
COMP 551 – Applied Machine Learning
Lecture 5: Generative models for linear 

classification

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Today’s quiz
• Q1.  What is a linear classifier?  (In contrast to a non-linear classifier.)

• Q2. Describe the difference between discriminative and generative classifiers.

• Q3. Consider the following data set.  If you use logistic regression to compute 
a decision boundary, what is the prediction for x6?

COMP-551: Applied Machine Learning

Data Feature 1 Feature 2 Feature 3 Output
x1 1 0 0 0
x2 1 0 1 0
x3 0 1 0 0
x4 1 1 1 1
x5 1 1 0 1
x6 0 0 0 ?
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Quick recap

• Two approaches for linear classification:

– Discriminative learning:  Directly estimate P(y|x).

• Logistic regression, P(y|x) : σ(WX) = 1 / (1 + e-WX)

– Generative learning:  Separately model P(x|y) and P(y).  Use 
these, through Bayes rule, to estimate P(y|x).

COMP-551: Applied Machine Learning
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Linear discriminant analysis (LDA)
• Return to Bayes rule:

• LDA makes explicit assumptions about P(x|y):

• Multivariate Gaussian, with mean μ and covariance matrix Σ .
• Notation: here x is a single instance, represented as an m*1 vector.
• Key assumption of LDA:  Both classes have the same covariance matrix, Σ.
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Linear discriminant analysis (LDA) 

•  Return to Bayes rule: 

 

•  Make explicit assumptions about P(x|y): 

–  Multivariate Gaussian, with mean µ and covariance matrix Σ . 

•  Consider the log-odds ratio (again, P(x) doesn’t matter for decision): 

 

Key assumption of LDA:  Both classes have the same covariance matrix, Σ. 
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P(y | x) = P(x | y)P(y)
P(x)

P(x | y) = e
−
1
2
(x−µ )T Σ−1(x−µ )

(2π )1/2 | Σ |1/2

log Pr(x | y =1)P(y =1)
Pr(x | y = 0)P(y = 0)

= log P(y =1)
P(y = 0)

−
1
2
(µy=0 +µy=1)

T Σ−1(µy=0 −µy=1)+ x
TΣ−1(µy=0 −µy=1)
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Applying LDA – 2 class case 

•  Estimate µ, Σ, P(y), from the training data: 

–  Let N1, N0, be the number of training data points from classes 1 and 
0, respectively. 

–  Let I(x) be the indicator function, where I(x)=0 if x=0, I(x)=1 if x=1. 

–  P(y=0) = N0 / (N0 + N1)   P(y=1) = N1 / (N0 + N1) 

–  µ0 = ∑i=1:n I(yi=0) xi / N0   µ1 = ∑i=1:n I(yi=1) xi / N1 

–  Σ = ∑k=0:1∑i=1:n I(yi=0) (xi – µk)(xi – µk)T/ (N0+N1-Nk) 

•  Given an input x, classify it as class 1 if the log-odds ratio is >0, 

classify it as class 0 otherwise. 
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Linear discriminant analysis (LDA)
• Return to Bayes rule:

• LDA makes explicit assumptions about P(x|y):

• Multivariate Gaussian, with mean μ and covariance matrix Σ .
• Notation: here x is a single instance, represented as an m*1 vector.
• Key assumption of LDA:  Both classes have the same covariance matrix, Σ.

• Consider the log-odds ratio (again, P(x) doesn’t matter for decision):

This is a linear decision boundary! w0 + xT w
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ln P(x | y =1)P(y =1)
P(x | y = 0)P(y = 0)

= ln P(y =1)
P(y = 0)

−
1
2
µ1
TΣ−1µ1 +

1
2
µ1
TΣ−1µ1 + x

TΣ−1(µ1 −µ2 )
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Learning in LDA:  2 class case

• Estimate P(y), μ, Σ, from the training data, then apply log-odds ratio.
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Learning in LDA:  2 class case

• Estimate P(y), μ, Σ, from the training data, then apply log-odds ratio.
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COMP-551: Applied Machine Learning



Joelle Pineau8

Learning in LDA:  2 class case

• Estimate P(y), μ, Σ, from the training data, then apply log-odds ratio.

