COMP 551 — Applied Machine Learning

Lecture 5: Generative models for linear
classification

Instructor: Joelle Pineau (jpineau@cs.mcgqill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Today’s quiz

Q1. What is a linear classifier? (In contrast to a non-linear classifier.)

Q2. Describe the difference between discriminative and generative classifiers.

Q3. Consider the following data set. If you use logistic regression to compute
a decision boundary, what is the prediction for x5?

1 0 0 0
X, 1 0 1 0
Xs 0 1 0 0
X, 1 1 1 1
Xs 1 1 0 1
Xg 0 0 0 ?
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Quick recap

« Two approaches for linear classification:
— Discriminative learning: Directly estimate P(y|x). | ﬁ

* Logistic regression, P(y|x) : o(WX) = 1/ (1 + eWX) ,/

— Generative learning: Separately model P(x|y) and P(y). Use
these, through Bayes rule, to estimate P(y|x).
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Linear discriminant analysis (LDA)

« Return to Bayes rule: P(y!x) = P(x1y)P(y)
P(x)

L) s ()

* LDA makes explicit assumptions about P(x|y):  p(x1y)= ¢
(27_[)1/2 IS |2

» Multivariate Gaussian, with mean y and covariance matrix 2 .
* Notation: here x is a single instance, represented as an m*7 vector.
« Key assumption of LDA: Both classes have the same covariance matrix, 2.
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Linear discriminant analysis (LDA)

Return to Bayes rule: P(ylx)= P(x1y)P(y)
P(x)

L) s ()

LDA makes explicit assumptions about P(x|y):  p(xiy)= ¢

(227:)1/2 |2 |l/2

» Multivariate Gaussian, with mean y and covariance matrix 2 .
* Notation: here x is a single instance, represented as an m*7 vector.
« Key assumption of LDA: Both classes have the same covariance matrix, 2.

Consider the log-odds ratio (again, P(x) doesn’t matter for decision):

Pedy=DP=D 1, P0=D 1 rsoy o Lyrsoy oxmsu - u,)
P(xly=0)P(y=0) | P(y=0) 2 2 Y J | Y }
This is a linear decision boundary! W, + xTw
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Learning in LDA: 2 class case

- Estimate P(y), u, 2, from the training data, then apply log-odds ratio.
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Learning in LDA: 2 class case

- Estimate P(y), u, 2, from the training data, then apply log-odds ratio.
— P(y=0) = Ny/ (Ny + N P(y=1) = N;/(Ny + N;)

where N,, N,, be # of training samples from classes 1 and 0, respectively.
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Learning in LDA: 2 class case

- Estimate P(y), u, 2, from the training data, then apply log-odds ratio.
— P(y=0) = Ny/ (Ny + N P(y=1) =N/ (Ny + N;)
where N,, N,, be # of training samples from classes 1 and 0, respectively.

— Mo = 2i=1:n I(y=0) x;/ N, M1 =D i=10 I(y~=1) X;/ N,

where [/(x) is the indicator function: /(x)=0 if x=0, I(x)=1 if x=1.
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Learning in LDA: 2 class case

- Estimate P(y), u, 2, from the training data, then apply log-odds ratio.
— P(y=0) = Ny/ (Ny + N P(y=1) =N/ (Ny + N;)
where N,, N,, be # of training samples from classes 1 and 0, respectively.

— Mo = 2i=1:n I(y=0) x;/ N, M1 =D i=10 I(y~=1) X;/ N,

where [/(x) is the indicator function: /(x)=0 if x=0, I(x)=1 if x=1.

— 2= Y 4=0:120=1:0 1(Vi=0) (X; = ) (Xi — )T/ (Ng+N4-Ny)
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Learning in LDA: 2 class case

- Estimate P(y), u, 2, from the training data, then apply log-odds ratio.
— P(y=0) = Ny/ (Ny + N P(y=1) =N/ (Ny + N;)
where N,, N,, be # of training samples from classes 1 and 0, respectively.

— Mo = 2i=1:n I(y=0) x;/ N, M1 =D i=10 I(y~=1) X;/ N,

where [/(x) is the indicator function: /(x)=0 if x=0, I(x)=1 if x=1.

— 2= Y 4=0:120=1:0 1(Vi=0) (X; = ) (Xi — )T/ (Ng+N4-Ny)

- Decision boundary: Given an input x, classify it as class 1 if the

log-odds ratio is >0, classify it as class 0 otherwise.
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More complex decision boundaries

« Want to accommodate more than 2 classes?

