
3/7/11

1

COMP 102: Excursions in Computer Science
Lecture 16: Data compression

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Joelle Pineau 2

Why compress data?

•  Up until now we’ve assumed that anything we want to

encode can be encoded

–  variables,

–  states in finite state machine

–  etc.

•  Today we discuss how to select an efficient encoding for

our problem.

3/7/11

2

Joelle Pineau 3 COMP-102: Computers and Computing

ASCII encoding
•  Each character is encoded using 1 byte.

Joelle Pineau 4

Data Compression

•  Data compression means encoding a data file using fewer

bits than the original file.

–  Possible when the file has redundancies

Example: In English, the letter ‘e’ occurs more often than the

letter ‘z’. If we could come up with an encoding scheme

where ‘e’ would require less bits than ‘z’ or any other letter,

then the encoded data file would now be slightly shorter.

3/7/11

3

Joelle Pineau 5

Types of compression

1.  Lossless - encoding data and then decoding it will give back

exactly the original data

–  we don’t lose any information by compressing it

–  the encoded file will be longer as a result

2.  Lossy - the decoded data will not be exactly the same as the

original, but will be close enough

–  we lose some information by encoding it, but the encoded
file is much shorter

–  this is ok for image/audio compression but not for text files

Joelle Pineau 6

Definitions

•  An alphabet is a set of symbols that we wish to encode.

•  Examples:

1.  the digits from 0 to 9 : A = {0,1,...,9}

2.  lowercase letters: A = {a,b,c,...,z}

3.  pixels in an image

3/7/11

4

Joelle Pineau 7

Codewords
•  A codeword (or code) is a mapping from an alphabet to a

set of binary strings. The code of a symbol Ai is C(Ai)

•  The length of a codeword is the number of bits in the

codeword, and is denoted by λ

Example: A= {A1, A2, A3}
•  C(A1) = 0, C(A2) = 0011, C(A3) = 0
•  λ(A1) = λ(A3) = 1, λ(A2) = 4

•  Is this a good code?
–  No! A1 and A3 are mapped to the same binary string. This will

make decoding them impossible.

•  Better code: C(A1) = 0, C(A2) = 0011, C(A3) = 1

Joelle Pineau 8

Types of codewords

1.  Fixed length - the codewords for all symbols have the

same length λ

–  good: easy to decode (read the same number of bits
at a time from the encoded file)

–  bad: the encoded file might be longer

2.  Variable length

–  pro: encoded file will be shorter

–  con: need a smart algorithm to read bits from the
encoded file

3/7/11

5

Joelle Pineau 9

Types of code words

Example: A= {A1, A2, A3}. Encode s = A2 A1 A1 A3 A1

•  Fixed length: C(A1) = 00, C(A2) = 10, C(A3) = 11

•  C(s) = 1000001100
•  Can we decode it? Yes! Just read 2 bits at a time, and look up

which symbol has that codeword

•  Variable length: C(A1) = 0, C(A2) = 10, C(A3) = 1

•  C(s) = 100010
•  Can we decode it? No! When we get to the last 2 bits, we

don’t know whether it should be A2 or A3 A1.

How can we fix this?

Joelle Pineau 10

Prefix codes

•  A prefix code is a code such that no codeword is a prefix of

any other codeword.

•  Is C(A1) = 00, C(A2) = 10, C(A3) = 11 a prefix code?

–  Yes!

•  Is C(A1) = 0, C(A2) = 10, C(A3) = 1 a prefix code?

–  No! C(A3) is a prefix for C(A2).

•  Better: C(A1) = 0, C(A2) = 10, C(A3) = 11.

–  Now we can decode the string C(s) = 1000110

3/7/11

6

Joelle Pineau 11

Side note: binary trees

•  A binary tree is a data structure where each node has at

most two children.

•  Sometimes, it is useful to label left branches with ‘0’ and right

branches with ‘1’ .

•  A node with no children is called a leaf.

0

0

1

1

leaf

Joelle Pineau 12

Prefix codes as binary trees

•  We can represent any prefix code as a binary tree, such

that each codeword follows a different branch from the

root note to a leaf.

•  This works for variable or fixed length codes.