– P(y=0) = N0 / (N0 + N1) P(y=1) = N1 / (N0 + N1)

where N1, N0, be # of training samples from classes 1 and 0, respectively.

– μ0 = ∑i=1:n I(yi=0) xi / N0 μ1 = ∑i=1:n I(yi=1) xi / N1

where I(x) is the indicator function: I(x)=0 if x=0, I(x)=1 if x=1.

COMP-551: Applied Machine Learning



Joelle Pineau9

Learning in LDA:  2 class case

• Estimate P(y), μ, Σ, from the training data, then apply log-odds ratio.

– P(y=0) = N0 / (N0 + N1) P(y=1) = N1 / (N0 + N1)

where N1, N0, be # of training samples from classes 1 and 0, respectively.

– μ0 = ∑i=1:n I(yi=0) xi / N0 μ1 = ∑i=1:n I(yi=1) xi / N1

where I(x) is the indicator function: I(x)=0 if x=0, I(x)=1 if x=1.

– Σ = ∑k=0:1∑i=1:n I(yi=0) (xi – μk)(xi – μk)T/ (N0+N1-Nk)
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Learning in LDA:  2 class case

• Estimate P(y), μ, Σ, from the training data, then apply log-odds ratio.

– P(y=0) = N0 / (N0 + N1) P(y=1) = N1 / (N0 + N1)

where N1, N0, be # of training samples from classes 1 and 0, respectively.

– μ0 = ∑i=1:n I(yi=0) xi / N0 μ1 = ∑i=1:n I(yi=1) xi / N1

where I(x) is the indicator function: I(x)=0 if x=0, I(x)=1 if x=1.

– Σ = ∑k=0:1∑i=1:n I(yi=0) (xi – μk)(xi – μk)T/ (N0+N1-Nk)

• Decision boundary:  Given an input x, classify it as class 1 if the 

log-odds ratio is >0, classify it as class 0 otherwise.
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More complex decision boundaries

• Want to accommodate more than 2 classes?

– Consider the per-class linear discriminant function:

– Use the following decision rule:

Output = 

• Want more flexible (non-linear) decision boundaries?

– Recall trick from linear regression of re-coding variables.

COMP-551: Applied Machine Learning
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•  Want to accommodate more than 2 classes? 

–  Consider the per-class linear discriminant function: 

–  Use the following decision rule: 

 Output =  

 

•  Want more flexible (non-linear) decision boundaries? 

–  Recall trick from linear regression of re-coding variables. 
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δy (x) = x
TΣ−1µy −

1
2
µy
TΣ−1µy + logP(y)

argmax
y

δy (x) = argmax
y

xTΣ−1µy −
1
2
µy
TΣ−1µy + logP(y)

#
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LDA decision boundaries – 3 class case 
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FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.

the figure the contours corresponding to 95% highest probability density,
as well as the class centroids. Notice that the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance Σ were spherical σ2I, and the class
priors were equal. From (4.9) we see that the linear discriminant functions

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (4.10)

are an equivalent description of the decision rule, withG(x) = argmaxkδk(x).
In practice we do not know the parameters of the Gaussian distributions,

and will need to estimate them using our training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

gi=k xi/Nk;

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T /(N −K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 103 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear regression, as in (4.5). The
LDA rule classifies to class 2 if

xT Σ̂
−1

(µ̂2 − µ̂1) >
1

2
(µ̂2 + µ̂1)

T Σ̂
−1

(µ̂2 − µ̂1)− log(N2/N1), (4.11)
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LDA decision boundaries – 3 class case 
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and will need to estimate them using our training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

gi=k xi/Nk;

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T /(N −K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 103 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
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Using higher-order features
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Using higher-order features 4.2 Linear Regression of an Indicator Matrix 103
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)
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Quadratic discriminant analysis 

•  LDA assumes all classes have the same covariance matrix, Σ. 

•  QDA allows different covariance matrices, Σy for each class y. 

•  Linear discriminant function: 

•  Quadratic discriminant function: 

 

–  QDA has more parameters to estimate, but greater flexibility to 
estimate the target function.  Bias-variance trade-off. 
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Quadratic discriminant analysis

• LDA assumes all classes have the same covariance matrix, Σ.

• QDA allows different covariance matrices, Σy for each class y.

