COMP 551 — Applied Machine Learning
Lecture 11: Support Vector Machines

Instructor: Joelle Pineau (jpineau@cs.mcqill.ca)

Class web page: www.cs.mcgqill.ca/~jpineau/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Today’s quiz

* In the random forest approach proposed by Breiman, how many
hyper-parameters need to be specified?

- 1,2,3,4,5

«  What is the complexity of each iteration of Adaboost, assuming
your weak learner is a decision stump and you have all binary
variables? Let M be the number of features and N be the
number of examples.

— O(M), O(N), O(MN), O(MN?)

«  Which of the two ensemble strategies is most effective for high
variance base classifiers?

— Bagging, Boosting
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Outline

Perceptrons
— Definition
— Perceptron learning rule

— Convergence

Margin & max margin classifiers

Linear Support Vector Machines

— Formulation as optimization problem

— Generalized Lagrangian and dual

Non-linear Support Vector Machines (next class)
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A simple linear classifier

- Given a binary classification task: {x;, y}i-..., y={-1,+1}.
« The perceptron (Rosenblatt, 1957) is a classifier of the form:

h,(x) = sign(w’x) = {+1 if w'x20; -1 otherwise}
— The decision boundary is w’x=0.

— An example <x, y> is classified correctly if and only if: y,(w'x;)>0.

Linear + threshold
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Perceptron learning rule (Rosenblatt, 1957)

« Consider the following procedure:

Initialize w;, /=0:m randomly,
While any training examples remain incorrectly classified:
Loop through all misclassified examples x;
Perform the update: w «w+ay, x,

where a is the learning rate (or step size).

« Intuition: For misclassified positive examples, increase w'x,
and reduce it for negative examples.
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Gradient-descent learning

« The perceptron learning rule can be interpreted as a gradient

descent procedure, with optimization criterion:

Err(w) =5 ..., {0if yw'x:20; -yw'x otherwise }
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Gradient-descent learning

« The perceptron learning rule can be interpreted as a gradient

descent procedure, with optimization criterion:

Err(w) =5 ..., {0if yw'x:20; -yw'x otherwise }

« For correctly classified examples, the error is zero.

« For incorrectly classified examples, the error tells by how much
w’x is on the wrong side of the decision boundary.

« The error is zero when all examples are classified correctly.
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Linear separability

The data is linearly separable if and only if there exists a w such that:

— For all examples, yw’x; > 0

— Or equivalently, the 0-1 loss is zero for some set of parameters (w).
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Perceptron convergence theorem

 The basic theorem:

— If the perceptron learning rule is applied to a linearly separable dataset,
a solution will be found after some finite number of updates.
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Perceptron convergence theorem

 The basic theorem:

— If the perceptron learning rule is applied to a linearly separable dataset,
a solution will be found after some finite number of updates.

* Additional comments:

— The number of updates depends on the dataset, on the learning rate,
and on the initial weights.

— If the data is not linearly separable, there will be oscillation (which can
be detected automatically).

— Decreasing the learning rate to 0 can cause the oscillation to settle on
some particular solution.
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Perceptron learning example
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Perceptron learning example
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Weight as a combination of input vectors

» Recall perceptron learning rule:

We—wtay X

 If initial weights are zero, then at any step, the weights are a linear
combination of feature vectors of the examples:

W =3 1,0 VX

where a; is the sum of step sizes used for all updates applied to example /.
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Weight as a combination of input vectors

Recall perceptron learning rule:

We—wtay X

If initial weights are zero, then at any step, the weights are a linear
combination of feature vectors of the examples:

W =3 1,0 VX

where a; is the sum of step sizes used for all updates applied to example /.

By the end of training, some examples may have never
participated in an update, so will have a=0.

This is called the dual representation of the classifier.
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Perceptron learning example

- Examples used (bold) and not (faint). What do you notice?
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Perceptron learning example

« Solutions are often non-unique. The solution depends on the
set of instances and the order of sampling in updates.
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A few comments on the Perceptron

» Perceptrons can be learned to fit linearly separable data, using a

gradient-descent rule.

