

– For the output unit, compute the correction:

– For each hidden unit h, compute its share of the correction:

– Update each network weight:

Backpro-
pagation

Gradient
descent

Forward
pass

Initialization
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Organizing the training data

• Stochastic gradient descent:  Compute error on a single 

example at a time (as in previous slide).

• Batch gradient descent:  Compute error on all examples.

– Loop through the training data, accumulating weight changes.

– Update all weights and repeat.

• Mini-batch gradient descent:  Compute error on small subset.

– Randomly select a “mini-batch” (i.e. subset of training examples).

– Calculate error on mini-batch, apply to update weights, and repeat.
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Expressiveness of feed-forward NN
A single sigmoid neuron?
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Expressiveness of feed-forward NN
A single sigmoid neuron?
• Same representational power as a perceptron: Boolean AND, OR, 

NOT, but not XOR.
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Expressiveness of feed-forward NN
A single sigmoid neuron?
• Same representational power as a perceptron: Boolean AND, OR, 

NOT, but not XOR.

A neural network with a single hidden layer?
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Learning the identity function
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Learning the identity function

• Neural network structure:

• Learned hidden
layer weights:
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Expressiveness of feed-forward NN
A single sigmoid neuron?
• Same representational power as a perceptron: Boolean AND, OR, 

NOT, but not XOR.

A neural network with a single hidden layer?
• Can represent every boolean function, but might require a number 

of hidden units that is exponential in the number of inputs.
• Every bounded continuous function can be approximated with 

arbitrary precision by a boolean function.
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Expressiveness of feed-forward NN
A single sigmoid neuron?
• Same representational power as a perceptron: Boolean AND, OR, 

NOT, but not XOR.

A neural network with a single hidden layer?
• Can represent every boolean function, but might require a number 

of hidden units that is exponential in the number of inputs.
• Every bounded continuous function can be approximated with 

arbitrary precision by a boolean function.

A neural network with two hidden layers?
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Expressiveness of feed-forward NN
A single sigmoid neuron?
• Same representational power as a perceptron: Boolean AND, OR, 

NOT, but not XOR.

A neural network with a single hidden layer?
• Can represent every boolean function, but might require a number 

of hidden units that is exponential in the number of inputs.
• Every bounded continuous function can be approximated with 

arbitrary precision by a boolean function.

A neural network with two hidden layers?

• Any function can be approximated to arbitrary accuracy by a 

network with two hidden layers.
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Project 3:  Visual add / multiply (due Nov.13)

• For each image, give the result of the equation.

– If it’s an “A”, add the 2 digits. If it’s an “M”, multiply the 2 digits.
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Final notes
• What you should know:

– Definition / components of neural networks.

– Training by backpropagation.

• Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:
http://videolectures.net/deeplearning2017_larochelle_neural_networks/

https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web

https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web

• Tutorial 3 is today!  TR3120, 6-7pm.

• Project #2 peer reviews will open next Monday on CMT.  
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