
3/7/11 

1 

COMP 102: Excursions in Computer Science 
Lecture 16: Data compression

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca) 

Class web page: www.cs.mcgill.ca/~jpineau/comp102 
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Why compress data? 

•  Up until now we’ve assumed that anything we want to 

encode can be encoded 

–  variables, 

–  states in finite state machine 

–  etc. 

•  Today we discuss how to select an efficient encoding for 

our problem. 
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ASCII encoding 
•  Each character is encoded using 1 byte. 
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Data Compression 

•  Data compression means encoding a data file using fewer 

bits than the original file. 

–  Possible when the file has redundancies 

Example: In English, the letter ‘e’ occurs more often than the 

letter ‘z’. If we could come up with an encoding scheme 

where ‘e’ would require less bits than ‘z’ or any other letter, 

then the encoded data file would now be slightly shorter. 
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Types of compression 

1.  Lossless - encoding data and then decoding it will give back 

exactly the original data    

–  we don’t lose any information by compressing it  

–  the encoded file will be longer as a result 

2.  Lossy - the decoded data will not be exactly the same as the 

original, but will be close enough 

–  we lose some information by encoding it, but the encoded 
file is much shorter 

–  this is ok for image/audio compression but not for text files 
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Definitions 

•  An alphabet is a set of symbols that we wish to encode. 

•  Examples:  

1.  the digits from 0 to 9 : A = {0,1,...,9} 

2.  lowercase letters: A = {a,b,c,...,z} 

3.  pixels in an image 
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Codewords 
•  A codeword (or code) is a mapping from an alphabet to a 

set of binary strings. The code of a symbol Ai is C(Ai) 

•  The length of a codeword is the number of bits in the 

codeword, and is denoted by λ 

Example:  A= {A1, A2, A3} 
•  C(A1) = 0, C(A2) = 0011, C(A3) = 0 
•  λ(A1) =  λ(A3) = 1,   λ(A2) = 4 

•  Is this a good code? 
–  No! A1  and A3  are mapped to the same binary string. This will 

make decoding them impossible. 

•  Better code: C(A1) = 0, C(A2) = 0011, C(A3) = 1 
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Types of codewords 

1.  Fixed length - the codewords for all symbols have the 

same length λ 

–  good: easy to decode (read the same number of bits 
at a time from the encoded file)  

–  bad: the encoded file might be longer 

2.  Variable length 

–  pro: encoded file will be shorter 

–  con: need a smart algorithm to read bits from the 
encoded file 
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Types of code words 

Example:  A= {A1, A2, A3}.  Encode s = A2 A1 A1 A3 A1 

•  Fixed length: C(A1) = 00, C(A2) = 10, C(A3) = 11 

•  C(s) = 1000001100 
•  Can we decode it?  Yes! Just read 2 bits at a time, and look up 

which symbol has that codeword 

•  Variable length: C(A1) = 0, C(A2) = 10, C(A3) = 1 

•  C(s) = 100010 
•  Can we decode it? No! When we get to the last 2 bits, we 

don’t know whether it should be A2  or A3 A1. 

How can we fix this?  
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Prefix codes 

•  A prefix code is a code such that no codeword is a prefix of 

any other codeword. 

•  Is C(A1) = 00, C(A2) = 10, C(A3) = 11 a prefix code? 

–  Yes! 

•  Is C(A1) = 0, C(A2) = 10, C(A3) = 1 a prefix code? 

–  No! C(A3) is a prefix for C(A2). 

•  Better: C(A1) = 0, C(A2) = 10, C(A3) = 11. 

–  Now we can decode the string C(s) = 1000110 
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Side note: binary trees 

•  A binary tree is a data structure where each node has at 

most two children. 

•  Sometimes, it is useful to label left branches with ‘0’ and right 

branches with ‘1’ . 

•  A node with no children is called a leaf. 

0 

0 

1 

1 

leaf 
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Prefix codes as binary trees 

•  We can represent any prefix code as a binary tree, such 

that each codeword follows a different branch from the 

root note to a leaf. 