— Consider the per-class linear discriminant function:

U B
8,(x)=x"2"u, - EMyT 2", +log P(y)

— Use the foIIowing decision rule:

Output = argmax ,(x) = argmax|x' "' u, — % u, 2" u, +log P(y)
y y

«  Want more flexible (non-linear) decision boundaries?

— Recall trick from linear regression of re-coding variables.

COMP-551: Applied Machine Learning 11 Joelle Pineau



Using higher-order features

FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1Xo, X7, X3. Linear inequalities in this
space are quadratic inequalities in the original space.
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Quadratic discriminant analysis

 LDA assumes all classes have the same covariance matrix, 2.

QDA allows different covariance matrices, Zy for each class y.

 Linear discriminant function:

1

8,(x)=x"="u, - EMTZ‘% +log P(y)

y
* Quadratic discriminant function:
1 1 _
0,00 = =22, |-~ (x=p,) T (x=1,) + log P(y)

— QDA has more parameters to estimate, but greater flexibility to
estimate the target function. Bias-variance trade-off.
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LDA vs QDA

FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space Xl,XQ,X1X2,X12,X22). The right plot shows the
quadratic decision boundaries found by QDA. The differences are small, as 1is
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Generative learning — Scaling up

« Consider applying generative learning (e.g. LDA) to Project 1 data.
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Generative learning — Scaling up

- Consider applying generative learning (e.g. LDA) to Project 1 data.
E.g. Task: Given first few words, determine language (without dictionary).
— What are features? How to encode the data?

— How to handle high dimensional feature space?

— Assume same co-variance matrix for both classes? (Maybe that is ok.)

What kinds of assumptions can we make to simplify the problem?
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Naive Bayes assumption

- Generative learning: Estimate P(x|y), P(y). Then calculate P(y|x).

 Naive Bayes: Assume the x; are conditionally independent given y.

— In other words: P(x;|y) = P(x;| y, x,), for all j, k
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Naive Bayes assumption

- Generative learning: Estimate P(x|y), P(y). Then calculate P(y|x).

 Naive Bayes: Assume the x; are conditionally independent given y.

— In other words: P(x;|y) = P(x;| y, x,), for all j, k

 (Generative model structure:

P(le) =P(X17 X27 raay Xmly)
=P(x1|y) P(Xz | ¥, X1) P(X3| Y, X4, X3) -..P(Xpy | ¥, X4, Xo1 o0 Xp_y)
(from general rules of probabilities)
=P(x;1y) P(x21y) P(x31y) -..P(Xpn | ¥)
(from the Naive Bayes assumption above)
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Nailve Bayes graphical model

* How many parameters to estimate” Assume m binary features.
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Nalve Bayes graphical model

* How many parameters to estimate” Assume m binary features.

— without Naive Bayes assumption: O(2") numbers to describe model.

— With Naive Bayes assumption: O(m) numbers to describe model.

« Useful when the number of features is high.
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Training a Naive Bayes classifier

« Assume x, y are binary variables, m=1.

- Estimate the parameters P(x|y) and P(y) from data.

— Define: &, =Pr (y=1)
g1 = Pr(x=1]|y=1)
G = Pr (xj=1 | y=0).

J;
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Training a Naive Bayes classifier

Assume X, y are binary variables, m=1.

Estimate the parameters P(x|y) and P(y) from data.
— Define: &, =Pr(y=1)

G, =Pr(x=1|y=1)

G0 = Pr(x=1]y=0).

I

Evaluation criteria: Find parameters that maximize the log-
likelihood function.

Likelihood: Pr(y|x) o Pr(y)Pr(x|ly) = [li=1:n ( PV} [Ti=1::P(Xi5 1 ¥i) )

« Samples i are independent, so we take product over n.
* Input features are independent (cond. on y) so we take product over m.
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Training a Naive Bayes classifier

- Likelihood for binary output variable: L(&,|y=1) = 8/(1-6,)"Y
* Log-likelihood for all parameters:

log L(64,6;1,6,0| D) = 2i-.n[log P(y) + 2=1.mlog P(xi; | yi) ]
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Training a Naive Bayes classifier

 Likelihood for binary output variable: L(&8,|ly=1) = 8,(1-6,)"Y
» Log-likelihood for all parameters:
log L(61,6,1,8,0| D) = 2j.15[l0g P(y) + 2)=1.,/09 P(X;; | y) ]
= 221l yilog &y + (1-y;)log(1-6)
*2io1mY; (X 10964 + (1-x;;)log(1-6, 1) )
+ 21 (1-Y)( X 1096, + (1-X;;)log(1-6,0) ) |
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Training a Naive Bayes classifier