3/7/11

7

Joelle Pineau 13

Prefix codes as binary trees

•  Example 1: C(A1) = 00, C(A2) = 10, C(A3) = 11

•  Example 2: C(A1) = 0, C(A2) = 10, C(A3) = 11

Can we build a binary tree for: C(A1) = 0, C(A2) = 10, C(A3) = 1 ?

0

0

1

1 1 0
A1 A2 A3

0

0

1

1
A1

A2 A3

Joelle Pineau 14

Prefix codes as binary trees

•  What about codes that are not prefix trees?

•  C(A1) = 0, C(A2) = 10, C(A3) = 1

•  This doesn’t work because A3 is no longer a leaf! This is why

in the example we weren’t able to decode any strings

containing “10”.

0

0

1

A1

A2

A3

3/7/11

8

Joelle Pineau 15

Frequencies of symbols

•  We can talk about how likely a symbol is to appear in a string

in terms of probabilities

•  When we say p(A1)= 0.5, that means that 1 out of 2 symbols

in a string is likely to be A1

•  The probabilities for all symbols should sum to 1

–  p(A1)= 0.2, p(A2)= 0.5, p(A3)= 0.3

Joelle Pineau 16

Huffman Coding

•  Input: any alphabet A= {A1, A2, ...,AN} and the frequencies

p(A1),..., p(AN) of the symbols in the alphabet

•  Output: an optimal prefix code such that the symbol with the

highest frequency has the shortest codeword and the symbol

with the lowest frequency has the longest codeword.

3/7/11

9

Joelle Pineau 17

Huffman Coding Algorithm

1.  Re-order the symbols in order of decreasing frequencies (i.e. the

number with the highest frequency comes first)

2.  Merge the last two symbols, AN and AN-1 into a new symbol AN,N-1

such that p(AN,N-1) = p(AN) + p(AN-1). Remove AN and AN-1 from the list,

and add AN,N-1 instead

3.  Add AN and AN-1 to the Huffman tree (if not already there)

4.  Repeat steps 1-2 until there is only one symbol left

Joelle Pineau 18

Huffman Coding example

•  Input: A = {A1, A2, A3,A4}
•  p(A1) = 0.25, p(A2) = 0.2, p(A3) = 0.4, p(A4) = 0.15

1.  Order the symbols:
» p(A3) = 0.4
» p(A1) = 0.25
» p(A2) = 0.2
» p(A4) = 0.15

2.  Merge A2 and A4, creating A2,4 with p(A2,4) = 0.35
3.  Update the list:

» p(A3) = 0.4
» p(A2,4) = 0.35
» p(A1) = 0.25

4.  Add A2 and A4 to the tree:

0 1
A2 A4

3/7/11

10

Joelle Pineau 19

Huffman Coding example(2)

5.  Merge A2,4 and A1, creating A1,2,4 with p(A1,2,4) = 0.6
6.  Update the list:

» p(A1,2,4) = 0.6
» p(A3) = 0.4

7.  Since A2,4 is already in the tree (i.e the node above A2 and A4), add
A1 to the tree. Note that this can be added either to the left or to the
right:

A1

0 1

A2 A4

A1

0 1

A2 A4

or 0 0 1 1

Joelle Pineau 20

Huffman Coding example(2)

8. Merge A1,2,4 and A3, creating A1,2,3,4 with p(A1,2,3,4) = 1
9. Add A3 to the tree

•  Now we can read off the codewords from the tree:

•  C(A1) = 01, C(A2) = 000, C(A3) = 1, C(A4) = 001

A1

0 1

A2 A4

A3 1
1 0

0

3/7/11

11

Joelle Pineau 21

Huffman coding remarks
•  We could have constructed more than one tree (i.e. adding the new

nodes to the left or to the right)
–  This decision does not affect the final codeword lengths.

•  If there are more than two symbols with the same probability, we can

choose any of them to merge (order doesn’t matter).
–  This will affect the codewords in the sense that one of those symbols will

have a longer codeword than the other ones.

–  But because the symbols have equal frequencies, it does not make a
difference which one has a longer codeword.

Joelle Pineau 22

Summary

•  Understand the purpose of compressions.

•  Know how to define: alphabet, codeword, prefix codes.

•  Understand the trade-off between symbol frequency and length

of codeword.

•  Be able to encode and decode text using Huffman coding.

COMP-102: Computers and Computing