• Linear discriminant function:

• Quadratic discriminant function:

– QDA has more parameters to estimate, but greater flexibility to 
estimate the target function.  Bias-variance trade-off.
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X
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space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)
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Quadratic discriminant analysis 

•  LDA assumes all classes have the same covariance matrix, Σ. 

•  QDA allows different covariance matrices, Σy for each class y. 

•  Linear discriminant function: 

•  Quadratic discriminant function: 

 

–  QDA has more parameters to estimate, but greater flexibility to 
estimate the target function.  Bias-variance trade-off. 
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

COMP-598: Applied Machine Learning 
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Quadratic discriminant analysis 

•  LDA assumes all classes have the same covariance matrix, Σ. 

•  QDA allows different covariance matrices, Σy for each class y. 

•  Linear discriminant function: 

•  Quadratic discriminant function: 

 

–  QDA has more parameters to estimate, but greater flexibility to 
estimate the target function.  Bias-variance trade-off. 

COMP-598: Applied Machine Learning 

δy (x) = x
TΣ−1µy −

1
2
µy
TΣ−1µy + logP(y)

δy (x) = −
1
2
Σy −

1
2
(x −µy )

T Σy
−1(x −µy )+ logP(y)
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LDA vs QDA
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LDA vs QDA 
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FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 ). The right plot shows the

quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

between the discriminant functions where K is some pre-chosen class (here
we have chosen the last), and each difference requires p + 1 parameters3.
Likewise for QDA there will be (K − 1) × {p(p + 3)/2 + 1} parameters.
Both LDA and QDA perform well on an amazingly large and diverse set
of classification tasks. For example, in the STATLOG project (Michie et
al., 1994) LDA was among the top three classifiers for 7 of the 22 datasets,
QDA among the top three for four datasets, and one of the pair were in the
top three for 10 datasets. Both techniques are widely used, and entire books
are devoted to LDA. It seems that whatever exotic tools are the rage of the
day, we should always have available these two simple tools. The question
arises why LDA and QDA have such a good track record. The reason is not
likely to be that the data are approximately Gaussian, and in addition for
LDA that the covariances are approximately equal. More likely a reason is
that the data can only support simple decision boundaries such as linear or
quadratic, and the estimates provided via the Gaussian models are stable.
This is a bias variance tradeoff—we can put up with the bias of a linear
decision boundary because it can be estimated with much lower variance
than more exotic alternatives. This argument is less believable for QDA,
since it can have many parameters itself, although perhaps fewer than the
non-parametric alternatives.

3Although we fit the covariance matrix Σ̂ to compute the LDA discriminant functions,
a much reduced function of it is all that is required to estimate the O(p) parameters
needed to compute the decision boundaries.
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Coordinate 1 for Training Data
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Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X ∈ IR10, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test

Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Logistic regression 0.22 0.51
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Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X ∈ IR10, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test

Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Logistic regression 0.22 0.51
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Generative learning – Scaling up

• Consider applying generative learning (e.g. LDA) to Project 1 data.
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Generative learning – Scaling up

• Consider applying generative learning (e.g. LDA) to Project 1 data.

E.g. Task:   Given first few words, determine language (without dictionary).

– What are features? How to encode the data?

– How to handle high dimensional feature space?

– Assume same co-variance matrix for both classes? (Maybe that is ok.)

What kinds of assumptions can we make to simplify the problem?

COMP-551: Applied Machine Learning
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Naïve Bayes assumption

• Generative learning: Estimate P(x|y), P(y).  Then calculate P(y|x).

• Naïve Bayes:  Assume the xj are conditionally independent given y.

– In other words:  P(xj | y) = P(xj | y, xk), for all j, k

COMP-551: Applied Machine Learning
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Naïve Bayes assumption

• Generative learning: Estimate P(x|y), P(y).  Then calculate P(y|x).

• Naïve Bayes:  Assume the xj are conditionally independent given y.

– In other words:  P(xj | y) = P(xj | y, xk), for all j, k

• Generative model structure: 

P(x | y) = P(x1, x2, …, xm | y)

= P(x1 | y) P(x2 | y, x1) P(x3 | y, x1, x2) …P(xm | y, x1, x2, …, xm-1)

(from general rules of probabilities)

= P(x1 | y) P(x2 | y) P(x3 | y) …P(xm | y)

(from the Naïve Bayes assumption above)

COMP-551: Applied Machine Learning
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Naïve Bayes graphical model

• How many parameters to estimate?  Assume m binary features.

