
COMP 102: Excursions in Computer Science
Lecture 7: Interpreting the program

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Joelle Pineau2COMP-102: Computers and Computing

Quick Recap

• Weeks 1-2: Hardware approach
– Every problem is expressed with boolean variables and operators.

– Can implement any function using the right combination of AND, OR, NOT.

– Hardware solutions are quick (in terms of machine running time.)

– But this is very inflexible (need a new circuit for each program!)

• Week 3: Software approach
– Always same hardware, same set of circuits (any standard computer)

– Can implement a large variety of programs and be reprogrammed.

– Need a layer to translate the programming language into something the
computer will understand.

Today’s lecture: Machine Language

Joelle Pineau3COMP-102: Computers and Computing

My laptop

Input

Output

Output

Input

Input

Joelle Pineau4COMP-102: Computers and Computing

Inside the laptop

Brain

Memory

http://commons.wikimedia.org/wiki/File:Inside_white_MacBook.jpg

Joelle Pineau5COMP-102: Computers and Computing

Simplifying the picture

• CPU: Performs the operations in the current instruction.

• Memory: Stores the program (sequence of instructions and data).
RAM = Random Access Memory

CPU Memory
(RAM)

each cell corresponds to a bit (0 or 1)

0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1

Program start

Program instructions

Joelle Pineau6

Forms of memory

COMP-102: Computers and Computing

http://www.real-knowledge.com/memory.htm

Joelle Pineau7COMP-102: Computers and Computing

The CPU is composed of 3 major parts:

• ALU (Arithmetic Logic Unit)
– Arithmetic & Logical operations

• Registers
– Storage areas for data and machine instructions operated on by ALU

• Control unit
– Acts as a coordinator between the ALU and registers

CPU: Central Processing Unit

Joelle Pineau8COMP-102: Computers and Computing

Instructions do very simple things

• Read bits (i.e. accessing variables).

• Change the bits in a location (i.e. assigning variables).

• Move bits from 1 cell to another.

• Treat some bits as numbers to apply arithmetic operations (add,

subtract, multiply, …)

• Modify which instruction is executed next -> CONTROL FLOW

• Communicate with external devices.

Joelle Pineau9COMP-102: Computers and Computing

Fetch-Decode-Execute Cycle

1. Fetch Cycle: The Control Unit fetches the next instruction from
memory.

2. Decode Cycle: The Control Unit decodes the instruction (figuring
out what the bits represent).

3. Execute Cycle: The ALU executes the required instruction and
stores results into memory.

This is the only thing the CPU does!

Joelle Pineau10COMP-102: Computers and Computing

Fetch-Decode

1. Look at the Program Counter (PC) to determine the location in

memory where the next instruction is stored

2. Retrieve this instruction from program memory

3. Decode this instruction

4. After an instruction is fetched, increment the PC by the length

of the instruction

Joelle Pineau11

Length of instructions

• Most computer architectures assume all instructions are 32-bit

long. Easy to know how many bits to fetch at a time!

• More recently, new architectures use 64-bit instructions.

– Twice as much information per cycle = faster computing!

Joelle Pineau12COMP-102: Computers and Computing

Problem!

Problem #1: Need to convert the program into a long stream of bits.

– Some parts are actual memory (e.g. variables).

– Some parts are the instructions / operations.

• Writing a program as bits directly is tedious!

• There are human-readable mnemonics for bit patterns.

Joelle Pineau13COMP-102: Computers and Computing

Machine Instructions

English translation:

Add the contents of the register r2 and 350 and
store the result in the register r1

Joelle Pineau14COMP-102: Computers and Computing

Machine Instructions

• Other kinds of instructions include:

– Transferring data between registers or memory locations

– Arithmetic or logical operations (use the ALU)

– Control: test contents of a register and jump to a location

• There are binary codes for each of these (and associated

mnemonics).

E.g. http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

Joelle Pineau15COMP-102: Computers and Computing

Execute Cycle

1. Execute the instruction
– Connects the various components of the

computer so that the desired operation may be
carried out.

