
COMP 551 – Applied Machine Learning
Lecture 11:  Support Vector Machines

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Today’s quiz
• In the random forest approach proposed by Breiman, how many 

hyper-parameters need to be specified?
– 1, 2, 3, 4, 5

• What is the complexity of each iteration of Adaboost, assuming 
your weak learner is a decision stump and you have all binary 
variables?  Let M be the number of features and N be the 
number of examples.
– O(M),  O(N),  O(MN), O(MN2)

• Which of the two ensemble strategies is most effective for high 
variance base classifiers?
– Bagging, Boosting
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Project #2
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Outline

• Perceptrons

– Definition

– Perceptron learning rule

– Convergence

• Margin & max margin classifiers

• Linear Support Vector Machines

– Formulation as optimization problem

– Generalized Lagrangian and dual

• Non-linear Support Vector Machines (next class)
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A simple linear classifier
• Given a binary classification task: {xi, yi}i=1:n, yi={-1,+1}.

• The perceptron (Rosenblatt, 1957) is a classifier of the form:

hw(x) = sign(wTx) = {+1 if wTx≥0;  -1 otherwise}

– The decision boundary is wTx=0.

– An example <xi, yi> is classified correctly if and only if: yi(wTxi)>0.

COMP-551: Applied Machine Learning
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• Consider the following procedure:

Initialize wj, j=0:m randomly,

While any training examples remain incorrectly classified:

Loop through all misclassified examples xi

Perform the update:  w ⃪ w + α yi xi

where α is the learning rate (or step size).

• Intuition:  For misclassified positive examples, increase wTx, 
and reduce it for negative examples. 

Perceptron learning rule (Rosenblatt, 1957)

COMP-551: Applied Machine Learning
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Gradient-descent learning

• The perceptron learning rule can be interpreted as a gradient 

descent procedure, with optimization criterion:

Err(w) = ∑i=1:n { 0 if yiwTxi≥0;  -yiwTx otherwise }

COMP-551: Applied Machine Learning
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Gradient-descent learning

• The perceptron learning rule can be interpreted as a gradient 

descent procedure, with optimization criterion:

Err(w) = ∑i=1:n { 0 if yiwTxi≥0;  -yiwTx otherwise }

• For correctly classified examples, the error is zero.

• For incorrectly classified examples, the error tells by how much 
wTx is on the wrong side of the decision boundary.

• The error is zero when all examples are classified correctly.
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Linear separability

The data is linearly separable if and only if there exists a w such that:

– For all examples, yiwTxi > 0

– Or equivalently, the 0-1 loss is zero for some set of parameters (w).

COMP-551: Applied Machine Learning

Linear separability

• The data set is linearly separable if and only if there exists w, w0 such
that:

– For all i, yi(w · xi + w0) > 0.
– Or equivalently, the 0-1 loss is zero for some set of parameters (w, w0).
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Perceptron convergence theorem

• The perceptron convergence theorem states that if the perceptron
learning rule is applied to a linearly separable data set, a solution
will be found after some finite number of updates.

• The number of updates depends on the data set, and also on the step
size parameter.

• If the data is not linearly separable, there will be oscillation (which can
be detected automatically).

• Decreasing the learning rate to 0 can cause the oscillation to settle on
some particular solution
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Perceptron convergence theorem

• The perceptron convergence theorem states that if the perceptron
learning rule is applied to a linearly separable data set, a solution
will be found after some finite number of updates.

• The number of updates depends on the data set, and also on the step
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Perceptron convergence theorem

• The basic theorem:

– If the perceptron learning rule is applied to a linearly separable dataset, 
a solution will be found after some finite number of updates.
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Perceptron convergence theorem

• The basic theorem:

– If the perceptron learning rule is applied to a linearly separable dataset, 
a solution will be found after some finite number of updates.

• Additional comments:

– The number of updates depends on the dataset, on the learning rate, 
and on the initial weights.

– If the data is not linearly separable, there will be oscillation (which can 
be detected automatically).