— The logistic function offers a “smooth” version of the perceptron.

s 8(in) s &lini)
in; in;
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A few comments on the Perceptron

» Perceptrons can be learned to fit linearly separable data, using a

gradient-descent rule.

— The logistic function offers a “smooth” version of the perceptron.

Two issues:

« Solutions are non-unique.

+1

A g(in;)

A g(in;)

- What about non-linearly separable data?
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A few comments on the Perceptron

» Perceptrons can be learned to fit linearly separable data, using a
gradient-descent rule.

— The logistic function offers a “smooth” version of the perceptron.

A g(in;) I\ g(in;)

Two issues: in;

« Solutions are non-unique.

- What about non-linearly separable data? (Topic for next class.)

— Perhaps data can be linearly separated in a different feature space?

— Perhaps we can relax the criterion of separating all the data?
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The non-uniqueness issue

« Consider a linearly separable binary classification dataset.

« There is an infinite number of hyper-planes that separate the
classes:

© ©
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 Which plane is best? >%
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The non-uniqueness issue

- Consider a linearly separable binary classification dataset.

« There is an infinite number of hyper-planes that separate the
classes:

© ©
©
 Which plane is best? >%
o @ ©
© O

- Related question: For a given plane, for which points should we be
most confident in the classification?
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Linear Support Vector Machine (SVM)

« Alinear SVM is a perceptron for which we chose w such that the
margin is maximized.

* For a given separating hyper-plane, the margin is twice the
(Euclidean) distance from hyper-plane to nearest training example.

— l.e. the width of the “strip” around the decision boundary that contains
no training examples.
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Distance to the decision boundary

« Suppose we have a decision boundary that separates the data.

wix>0 w I x<0
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« Assuming y;={-1, +1}, “confidence” = yw'x;
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Distance to the decision boundary

« Suppose we have a decision boundary that separates the data.

Class 1 Class 2

« Let y; be the distance from instance x; to the decision boundary.

* Define vector w to be the normal to the decision boundary.
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Distance to the decision boundary

How can we write y;in terms of x;, y, w?
Let x0 be the point on the decision boundary nearest x;

The vector from x%to x;is y,w/||w]|.
— y; is a scalar (distance from x; to x%) +

— w/||w|| is the unit normal.

So we can define x% = x-y, w/ ||w]|.
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Distance to the decision boundary

How can we write y;in terms of x;, y, w?
Let x0 be the point on the decision boundary nearest x;

The vector from x%to x;is y,w/||w]|.
— y; is a scalar (distance from x; to x%) +

— w/||w|| is the unit normal.
So we can define x% = x-y, w/ ||w]|.

As x? is on the decision boundary, we have +

wi(x-y;w/||wl|) =0

Solving for y; yields, for a positive example: y;, = w'x;/||w]|
or for examples of both classes: y; = ywix:/||wl
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Optimization

» First suggestion:

Maximize M
with respectto w
subject to ywix./||w|| =M, Vi

« This is not very convenient for optimization:

— w appears nonlinearly in the constraints.
— Problem is underconstrained. If (w, M) is optimal, so is (Bw, M), for

any 3>0. Add a constraint: ||w||M =1
* Instead try:
Minimize [|w]|
with respectto w
subject to ywix. =1
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Optimization

» First suggestion:

Maximize M
with respectto w
subject to ywix./||w|| =M, Vi

« This is not very convenient for optimization:

— w appears nonlinearly in the constraints.
— Problem is underconstrained. If (w, M) is optimal, so is (Bw, M), for

any 3>0. Add a constraint: ||w||M =1
* Instead try:
Minimize Il
with respectto w
subject to ywix. =1
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Final formulation

« Let’s minimize %2||w]||? instead of ||w/|

(Taking the square is a monotone transform, as ||w/|| is positive, so it doesn’t
change the optimal solution. The 2 is for mathematical convenience.)