 Likelihood for binary output variable: L(&8,|ly=1) = 8,(1-6,)"Y
» Log-likelihood for all parameters:
log L(61,6,1,8,0| D) = 2j.15[l0g P(y) + 2)=1.,/09 P(X;; | y) ]
= 221l yilog &y + (1-y;)log(1-6)
*2io1mY; (X 10964 + (1-x;;)log(1-6, 1) )
+ 21 (1-Y)( X 1096, + (1-X;;)log(1-6,0) ) |

(will have other form if params P(x|y) have other form, e.g. Gaussian).
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Training a Naive Bayes classifier

 Likelihood for binary output variable: L(&8,|ly=1) = 8,(1-6,)"Y
» Log-likelihood for all parameters:
log L(61,6,1,6,90| D) = 2i-4.5[10g P(y) + 21,109 P(xi;| y) |
= 221l yilog &, + (1-y;)log(1-6,)
*2io1mY; (X 10964 + (1-x;;)log(1-6, 1) )
+ 21 (1-Y)( X 1096, + (1-X;;)log(1-6,0) ) |

(will have other form if params P(x|y) have other form, e.g. Gaussian).

- To estimate &,, take derivative of logL with respect to &,, set to O:
L7061 =21 (vi/61 - (1-y;)(1-64)) = 0
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Training a Naive Bayes classifier

Solving for &, we get:
&4 =(1/n) 2j=1. i

= number of examples where y=7 / number of examples
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Training a Naive Bayes classifier

Solving for &, we get:
&4 =(1/n) 2j=1. i

= number of examples where y=7 / number of examples

Similarly, we get:
g, =number of examples where x;=7 and y=1/ number of examples where y=1

8,0 = number of examples where x;=7 and y=0/ number of examples where y=0
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Naive Bayes decision boundary

Consider again the log-odds ratio:

Pr(y=11x) “1o Pr(xly=1)P(y=1)
Pr(y=01x) - Pr(xly=0)P(y=0)

PO=D | 1og H’Jnl y1y=1)
P(y=0) Hjl (ley=0)

. P(y= P(x1y=1)
—logP(y O)+;log xly—O)

log

= log
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Naive Bayes decision boundary

» Consider the case where features are binary: x; = {0, 1}

* Define: P(x;=0ly=1) P(x,=11y=1)
w;, =log ,  w,,=log

P(x;=01y=0) ’ P(x;=11y=0)

Priy=1l0) 10 PO=D Sy, (x;1y=1)

 Now we have: log
Pr(y=01x) P(y=0) 4 ~P(x,1y=0)

This is a linear decision boundary! w) + xT w
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Text classification example

« Using Naive Bayes, we can compute probabilities for all the words
which appear in the document collection.
— P(y=c) is the probability of class ¢
— P(x; | y=c) is the probability of seeing word j in documents of class ¢
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Text classification example

« Using Naive Bayes, we can compute probabilities for all the words
which appear in the document collection.

— P(y=c) is the probability of class ¢
— P(x; | y=c) is the probability of seeing word j in documents of class ¢

- Set of classes depends on the application, e.g.

— Topic modeling: each class corresponds to documents on a given
topic, e.g. {Politics, Finance, Sports, Arts}.

What happens when a
word is not observed
in the training data?
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Laplace smoothing

* Replace the maximum likelihood estimator:

Pr(x; | y=1) = number of instance with x=7 and y=1
number of examples with y=1
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Laplace smoothing

* Replace the maximum likelihood estimator:

Pr(x; | y=1) = number of instance with x=7 and y=1
number of examples with y=1

«  With the following:

Pr(x;| y=1) = (number of instance with x=1 and y=1) + 1
(number of examples with y=7) + 2
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Laplace smoothing

* Replace the maximum likelihood estimator:

Pr(x; | y=1) = number of instance with x=7 and y=1
number of examples with y=1

«  With the following:

Pr(x;| y=1) = (number of instance with x=1 and y=1) + 1
(number of examples with y=17) + 2

— If no example from that class, it reduces to a prior probability or Pr=1/2.
— If all examples have x=1, then Pr(x=0|y) has Pr =1/ (#examples + 1).

— If a word appears frequently, the new estimate is only slightly biased.

« This is an example of Bayesian prior for Naive Bayes.
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Example: 20 newsgroups

« Given 1000 training documents from each group, learn to
classify new documents according to which newsgroup they

came from: comp.graphics misc.forsale

comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware  rec.motorcycles
comp.sys.mac.hardware  rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc talk.politics.guns

- Naive Bayes: 89% classification accuracy (comparable to other

state-of-the-art methods.)