– Decreasing the learning rate to 0 can cause the oscillation to settle on 
some particular solution.
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Perceptron learning example

COMP-551: Applied Machine Learning

Perceptron learning example–separable data
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Perceptron learning example–separable data
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Perceptron learning example
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Perceptron learning example–separable data
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Perceptron learning example–separable data
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Weight as a combination of input vectors

• Recall perceptron learning rule:

w ⃪ w + α yi xi

• If initial weights are zero, then at any step, the weights are a linear 
combination of feature vectors of the examples:

w = ∑i=1:n αi yi xi

where αi is the sum of step sizes used for all updates applied to example i.

COMP-551: Applied Machine Learning
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Weight as a combination of input vectors

• Recall perceptron learning rule:

w ⃪ w + α yi xi

• If initial weights are zero, then at any step, the weights are a linear 
combination of feature vectors of the examples:

w = ∑i=1:n αi yi xi

where αi is the sum of step sizes used for all updates applied to example i.

• By the end of training, some examples may have never 
participated in an update, so will have αi=0 .

• This is called the dual representation of the classifier.
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Perceptron learning example

• Examples used (bold) and not (faint).  What do you notice? 
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Weight as a combination of input vectors

• Recall percepton learning rule:

w ⌃ w + ⇤yixi, w0 ⌃ w0 + ⇤yi

• If initial weights are zero, then at any step, the weights are a linear

combination of feature vectors of the examples:

w =

mX

i=1

�iyixi, w0 =

mX

i=1

�iyi

where �i is the sum of step sizes used for all updates based on example
i.

• This is called the dual representation of the classifier.

• Even by the end of training, some example may have never participated
in an update, so the corresponding �i = 0.
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Example used (bold) and not used (faint) in updates
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Perceptron learning example

• Solutions are often non-unique.  The solution depends on the 
set of instances and the order of sampling in updates.
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Comment: Solutions are nonunique
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Solutions depend on the set of instances and the order of sampling in updates
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Perceptron summary

• Perceptrons can be learned to fit linearly separable data, using a gradient
descent rule.

• There are other fitting approaches – e.g., formulation as a linear
constraint satisfaction problem / linear program.

• Solutions are non-unique.

• Logistic neurons are often thought of as a “smooth” version of a
perceptron

• For non-linearly separable data:

– Perhaps data can be linearly separated in a di�erent feature space?
– Perhaps we can relax the criterion of separating all the data?

COMP-652, Lecture 9 - October 9, 2012 12
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A few comments on the Perceptron

• Perceptrons can be learned to fit linearly separable data, using a 
gradient-descent rule.
– The logistic function offers a “smooth” version of the perceptron.

COMP-551: Applied Machine Learning
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A few comments on the Perceptron

• Perceptrons can be learned to fit linearly separable data, using a 
gradient-descent rule.
– The logistic function offers a “smooth” version of the perceptron.

Two issues:

• Solutions are non-unique.

• What about non-linearly separable data?

COMP-551: Applied Machine Learning
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A few comments on the Perceptron

• Perceptrons can be learned to fit linearly separable data, using a 
gradient-descent rule.
– The logistic function offers a “smooth” version of the perceptron.

Two issues:

• Solutions are non-unique.

• What about non-linearly separable data?  (Topic for next class.)

– Perhaps data can be linearly separated in a different feature space?

– Perhaps we can relax the criterion of separating all the data?
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The non-uniqueness issue

• Consider a linearly separable binary classification dataset.

• There is an infinite number of hyper-planes that separate the 
classes:

• Which plane is best?

COMP-551: Applied Machine Learning

Support Vector Machines

• Support vector machines (SVMs) for binary classification can be viewed
as a way of training perceptrons

• There are three main new ideas:

– An alternative optimization criterion (the “margin”), which eliminates
the non-uniqueness of solutions and has theoretical advantages

– An e⇥cient way of operating in expanded feature spaces, which allow
non-linear functions to be represented – the “kernel trick”

– A way of handling overfitting and non-separable data by allowing
mistakes

• SVMs can also be used for multiclass classification and regression.

COMP-652, Lecture 9 - October 9, 2012 13

Returning to the non-uniqueness issue

• Consider a linearly separable binary classification data set {xi, yi}mi=1.

• There is an infinite number of hyperplanes that separate the classes:
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• Which plane is best?

• Relatedly, for a given plane, for which points should we be most confident
in the classification?
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The non-uniqueness issue

• Consider a linearly separable binary classification dataset.