COMP-551: Applied Machine Learning
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Naïve Bayes graphical model

• How many parameters to estimate?  Assume m binary features.

– without Naïve Bayes assumption:  O(2m) numbers to describe model.

– With Naïve Bayes assumption: O(m) numbers to describe model.

• Useful when the number of features is high.

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

• Assume x, y are binary variables, m=1. 

• Estimate the parameters P(x|y) and P(y) from data.

– Define: 𝛳1 = Pr (y=1)

𝛳j,1 = Pr (xj=1 | y=1)

𝛳j,0 = Pr (xj=1 | y=0).

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

• Assume x, y are binary variables, m=1. 

• Estimate the parameters P(x|y) and P(y) from data.

– Define: 𝛳1 = Pr (y=1)

𝛳j,1 = Pr (xj=1 | y=1)

𝛳j,0 = Pr (xj=1 | y=0).

• Evaluation criteria:  Find parameters that maximize the log-
likelihood function.

• Likelihood:  Pr(y|x) ∝ Pr(y)Pr(x|y)  =  ∏i=1:n ( P(yi) ∏j=1:mP(xi,j | yi) )
• Samples i are independent, so we take product over n.
• Input features are independent (cond. on y) so we take product over m.

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

• Likelihood for binary output variable:  L(𝛳1|y=1) = 𝛳1
y(1-𝛳1)1-y

• Log-likelihood for all parameters:

log L(𝛳1,𝛳i,1,𝛳i,0 | D) =  Σi=1:n [ log P(yi) + Σj=1:m log P(xi,j | yi) ]

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

• Likelihood for binary output variable:  L(𝛳1|y=1) = 𝛳1
y(1-𝛳1)1-y

• Log-likelihood for all parameters:

log L(𝛳1,𝛳i,1,𝛳i,0 | D) =  Σi=1:n [ log P(yi) + Σj=1:m log P(xi,j | yi) ]

=  Σi=1:n [ yi log 𝛳1 + (1-yi )log(1-𝛳1) 

+ Σj=1:m yi ( xi,j log𝛳i,1 + (1-xi,j )log(1-𝛳i,1) )

+ Σj=1:m (1-yi)( xi,j log𝛳i,0 + (1-xi,j )log(1-𝛳i,0) ) ]

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

• Likelihood for binary output variable:  L(𝛳1|y=1) = 𝛳1
y(1-𝛳1)1-y

• Log-likelihood for all parameters:

log L(𝛳1,𝛳i,1,𝛳i,0 | D) =  Σi=1:n [ log P(yi) + Σj=1:m log P(xi,j | yi) ]

=  Σi=1:n [ yi log 𝛳1 + (1-yi )log(1-𝛳1) 

+ Σj=1:m yi ( xi,j log𝛳i,1 + (1-xi,j )log(1-𝛳i,1) )

+ Σj=1:m (1-yi)( xi,j log𝛳i,0 + (1-xi,j )log(1-𝛳i,0) ) ]

(will have other form if params P(x|y) have other form, e.g. Gaussian).

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

• Likelihood for binary output variable:  L(𝛳1|y=1) = 𝛳1
y(1-𝛳1)1-y

• Log-likelihood for all parameters:

log L(𝛳1,𝛳i,1,𝛳i,0 | D) =  Σi=1:n [ log P(yi) + Σj=1:m log P(xi,j | yi) ]

=  Σi=1:n [ yi log 𝛳1 + (1-yi )log(1-𝛳1) 

+ Σj=1:m yi ( xi,j log𝛳i,1 + (1-xi,j )log(1-𝛳i,1) )

+ Σj=1:m (1-yi)( xi,j log𝛳i,0 + (1-xi,j )log(1-𝛳i,0) ) ]

(will have other form if params P(x|y) have other form, e.g. Gaussian).