•  This works for variable or fixed length codes. 
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Prefix codes as binary trees 

•  Example 1:  C(A1) = 00, C(A2) = 10, C(A3) = 11 

•  Example 2:  C(A1) = 0, C(A2) = 10, C(A3) = 11 

Can we build a binary tree for: C(A1) = 0, C(A2) = 10, C(A3) = 1 ?  

0 

0 

1 

1 1 0 
A1 A2 A3 

0 

0 

1 

1 
A1 

A2 A3 
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Prefix codes as binary trees 

•  What about codes that are not prefix trees? 

•  C(A1) = 0, C(A2) = 10, C(A3) = 1 

•  This doesn’t work because A3 is no longer a leaf! This is why 

in the example we weren’t able to decode any strings 

containing “10”. 

0 

0 

1 

A1 

A2 

A3 
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Frequencies of symbols 

•  We can talk about how likely a symbol is to appear in a string 

in terms of probabilities 

•  When we say p(A1)= 0.5, that means that 1 out of 2 symbols 

in a string is likely to be A1 

•  The probabilities for all symbols should sum to 1 

–  p(A1)= 0.2, p(A2)= 0.5, p(A3)= 0.3 
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Huffman Coding 

•  Input: any alphabet A= {A1, A2, ...,AN}  and the frequencies 

p(A1),..., p(AN) of the symbols in the alphabet 

•  Output: an optimal prefix code such that the symbol with the 

highest frequency has the shortest codeword and the symbol 

with the lowest frequency has the longest codeword.   
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Huffman Coding Algorithm 

1.  Re-order the symbols in order of decreasing frequencies (i.e. the 

number with the highest frequency comes first) 

2.  Merge the last two symbols, AN and AN-1 into a new symbol AN,N-1  

such that p(AN,N-1) = p(AN) + p(AN-1). Remove AN and AN-1 from the list, 

and add AN,N-1  instead 

3.  Add AN  and AN-1 to the Huffman tree (if not already there) 

4.  Repeat steps 1-2 until there is only one symbol left 
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Huffman Coding example 

•  Input: A = {A1, A2, A3,A4} 
•  p(A1) = 0.25, p(A2) = 0.2, p(A3) = 0.4, p(A4) = 0.15 

1.  Order the symbols: 
» p(A3) = 0.4  
» p(A1) = 0.25 
» p(A2) = 0.2 
» p(A4) = 0.15 

2.  Merge A2 and A4, creating A2,4 with p(A2,4) = 0.35 
3.  Update the list: 

» p(A3) = 0.4  
» p(A2,4) = 0.35 
» p(A1) = 0.25 

4.  Add A2 and A4 to the tree: 

0 1 
A2 A4 
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Huffman Coding example(2) 

5.  Merge A2,4 and A1, creating A1,2,4 with p(A1,2,4) = 0.6 
6.  Update the list: 

» p(A1,2,4) = 0.6  
» p(A3) = 0.4 

7.  Since A2,4 is already in the tree (i.e the node above A2  and A4), add 
A1  to the tree. Note that this can be added either to the left or to the 
right: 

A1 

0 1 

A2 A4 

A1 

0 1 

A2 A4 

or 0 0 1 1 
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Huffman Coding example(2) 

8. Merge A1,2,4 and A3, creating A1,2,3,4 with p(A1,2,3,4) = 1 
9. Add A3  to the tree 

•  Now we can read off the codewords from the tree: 

•  C(A1) = 01, C(A2) = 000, C(A3) = 1, C(A4) = 001 

A1 

0 1 

A2 A4 

A3 1 
1 0 

0 
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Huffman coding remarks 
•  We could have constructed more than one tree (i.e. adding the new 

nodes to the left or to the right) 
–  This decision does not affect the final codeword lengths. 

•  If there are more than two symbols with the same probability, we can 

choose any of them to merge (order doesn’t matter). 
–  This will affect the codewords in the sense that one of those symbols will 

have a longer codeword than the other ones.  

–  But because the symbols have equal frequencies, it does not make a 
difference which one has a longer codeword. 
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Summary 

•  Understand the purpose of compressions. 

•  Know how to define: alphabet, codeword, prefix codes. 

•  Understand the trade-off between symbol frequency and length 

of codeword. 

•  Be able to encode and decode text using Huffman coding. 

COMP-102: Computers and Computing 


