COMP 551 – Applied Machine Learning Lecture 11: Support Vector Machines

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Class web page: *www.cs.mcgill.ca/~jpineau/comp551*

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Today's quiz

- In the random forest approach proposed by Breiman, how many hyper-parameters need to be specified?
 - 1, 2, 3, 4, 5
- What is the complexity of each iteration of Adaboost, assuming your weak learner is a decision stump and you have all binary variables? Let M be the number of features and N be the number of examples.

- O(M), O(N), O(MN), O(MN²)

- Which of the two ensemble strategies is most effective for high variance base classifiers?
 - Bagging, Boosting

Project #2

#	\triangle 1w	Team Name	Kernel	Team Members	Score 😮	Entries	Last
1	▲1	<u> </u>			0.81390	27	3d
2	* 1	ZSV			0.80887	16	1d
3	▲ 3	DMT			0.79067	8	3h
4	new	Lazy Sloths			0.78963	5	5d
5	* 1	Nothing but Nets			0.78929	15	10h
6	• 3	Bluehorsens			0.78684	3	7d
7	new	vicrep			0.78569	4	3d
8	new	rdali			0.78417	8	1d
9	new	BBC News			0.78338	5	3h
10	new	NotoriousLanguageClassifiers			0.78150	2	5d

COMP-551: Applied Machine Learning

Outline

- Perceptrons
 - Definition
 - Perceptron learning rule
 - Convergence
- Margin & max margin classifiers
- Linear Support Vector Machines
 - Formulation as optimization problem
 - Generalized Lagrangian and dual
- Non-linear Support Vector Machines (next class)

A simple linear classifier

- Given a binary classification task: $\{x_i, y_i\}_{i=1:n}, y_i=\{-1, +1\}$.
- The **perceptron** (Rosenblatt, 1957) is a classifier of the form:

 $h_w(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x}) = \{+1 \text{ if } \mathbf{w}^T \mathbf{x} \ge 0; -1 \text{ otherwise}\}$

- The decision boundary is $w^T x = 0$.
- An example $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$ is classified correctly if and only if: $y_i(\mathbf{w}^T \mathbf{x}_i) > 0$.

COMP-551: Applied Machine Learning

Perceptron learning rule (Rosenblatt, 1957)

• Consider the following procedure:

```
Initialize w_j, j=0:m randomly,
While any training examples remain incorrectly classified:
Loop through all misclassified examples x_i
Perform the update: w \leftarrow w + \alpha y_i x_i
```

```
where \alpha is the learning rate (or step size).
```

• Intuition: For misclassified positive examples, increase $w^T x$, and reduce it for negative examples.

Gradient-descent learning

 The perceptron learning rule can be interpreted as a gradient descent procedure, with optimization criterion:

 $Err(w) = \sum_{i=1:n} \{ 0 \text{ if } y_i w^T x_i \ge 0; -y_i w^T x \text{ otherwise } \}$

Gradient-descent learning

 The perceptron learning rule can be interpreted as a gradient descent procedure, with optimization criterion:

 $Err(w) = \sum_{i=1:n} \{ 0 \text{ if } y_i w^T x_i \ge 0; -y_i w^T x \text{ otherwise } \}$

- For correctly classified examples, the error is zero.
- For incorrectly classified examples, the error tells by how much $w^T x$ is on the wrong side of the decision boundary.
- The error is zero when all examples are classified correctly.

Linear separability

The data is **linearly separable** if and only if there exists a **w** such that:

- For all examples, $y_i w^T x_i > 0$
- Or equivalently, the 0-1 loss is zero for some set of parameters (w).

Perceptron convergence theorem

- The basic theorem:
 - If the perceptron learning rule is applied to a linearly separable dataset, a solution will be found after some finite number of updates.

Perceptron convergence theorem

- The basic theorem:
 - If the perceptron learning rule is applied to a linearly separable dataset, a solution will be found after some finite number of updates.

- Additional comments:
 - The number of updates depends on the dataset, on the learning rate, and on the initial weights.
 - If the data is not linearly separable, there will be oscillation (which can be detected automatically).
 - Decreasing the learning rate to 0 can cause the oscillation to settle on some particular solution.