• There is an infinite number of hyper-planes that separate the 
classes:

• Which plane is best?

• Related question:   For a given plane, for which points should we be 
most confident in the classification?
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Support Vector Machines
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Linear Support Vector Machine (SVM)

• A linear SVM is a perceptron for which we chose w such that the 
margin is maximized.

• For a given separating hyper-plane, the margin is twice the 
(Euclidean) distance from hyper-plane to nearest training example.
– I.e. the width of the “strip” around the decision boundary that contains 

no training examples.

COMP-551: Applied Machine Learning

The margin, and linear SVMs

• For a given separating hyperplane, themargin is two times the (Euclidean)
distance from the hyperplane to the nearest training example.
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• It is the width of the “strip” around the decision boundary containing no
training examples.

• A linear SVM is a perceptron for which we choose w, w0 so that margin
is maximized
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Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.
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• Let ⇤i be the distance from instance xi to the decision boundary.

• How can we write ⇤i in term of xi, yi,w, w0?
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Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.

• Assuming yi={-1, +1}, “confidence” = yiwTxi

COMP-551: Applied Machine Learning
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Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.

• Let ɣi be the distance from instance xi to the decision boundary.
• Define vector w to be the normal to the decision boundary.

COMP-551: Applied Machine Learning
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Distance to the decision boundary
• How can we write ɣi in terms of xi, yi, w?

• Let xi
0 be the point on the decision boundary nearest xi

• The vector from xi
0 to xi is ɣi w / ||w||.

– ɣi is a scalar (distance from xi to xi
0)

– w/||w|| is the unit normal.

• So we can define xi
0 = xi-ɣi w / ||w||.

COMP-551: Applied Machine Learning
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Distance to the decision boundary
• How can we write ɣi in terms of xi, yi, w?

• Let xi
0 be the point on the decision boundary nearest xi

• The vector from xi
0 to xi is ɣi w / ||w||.

– ɣi is a scalar (distance from xi to xi
0)

– w/||w|| is the unit normal.

• So we can define xi
0 = xi-ɣi w / ||w||.

• As xi
0 is on the decision boundary, we have

wT( xi-ɣi w / ||w||) = 0

• Solving for ɣi yields, for a positive example:    ɣi = wTxi / ||w||
or for examples of both classes: ɣi = yiwTxi / ||w||

COMP-551: Applied Machine Learning
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Optimization

• First suggestion:
Maximize M
with respect to w
subject to yiwTxi / ||w|| ≥ M, ∀i

• This is not very convenient for optimization:

– w appears nonlinearly in the constraints.
– Problem is underconstrained. If (w, M) is optimal, so is (βw, M), for    

any β>0. Add a constraint:  ||w||M = 1

• Instead try:
Minimize ||w||
with respect to w
subject to yiwTxi ≥ 1

COMP-551: Applied Machine Learning
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Final formulation
• Let’s minimize ½||w||2 instead of ||w||

(Taking the square is a monotone transform, as ||w|| is positive, so it doesn’t 
change the optimal solution. The ½ is for mathematical convenience.)

• This gets us to: Min ½ ||w||2

w.r.t. w

s.t. yiwTxi ≥ 1

• This can be solved!  How?

– It is a quadratic programming (QP) problem – a standard type of 
optimization problem for which many efficient packages are available. 
Better yet, it’s a convex (positive semidefinite) QP.

COMP-551: Applied Machine Learning
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Constrained optimization

COMP-551: Applied Machine Learning

Picture from: http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/
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Example

COMP-551: Applied Machine Learning

Final formulation

• Let’s maximize ✏w✏2 instead of ✏w✏.
(Taking the square is a monotone transformation, as ✏w✏ is postive, so
this doesn’t change the optimal solution.)

• This gets us to:
min ✏w✏2

w.r.t. w, w0

s.t. yi(w · xi + w0) ⇧ 1

• This we can solve! How?

– It is a quadratic programming (QP) problem—a standard type of
optimization problem for which many e⇥cient packages are available.