COMP-551: Applied Machine Learning 36 Joelle Pineau



Multi-class classification

« Generally two options:

1. Learn a single classifier that can produce 20 distinct output values.

2. Learn 20 different 1-vs-all binary classifiers.
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Multi-class classification

« Generally two options:

1. Learn a single classifier that can produce 20 distinct output values.

2. Learn 20 different 1-vs-all binary classifiers.

« Option 1 assumes you have a multi-class version of the classifier.

— For Naive Bayes, compute P(y|x) for each class, and select the class
with highest probability.
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Multi-class classification

« Generally two options:

1. Learn a single classifier that can produce 20 distinct output values.

2. Learn 20 different 1-vs-all binary classifiers.

« Option 1 assumes you have a multi-class version of the classifier.

— For Naive Bayes, compute P(y|x) for each class, and select the class
with highest probability.

« Option 2 applies to all binary classifiers, so more flexible. But
often slower (need to learn many classifiers), and creates a class
imbalance problem (the target class has relatively fewer data
points, compared to the aggregation of the other classes.)
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Best features

extracted

category word log-odds ratio b,

alt.atheism atheism 0.013 0.0040
comp.graphics jpeg 0.037 0.0073
comp.os.ms-windows.misc  windows 0.043 0.020
comp.sys.ibm.pc.hardware scsi 0.033 0.012
comp.sys.mac.hardware mac 0.024 0.012
comp.windows.x window 0.024 0.0091
misc.forsale sale 0.018 0.0076
rec.autos car 0.043 0.017
rec.motorcycles bike 0.045 0.010
rec.sport.baseball baseball 0.016 0.0057
rec.sport.hockey hockey 0.037 0.0078
scl.crypt clipper 0.033 0.0058
sci.electronics circuit 0.010 0.0031
sci.med patients 0.011 0.0029
scl.space space 0.035 0.013
soc.religion.christian god 0.035 0.018
talk.politics.guns gun 0.028 0.0094
talk.politics.mideast armenian 0.039 0.0057
talk.politics.misc stephanopoulos 0.024 0.0034
talk.religion.misc god 0.011 0.011

Table 3.1: For each category in the 20 Newsgroups dataset, the word with the highest
log odds ratio. A larger score indicates a word which is commonly found in the
specified category, but rarely found in other categories. Words with high log odds
ratios are good discriminants for the one vs. all problem.

From MSc thesis by Jason Rennie http.//qwone.com/~jason/papers/sm-thesis.pdf
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Gaussian Naive Bayes

Extending Naive Bayes to continuous inputs:
*  P(y) is still assumed to be a binomial distribution.

*  P(x]y) is assumed to be a multivariate Gaussian (normal)

distribution with mean py€#" and covariance matrix 2 € #"'xi"
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Gaussian Naive Bayes

Extending Naive Bayes to continuous inputs:
*  P(y) is still assumed to be a binomial distribution.

*  P(x]y) is assumed to be a multivariate Gaussian (normal)

distribution with mean py€#" and covariance matrix 2 € #"'xi"

— If we assume the same 2 for all classes: Linear discriminant analysis.
— If 2 is distinct between classes: Quadratic discriminant analysis.

— If 2'is diagonal (i.e. features are independent): Gaussian Naive Bayes.
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Gaussian Naive Bayes

Extending Naive Bayes to continuous inputs:
*  P(y) is still assumed to be a binomial distribution.

*  P(x]y) is assumed to be a multivariate Gaussian (normal)

distribution with mean py€#" and covariance matrix 2 € #"'xi"

— If we assume the same 2 for all classes: Linear discriminant analysis.
— If 2 is distinct between classes: Quadratic discriminant analysis.

— If 2'is diagonal (i.e. features are independent): Gaussian Naive Bayes.

 How do we estimate parameters? Derive the maximum likelihood

estimators for y and 2.
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More generally: Bayesian networks

 |f not all conditional independence relations are true, we can

Introduce new arcs to show what dependencies are there.

« At each node, we have the conditional probability distribution of

the corresponding variable, given its parents.

« This more general type of graph, annotated with conditional

distributions, is called a Bayesian network.

 More on this in COMP-652.
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What you should know

« Nalve Bayes assumption

» Log-odds ratio decision boundary

« How to estimate parameters for Naive Bayes
« Laplace smoothing

- Relation between Naive Bayes, LDA, QDA, Gaussian Naive

Bayes.
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