Perceptron learning example

Perceptron learning example

Weight as a combination of input vectors

• Recall perceptron learning rule:

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha y_i \boldsymbol{x}_i$

• If initial weights are zero, then at any step, the weights are a linear combination of feature vectors of the examples:

$\mathbf{w} = \sum_{i=1:n} \alpha_i y_i \mathbf{x}_i$

where α_i is the sum of step sizes used for all updates applied to example *i*.

Weight as a combination of input vectors

• Recall perceptron learning rule:

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha y_i \mathbf{x}_i$

• If initial weights are zero, then at any step, the weights are a linear combination of feature vectors of the examples:

$\mathbf{w} = \sum_{i=1:n} \alpha_i y_i \mathbf{x}_i$

where α_i is the sum of step sizes used for all updates applied to example *i*.

- By the end of training, some examples may have never participated in an update, so will have $\alpha_i=0$.
- This is called the **dual representation** of the classifier.

Perceptron learning example

• Examples used (bold) and not (faint). What do you notice?

COMP-551: Applied Machine Learning

Perceptron learning example

 Solutions are often non-unique. The solution depends on the set of instances and the order of sampling in updates.

COMP-551: Applied Machine Learning

A few comments on the Perceptron

- Perceptrons can be learned to fit <u>linearly separable</u> data, using a gradient-descent rule.
 - The logistic function offers a "smooth" version of the perceptron.

A few comments on the Perceptron

- Perceptrons can be learned to fit <u>linearly separable</u> data, using a gradient-descent rule.
 - The logistic function offers a "smooth" version of the perceptron.

Two issues:

- Solutions are non-unique.
- What about non-linearly separable data?

A few comments on the Perceptron

- Perceptrons can be learned to fit <u>linearly separable</u> data, using a gradient-descent rule.
 - The logistic function offers a "smooth" version of the perceptron.

Two issues:

- Solutions are non-unique.
- What about non-linearly separable data? (Topic for next class.)
 - Perhaps data can be linearly separated in a different feature space?
 - Perhaps we can relax the criterion of separating all the data?

The non-uniqueness issue

- Consider a linearly separable binary classification dataset.
- There is an infinite number of hyper-planes that separate the classes:

The non-uniqueness issue

- Consider a linearly separable binary classification dataset.
- There is an infinite number of hyper-planes that separate the classes:

• Related question: For a given plane, for which points should we be most confident in the classification?

Linear Support Vector Machine (SVM)

- A **linear** SVM is a perceptron for which we chose **w** such that the margin is maximized.
- For a given separating hyper-plane, the margin is twice the (Euclidean) distance from hyper-plane to nearest training example.
 - I.e. the width of the "strip" around the decision boundary that contains no training examples.

COMP-551: Applied Machine Learning

• Suppose we have a decision boundary that separates the data.

• Assuming $y_i = \{-1, +1\}$, "confidence" = $y_i \mathbf{w}^T \mathbf{x}_i$

• Suppose we have a decision boundary that separates the data.

- Let y_i be the distance from instance x_i to the decision boundary.
- Define vector **w** to be the normal to the decision boundary.

- How can we write y_i in terms of x_i , y_i , w?
- Let \mathbf{x}_i^0 be the point on the decision boundary nearest \mathbf{x}_i
- The vector from \mathbf{x}_i^0 to \mathbf{x}_i is $\mathbf{y}_i \mathbf{w} / ||\mathbf{w}||$.
 - γ_i is a scalar (distance from \mathbf{x}_i to \mathbf{x}_i^0)
 - *w*/|*w*|| is the unit normal.
- So we can define $\mathbf{x}_i^0 = \mathbf{x}_i \mathbf{y}_i \mathbf{w} / ||\mathbf{w}||$.