• To estimate 𝛳1, take derivative of logL with respect to 𝛳1, set to 0:
∂L / ∂𝛳1 = Σi=1:n (yi /𝛳1 - (1-yi )/(1-𝛳1)) = 0

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

Solving for 𝛳1 we get:

𝛳1 = (1/n) Σi=1:n yi

= number of examples where y=1 / number of examples

COMP-551: Applied Machine Learning
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Training a Naïve Bayes classifier

Solving for 𝛳1 we get:

𝛳1 = (1/n) Σi=1:n yi

= number of examples where y=1 / number of examples

Similarly, we get:

𝛳j,1 = number of examples where xj=1 and y=1 / number of examples where y=1

𝛳j,0 = number of examples where xj=1 and y=0 / number of examples where y=0

COMP-551: Applied Machine Learning
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Naïve Bayes decision boundary

• Consider again the log-odds ratio:

COMP-551: Applied Machine Learning

log Pr(y =1| x)
Pr(y = 0 | x)

= log Pr(x | y =1)P(y =1)
Pr(x | y = 0)P(y = 0)

= log P(y =1)
P(y = 0)

+ log
P xj | y =1( )j=1

m
∏

P xj | y = 0( )j=1

m
∏

= log P(y =1)
P(y = 0)

+ log
P xj | y =1( )
P xj | y = 0( )j=1

m

∑
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Naïve Bayes decision boundary
• Consider the case where features are binary:  xj = {0, 1}

• Define:

• Now we have:

This is a linear decision boundary! w0 + xT w

COMP-551: Applied Machine Learning

wj,0 = log
P(x j = 0 | y =1)
P(x j = 0 | y = 0)

; wj,1 = log
P(x j =1| y =1)
P(x j =1| y = 0)

log Pr(y =1| x)
Pr(y = 0 | x)

= log P(y =1)
P(y = 0)

+ log
P xj | y =1( )
P xj | y = 0( )j=1

m

∑

= log P(y =1)
P(y = 0)

+ (wj,0 (1− x j )+wj,1x j )
j=1

m

∑

= log P(y =1)
P(y = 0)

+ wj,0
j=1

m

∑ + (wj,1 −wj,0 )x j
j=1

m

∑
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Text classification example
• Using Naïve Bayes, we can compute probabilities for all the words 

which appear in the document collection.
– P(y=c) is the probability of class c
– P(xj | y=c) is the probability of seeing word j in documents of class c

COMP-551: Applied Machine Learning

Class c
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Text classification example
• Using Naïve Bayes, we can compute probabilities for all the words 

which appear in the document collection.
– P(y=c) is the probability of class c
– P(xj | y=c) is the probability of seeing word j in documents of class c

• Set of classes depends on the application, e.g.
– Topic modeling: each class corresponds to documents on a given 

topic, e.g. {Politics, Finance, Sports, Arts}.

COMP-551: Applied Machine Learning

Class c

word1 word2 word3 wordm…

What happens when a 
word is not observed 
in the training data?
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Laplace smoothing

• Replace the maximum likelihood estimator:
Pr(xj | y=1) = number of instance with xj=1 and y=1

number of examples with y=1 

COMP-551: Applied Machine Learning
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Laplace smoothing

• Replace the maximum likelihood estimator:
Pr(xj | y=1) = number of instance with xj=1 and y=1

number of examples with y=1 

• With the following:
Pr(xj | y=1) = (number of instance with xj=1 and y=1) + 1

(number of examples with y=1) + 2

COMP-551: Applied Machine Learning
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Laplace smoothing

• Replace the maximum likelihood estimator:
Pr(xj | y=1) = number of instance with xj=1 and y=1

number of examples with y=1 

• With the following:
Pr(xj | y=1) = (number of instance with xj=1 and y=1) + 1

(number of examples with y=1) + 2
– If no example from that class, it reduces to a prior probability or Pr=1/2.

– If all examples have xj=1, then Pr(xj=0|y) has Pr = 1 / (#examples + 1).

– If a word appears frequently, the new estimate is only slightly biased.

• This is an example of Bayesian prior for Naïve Bayes.

COMP-551: Applied Machine Learning
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Example: 20 newsgroups

• Given 1000 training documents from each group, learn to 

classify new documents according to which newsgroup they 

came from:

• Naïve Bayes: 89% classification accuracy (comparable to other 

state-of-the-art methods.)