– Better yet, it’s a convex (positive semidefinite) QP
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Example
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We have a solution, but no support vectors yet...
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We have a unique solution, but no support vectors yet.
Recall the dual solution for the Perceptron:  Extend for the margin case. 
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Lagrange multipliers
• Consider the following optimization problem, called primal:

minw f(w)
s.t. gi(w) ≤ 0, i=1…k

• We define the generalized Lagrangian:
L(w, α) = f(w) + ∑i=1:k αi gi(w)
where αi, i=1…k are the Lagrange multipliers.

COMP-551: Applied Machine Learning

Figure : Find x and y to maximize f(x, y) 
subject to a constraint (shown in red) g(x, y) = c.
From: https://en.wikipedia.org/wiki/Lagrange_multiplier
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Lagrangian optimization

• Consider P(w) = maxα:αi≥0 L(w,α) (P stands for “primal”)

• Observe that the following is true:

P(w) = { f(w), if all constraints are satisfied,

+∞, otherwise }

• Hence, instead of computing minw f(w) subject to the original 

constraints, we can compute:

p* = minw P(w) = minw maxα:αi≥0 L(w,α) Primal

• Alternately, invert max and min to get:

d* = maxα:αi≥0 minw L(w,α) Dual

COMP-551: Applied Machine Learning
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Maximum Margin Perceptron

• We wanted to solve: Min ½ ||w||2

w.r.t. w

s.t. yiwTxi ≥ 1

• The Lagrangian is:

L(w, α) = ½ ||w||2 + ∑i αi (1 – yi (wTxi) )

• The primal problem is: minw maxα:αi≥0 L(w,α)

• The dual problem is: maxα:αi≥0 minw L(w,α)

COMP-551: Applied Machine Learning
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Dual optimization problem
• Consider both solutions:

p* = minw maxα:αi≥0 L(w,α) Primal
d* = maxα:αi≥0 minw L(w,α) Dual

• If f and gi are convex and the gi can all be satisfied simultaneously 

for some w, then we have equality: d* = p* = L(w*, α*).
• w* is the optimal weight vector (= primal solution)
• α* is the optimal set of support vectors (=dual solution)

– For SVMs, we have a quadratic objective and linear constraints so 
both f and gi are convex.

– For linearly separable data, all gi can be satisfied simultaneously.

– Note: w*, α* solve the primal and dual if and only if they satisfy the 
Karush-Kunh-Tucker conditions (see suggested readings).

COMP-551: Applied Machine Learning
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Solving the dual
• Taking derivatives of L(w, α) wrt w, setting to 0, and solving for w :

L(w, α) =  ½ ||w||2 + ∑i αi (1 – yi (wTxi) )

δL/δw =  w - ∑i αi yi xi = 0

w* =  ∑i αi yi xi

• Just like for the perceptron with zero initial weights, the optimal solution w* 
is a linear combination of the xi.

• Plugging this back into L we get the dual:  maxα ∑i αi – ½ ∑i,j yiyjαiαj(xi·x)

with constraints αi ≥ 0 and ∑i αi yi= 0 . Quadratic programming problem.

• Complexity of solving quadratic program?  Polynomial time, O(|v|3) (where 
|v|=# variables in optimization; here |v|=n).  Fast approximations exist.
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The support vectors

• Suppose we find the optimal α ‘s (e.g. using a QP package.)

• Constraint i is active when αi > 0. This corresponds for the points 

for which (1-yiwTxi)=0.

• These are the points lying on the edge of the margin.  We call them 

support vectors.  They define the decision boundary.

• The output of the classifier for query point x is computed as:

hw(x) = sign( ∑i=1:n αiyi (xi·x) ) 

It is determined by computing the dot product of the query point with the 
support vectors.

COMP-551: Applied Machine Learning
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Example

COMP-551: Applied Machine Learning

Example

Support vectors are in bold
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Non-linearly separable data
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• A linear boundary might be too simple to capture the class structure.

• One way of getting a nonlinear decision boundary in the input space is to
find a linear decision boundary in an expanded space (e.g., for polynomial
regression.)

• Thus, xi is replaced by ⇧(xi), where ⇧ is called a feature mapping
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What you should know

From today:

• The perceptron algorithm.

• The margin definition for linear SVMs.

• The use of Lagrange multipliers to transform optimization problems.

• The primal and dual optimization problems for SVMs.

After the next class:

• Non-linearly separable case.

• Feature space version of SVMs.

• The kernel trick and examples of common kernels.