« This gets us to: Min ¥ ||w|?
w.r.t. w
s.t. ywix; =1

 This can be solved! How?

— It is a quadratic programming (QP) problem — a standard type of
optimization problem for which many efficient packages are available.
Better yet, it's a convex (positive semidefinite) QP.
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Constrained optimization

min, x2
s.t. >0
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Example
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We have a unique solution, but no support vectors yet.
Recall the dual solution for the Perceptron: Extend for the margin case.
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Lagrange multipliers

« Consider the following optimization problem, called primal:
min, f(w)
s.t. gi(w)<0,i=1...k

«  We define the generalized Lagrangian:

Liw, a) =f(w) + 3 1, a;g{(w)

where a; i=1...k are the Lagrange multipliers.
Six.y)

Figure : Find x and y to maximize f(x, y)
subject to a constraint (shown in red) g(x, y) = c.
From: https.//en.wikipedia.org/wiki/Lagrange _multiplier
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Lagrangian optimization

Consider P(w) = max,.,iso L(W,a) (P stands for “primal”)

Observe that the following is true:

P(w)={ f(w), ifall constraints are satisfied,

+o  otherwise }

Hence, instead of computing min,, f(w) subject to the original
constraints, we can compute:

p*=min, P(w) = min, max,..,so L(w,a) Primal
Alternately, invert max and min to get:

d* = maxg.q=o min, L(w,a) Dual
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Maximum Margin Perceptron

« We wanted to solve: Min AV
w.r.t. w

s.t. ywix; =1

- The Lagrangian is:
Lw, a) =22 ||wl|* + 3,0, (1T - y; (W'X) )

* The primal problem is: min,, maxg.,iso L(w,a)

* The dual problem is: maxg..i=o min, L(w,a)
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Dual optimization problem

- Consider both solutions:
p* = min, max,.,so L(W,a) Primal
d* = max,.,i=o min,, L(w,Q) Dual

- If fand g; are convex and the g; can all be satisfied simultaneously

for some w, then we have equality: d*=p*=L(w* a*).
« w¥is the optimal weight vector (= primal solution)
* a”is the optimal set of support vectors (=dual solution)

— For SVMs, we have a quadratic objective and linear constraints so
both fand g; are convex.

— For linearly separable data, all g; can be satisfied simultaneously.

— Note: w*, a” solve the primal and dual if and only if they satisfy the
Karush-Kunh-Tucker conditions (see suggested readings).
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Solving the dual

« Taking derivatives of L(w, a) wrt w, setting to 0, and solving for w :
Liw,a) = Jz||wl||*+3;a;(1T-y; (W'x))
oLdow = w-),a;y;x;=0

w* = 2:a;yi X;

« Just like for the perceptron with zero initial weights, the optimal solution w*

is a linear combination of the x..

» Plugging this back into L we get the dual: max, 3, a;— 72 3, yiy,aa,(x;x)

with constraints a; 2 0and };a;y= 0. Quadratic programming problem.

« Complexity of solving quadratic program? Polynomial time, O(|v|3) (where
|v|=# variables in optimization; here |v|=n). Fast approximations exist.
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The support vectors

« Suppose we find the optimal a ‘s (e.g. using a QP package.)

- Constraint j is active when a; > 0. This corresponds for the points
for which (7-yw'x;)=0.
« These are the points lying on the edge of the margin. We call them

support vectors. They define the decision boundary.

« The output of the classifier for query point x is computed as:

hy(x) = 8ign( 3 i=1., AY; (X;"X) )
It is determined by computing the dot product of the query point with the
support vectors.
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Example

*
W

Support vectors are in bold
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What you should know

From today:

* The perceptron algorithm.

« The margin definition for linear SVMs.

* The use of Lagrange multipliers to transform optimization problems.

« The primal and dual optimization problems for SVMs.
After the next class:
* Non-linearly separable case.

* Feature space version of SVMs.

* The kernel trick and examples of common kernels.
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