- How can we write y_i in terms of x_i , y_i , w?
- Let \mathbf{x}_i^0 be the point on the decision boundary nearest \mathbf{x}_i
- The vector from \mathbf{x}_i^0 to \mathbf{x}_i is $\mathbf{y}_i \mathbf{w} / ||\mathbf{w}||$.
 - y_i is a scalar (distance from x_i to x_i^0)
 - *w*/|*w*|| is the unit normal.
- So we can define $\mathbf{x}_i^0 = \mathbf{x}_i \mathbf{y}_i \mathbf{w} / ||\mathbf{w}||$.
- As \mathbf{x}_i^0 is <u>on</u> the decision boundary, we have

 $\boldsymbol{w}^{T}(\boldsymbol{x}_{i}\boldsymbol{y}_{i}\boldsymbol{w}/||\boldsymbol{w}||)=0$

• Solving for γ_i yields, for a positive example: or for examples of both classes:

 $\mathbf{y}_i = \mathbf{w}^T \mathbf{x}_i / ||\mathbf{w}||$ $\mathbf{y}_i = \mathbf{y}_i \mathbf{w}^T \mathbf{x}_i / ||\mathbf{w}||$

Optimization

• First suggestion:

MaximizeMwith respect towsubject to $y_i w^T x_i / ||w|| \ge M, \forall i$

- This is not very convenient for optimization:
 - w appears nonlinearly in the constraints.
 - Problem is underconstrained. If (w, M) is optimal, so is $(\beta w, M)$, for any $\beta > 0$. Add a constraint: ||w||M = 1

1

• Instead try:

Minimize	<i>w</i> /
with respect to	W
subject to	$y_i \mathbf{w}^T \mathbf{x}_i \geq$

Optimization

• First suggestion:

MaximizeMwith respect towsubject to $y_i w^T x_i / ||w|| \ge M, \forall i$

- This is not very convenient for optimization:
 - w appears nonlinearly in the constraints.
 - Problem is underconstrained. If (w, M) is optimal, so is $(\beta w, M)$, for any $\beta > 0$. Add a constraint: ||w||M = 1

1

• Instead try:

Minimize	<i>w</i> /
with respect to	W
subject to	$y_i \mathbf{w}^T \mathbf{x}_i \geq$

Final formulation

Let's minimize ¹/₂ ||w||² instead of ||w||

(Taking the square is a monotone transform, as ||w|| is positive, so it doesn't change the optimal solution. The $\frac{1}{2}$ is for mathematical convenience.)

• This gets us to: Min $\frac{1}{2} ||w||^2$

w.r.t. ws.t. $y_i w^T x_i \ge 1$

- This can be solved! How?
 - It is a quadratic programming (QP) problem a standard type of optimization problem for which many efficient packages are available.
 Better yet, it's a convex (positive semidefinite) QP.

Constrained optimization

Picture from: http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/

COMP-551: Applied Machine Learning

We have a unique solution, but no support vectors yet. Recall the dual solution for the Perceptron: Extend for the margin case.

Lagrange multipliers

• Consider the following optimization problem, called primal:

 $\begin{array}{ll} \min_{\boldsymbol{w}} & f(\boldsymbol{w}) \\ \text{s.t.} & g_i(\boldsymbol{w}) \leq 0, \ i=1 \dots k \end{array} \end{array}$

• We define the generalized Lagrangian:

 $L(\boldsymbol{w}, \boldsymbol{\alpha}) = f(\boldsymbol{w}) + \sum_{i=1:k} \alpha_i g_i(\boldsymbol{w})$

where α_i , *i*=1...*k* are the Lagrange multipliers.

f(x,y)

Figure : Find *x* and *y* to maximize f(x, y)subject to a constraint (shown in red) g(x, y) = c. From: *https://en.wikipedia.org/wiki/Lagrange_multiplier*

Lagrangian optimization

- Consider $P(w) = \max_{\alpha:\alpha \ge 0} L(w, \alpha)$ (*P* stands for "primal")
- Observe that the following is true:

 $P(w) = \{ f(w), \text{ if all constraints are satisfied}, \}$

 $+\infty$, otherwise }

Hence, instead of computing min_w f(w) subject to the original constraints, we can compute:

 $p^* = min_w P(w) = min_w max_{\alpha:\alpha \ge 0} L(w, \alpha)$ **Primal**

• Alternately, invert max and min to get:

 $d^* = max_{\alpha:\alpha i \ge 0} \min_{w} L(w, \alpha) \qquad Dual$

Maximum Margin Perceptron

- We wanted to solve: $Min \qquad \frac{1}{2} ||w||^2$
 - w.r.t. \boldsymbol{w} s.t. $\boldsymbol{y}_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1$
- The Lagrangian is:

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\boldsymbol{w}||^2 + \sum_i \alpha_i (1 - y_i (\boldsymbol{w}^T \boldsymbol{x}_i))$$

- The primal problem is: $\min_{w} \max_{\alpha:\alpha i \ge 0} L(w, \alpha)$
- The dual problem is: $\max_{\alpha:\alpha i \ge 0} \min_{w} L(w, \alpha)$

Dual optimization problem

• Consider both solutions:

 $p^* = \min_{\mathbf{w}} \max_{\alpha:\alpha i \ge 0} L(\mathbf{w}, \alpha)$ $d^* = \max_{\alpha:\alpha i \ge 0} \min_{\mathbf{w}} L(\mathbf{w}, \alpha)$

Primal Dual

- If *f* and *g_i* are convex and the *g_i* can all be satisfied simultaneously for some *w*, then we have equality: $d^* = p^* = L(w^*, \alpha^*)$.
 - **w*** is the optimal weight vector (= primal solution)
 - α* is the optimal set of support vectors (=dual solution)
 - For SVMs, we have a quadratic objective and linear constraints so both f and g_i are convex.
 - For linearly separable data, all g_i can be satisfied simultaneously.
 - Note: w*, α* solve the primal and dual if and only if they satisfy the Karush-Kunh-Tucker conditions (see suggested readings).

Solving the dual

• Taking derivatives of $L(w, \alpha)$ wrt w, setting to 0, and solving for w:

 $L(\boldsymbol{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\boldsymbol{w}||^2 + \sum_i \alpha_i (1 - y_i (\boldsymbol{w}^T \boldsymbol{x}_i))$ $\delta L/\delta \boldsymbol{w} = \boldsymbol{w} - \sum_i \alpha_i y_i \boldsymbol{x}_i = 0$ $\boldsymbol{w}^* = \sum_i \alpha_i y_i \boldsymbol{x}_i$

- Just like for the perceptron with zero initial weights, the optimal solution w* is a linear combination of the x_i.
- Plugging this back into *L* we get the dual: $\max_{\alpha} \sum_{i} \alpha_{i} \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\mathbf{x}_{i} \cdot \mathbf{x})$ with constraints $\alpha_{i} \ge 0$ and $\sum_{i} \alpha_{i} y_{i} = 0$. Quadratic programming problem.
- Complexity of solving quadratic program? Polynomial time, $O(|v|^3)$ (where |v|=# variables in optimization; here |v|=n). Fast approximations exist.

The support vectors

- Suppose we find the optimal α 's (e.g. using a QP package.)
- Constraint *i* is active when $\alpha_i > 0$. This corresponds for the points for which $(1-y_i \mathbf{w}^T \mathbf{x}_i)=0$.
- These are the points lying on the edge of the margin. We call them support vectors. They define the decision boundary.
- The output of the classifier for query point **x** is computed as:

 $h_{\boldsymbol{w}}(\boldsymbol{x}) = sign(\sum_{i=1:n} \alpha_i y_i(\boldsymbol{x}_i \cdot \boldsymbol{x}))$

It is determined by computing the dot product of the query point with the support vectors.

Example

Support vectors are in bold

COMP-551: Applied Machine Learning

What you should know

From today:

- The perceptron algorithm.
- The margin definition for linear SVMs.
- The use of Lagrange multipliers to transform optimization problems.
- The primal and dual optimization problems for SVMs.

After the next class:

- Non-linearly separable case.
- Feature space version of SVMs.
- The kernel trick and examples of common kernels.