COMP-551: Applied Machine Learning

Example: 20 newsgroups

Given 1000 training documents from each group, learn to classify new
documents according to which newsgroup they came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space

soc.religion.christian sci.crypt
talk.religion.misc sci.electronics

talk.politics.mideast sci.med
talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy - comparable to other state-
of-art methods
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Gaussian Discriminant Analysis

• This is a generative model for continuous inputs

• P (y) is still assumed to be binomial

• P (x|y) is assumed to be a multivariate Gaussian (normal distribution),
with mean µ ⇤ Rn and covariance matrix � ⇤ Rn ⇥ Rn.

• Di�erent types of models are obtained based on di�erent assumptions
about the covariance matrix

– If covariance is shared among the classes, we get linear discriminant

analysis

– If covariance is distinct between classes, we get quadratic discriminant

analysis

– If covariance matrix is diagonal (i.e. features are independent), we get
Gaussian Naive Bayes
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Multi-class classification

• Generally two options:

1. Learn a single classifier that can produce 20 distinct output values.

2. Learn 20 different 1-vs-all binary classifiers.

COMP-551: Applied Machine Learning
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Multi-class classification

• Generally two options:

1. Learn a single classifier that can produce 20 distinct output values.

2. Learn 20 different 1-vs-all binary classifiers.

• Option 1 assumes you have a multi-class version of the classifier.
– For Naïve Bayes, compute P(y|x) for each class, and select the class

with highest probability.

COMP-551: Applied Machine Learning
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Multi-class classification

• Generally two options:

1. Learn a single classifier that can produce 20 distinct output values.

2. Learn 20 different 1-vs-all binary classifiers.

• Option 1 assumes you have a multi-class version of the classifier.
– For Naïve Bayes, compute P(y|x) for each class, and select the class

with highest probability.

• Option 2 applies to all binary classifiers, so more flexible. But 
often slower (need to learn many classifiers), and creates a class 
imbalance problem (the target class has relatively fewer data 
points, compared to the aggregation of the other classes.)

COMP-551: Applied Machine Learning
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Best features extracted

COMP-551: Applied Machine Learning
From MSc thesis by Jason Rennie http://qwone.com/~jason/papers/sm-thesis.pdf
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Gaussian Naïve Bayes

Extending Naïve Bayes to continuous inputs:

• P(y) is still assumed to be a binomial distribution.

• P(x|y) is assumed to be a multivariate Gaussian (normal) 

distribution with mean μ∊ℜn and covariance matrix Σ ∊ ℜnxℜn

COMP-551: Applied Machine Learning
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Gaussian Naïve Bayes

Extending Naïve Bayes to continuous inputs:

• P(y) is still assumed to be a binomial distribution.

• P(x|y) is assumed to be a multivariate Gaussian (normal) 

distribution with mean μ∊ℜn and covariance matrix Σ ∊ ℜnxℜn

– If we assume the same Σ for all classes:  Linear discriminant analysis.

– If Σ is distinct between classes:  Quadratic discriminant analysis.

– If Σ is diagonal (i.e. features are independent): Gaussian Naïve Bayes.

COMP-551: Applied Machine Learning
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Gaussian Naïve Bayes

Extending Naïve Bayes to continuous inputs:

• P(y) is still assumed to be a binomial distribution.

• P(x|y) is assumed to be a multivariate Gaussian (normal) 

distribution with mean μ∊ℜn and covariance matrix Σ ∊ ℜnxℜn

– If we assume the same Σ for all classes:  Linear discriminant analysis.

– If Σ is distinct between classes:  Quadratic discriminant analysis.

– If Σ is diagonal (i.e. features are independent): Gaussian Naïve Bayes.

• How do we estimate parameters?  Derive the maximum likelihood 

estimators for μ and Σ.

COMP-551: Applied Machine Learning
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More generally: Bayesian networks

• If not all conditional independence relations are true, we can 

introduce new arcs to show what dependencies are there.

• At each node, we have the conditional probability distribution of 

the corresponding variable, given its parents.

• This more general type of graph, annotated with conditional 

distributions, is called a Bayesian network.

• More on this in COMP-652.

COMP-551: Applied Machine Learning
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What you should know

• Naïve Bayes assumption

• Log-odds ratio decision boundary

• How to estimate parameters for Naïve Bayes

• Laplace smoothing

• Relation between Naïve Bayes, LDA, QDA, Gaussian Naïve 

Bayes. 