2. Write back the results (if any) of the

execute step to some form of memory.

Joelle Pineau16COMP-102: Computers and Computing

Computer Speed

• The CPU experiences high and low voltage changes, driven by the

internal clock (vibrating quartz crystal).

– The clock operates with a predetermined frequency (such as 2.4GHz).

• Each time the clock changes, the computer's processor handles the

next machine instruction.

• A more accurate measurement would compare the number of
instructions per second (MIPS: million instructions per second) as

some computers use the clock ticks more efficiently than others.

– Apple’s MacBook (2009) handles ~10,000 MIPS.

Joelle Pineau17

MIPS increasing

COMP-102: Computers and Computing

http://modelingwithdata.org/arch/00000002.htm

Joelle Pineau18COMP-102: Computers and Computing

Example of an Executable

http://pages.cs.wisc.edu/~larus/HP_AppA.pdf

Joelle Pineau19COMP-102: Computers and Computing

Back to programming languages

• We write programs in a user-friendly programming language:

• How can we convert:

• This is a job for a compiler.

High-level
programming

language

Low-level
machine
language

Integer sum
Integer x
sum = 0
For x = 1 to 100

sum = sum + x*x
End loop
Print sum

Joelle Pineau20COMP-102: Computers and Computing

Compiler

• The compiler translates high-level programming language into low-level
machine language: Program -> Executable
– Each programming language needs its own compiler.

• Note: The compiler is a program! (So need a compiler for the compiler…)
– Here’s an idea: Our compiler is actually compiled by itself!

Program

Compiler

Executable

Joelle Pineau21COMP-102: Computers and Computing

Compiler

• Front End: Needs to know all about the input language.

• Back End: Knows all about the machine itself (CPU).

• Intermediate representation (IR):

– Generated by the Front End, understood by the Back End.

– Generic, medium-level “universal” language

Front
End

Back
End

Program IR Executable

Joelle Pineau22COMP-102: Computers and Computing

Front End Parser

• Front End will parse the input program.
– All computer languages come with parsing rules.

– These parsing rules are the grammar (syntax) for the language.

– This produces a parse tree, which is the Intermediate Representation.

Example:

Integer sum
Integer x
sum = 0
For x = 1 to 100

sum = sum + x*x
End loop
Print sum

sum

declaration
variable

type
sum

integer

declaration
variable

type
x

integer

assignment
variable
value 0

for loop Etc.

Joelle Pineau23COMP-102: Computers and Computing

Back End

• Once the program is in an Intermediate Representation:

– Step through the IR, considering each piece of the parse tree.

– Figure out which machine instruction template matches each piece.

– Use the MIPS look-up table to find the corresponding instruction in binary.

IR Assembly instruction MIPS binary

 Example: x = y + z lw, $s, [z]
lw, $t, [y]
add, $d, $s, $t 0000 00ss ssst tttt dddd d000 0010 0000

sw, $d, [x]

Now we have a program in bits, which can be executed by the CPU!

Note: Often we need to optimize the code (to make it faster):
Lots of clever techniques to improve the code.

Joelle Pineau24

Example

 www.cise.ufl.edu/~mssz/ CompOrg/CDA-lang.html

Joelle Pineau25COMP-102: Computers and Computing

Linking different programs

• Often different pieces of the program are built separately.

• Each piece can go through the compiler individually, to get

separate executables. Need to put all this together somehow!

• Linker: Takes pieces of the program and puts them together

into an executable.

– Sometimes this is done as part of the compiler, sometimes
separately.

Joelle Pineau26COMP-102: Computers and Computing

Take-home message
• Understand the main components of the computer.

• Be familiar with the principles of Fetch-Decode-Execute-Store.

• Understand the role of machine language.

• Know the main components of the compiler (Front End, Back

End, Intermediate Representation) and what purpose they

serve.
Front
End

Back
End

Program IR Executable

