
TouchRAM: A Multitouch-Enabled Tool for
Aspect-Oriented Software Design

Wisam Al Abed, Valentin Bonnet, Matthias Schöttle, Omar Alam, Jörg Kienzle

School of Computer Science, McGill University, Montreal, QC H3A E09, Canada
Omar.Alam@mail.mcgill.ca, Joerg.Kienzle@mcgill.ca

Abstract This paper presents TouchRAM, a multitouch-enabled tool
for agile software design modeling aimed at developing scalable and
reusable software design models. The tool gives the designer access to
a vast library of reusable design models encoding essential recurring de-
sign concerns. It exploits model interfaces and aspect-oriented model
weaving techniques as defined by the Reusable Aspect Models (RAM)
approach to enable the designer to rapidly apply reusable design concerns
within the design model of the software under development. The paper
highlights the user interface features of the tool specifically designed for
ease of use, reuse and agility (multiple ways of input, tool-assisted reuse,
multitouch), gives an overview of the library of reusable design models
available to the user, and points out how the current state-of-the-art in
model weaving had to be extended to support seamless model reuse.

1 Introduction

Model-Driven Engineering (MDE) [12] is a unified conceptual framework in
which the whole software life cycle is seen as a process of model production,
refinement, and integration. High-level specification models are refined or com-
bined with other models using model transformations to include more and more
solution details and to ultimately produce a model that can be executed.

In practice, MDE faces several important challenges that prevent the wide-
spread adoption of modeling as a means to improving the software development
process. In the context of this work, the two relevant challenges are scalability
and reusability of models. Models of complex applications tend to grow in size,
to a point where even individual views are not readily understood or analyzable
anymore. Furthermore, building complex models is very time consuming: models
are often created from scratch, as opposed to reusing existing models.

Aspect-orientation modeling (AOM) techniques define special kinds of model
transformations called model weavers that have been successfully used to sep-
arate and compose crosscutting concerns within software models, focussing in
particular on the intricacies of concern interactions and conflicts. AOM makes
it possible to package models of generic concerns in such a way that they are
easy to reuse within other models. Furthermore, by providing weaver support
for model hierarchies, complex models can be build by composing existing ones.

This paper presents TouchRAM, a multitouch-enabled tool for agile software
design modeling aimed at developing scalable and reusable software design mod-
els. The tool gives the designer access to a vast library of reusable design models

encoding essential recurring design concerns and provides support to rapidly ap-
ply these concerns within the design of the software under development. This
is enabled by exploiting model interfaces and aspect-oriented model weaving
techniques as defined by the Reusable Aspect Models (RAM) approach [10].

The paper is structured as follows: Section 2 gives an overview of the tool
implementation and background on RAM. Section 3 highlights the tool features
specifically targeted at agile software design modeling: subsection 3.1 presents
how the GUI streamlines model manipulation; subsection 3.2 outlines the library
of reusable design concern models available to the user and explains how they
can be applied within an application model, and subsection 3.3 explains how
the tool supports working with model hierarchies. Section 4 points out how the
current state-of-the-art in model weaving had to be extended to support seamless
model reuse and model hierarchies, and the last section draws some conclusions.

2 Background
This section presents background information on the tool, i.e., what technologies
and frameworks it is built on and other implementation details. In order to make
the tool accessible to a wide audience, cross-platform compatibility was one of
the major design concerns. We therefore opted to do our development entirely
in Java. As a result, all libraries and frameworks we considered to use to build
our user interface and model transformation backend had to be implemented in
Java as well.

2.1 Architecture

TouchRAM consists of the front end, i.e., the graphical user interface (GUI) and
the backend, which contains the RAM meta-model and the RAM model weaver.

The GUI of the TouchRAM tool is realized using the open source Java frame-
work Multitouch for Java (MT4j) [3]. MT4j is a framework for creating visual
applications in 2D or 3D using OpenGL for software or hardware accelerated
graphics rendering. An event stack that allows for different kinds of input events
is also provided; the tool ships with support of mouse and keyboard input as well
as multitouch input through the TUIO protocol [4]. TouchRAM has been tested
for 32 and 64 bit architectures on the Mac OSX, Windows and Linux (Ubuntu)
platforms, however, its dependence on Java and TUIO means it should work on
any environment where both these are supported.

While the user interface of TouchRAM relies on MT4j, all other components
of the tool are decoupled from the GUI based on a Model-View-Controller design.
This makes separate evolution of the GUI and the backend possible.

The foundation of the backend is the RAM meta-model that defines the ab-
stract syntax for RAM models created with the tool. The meta-model is defined
using the Eclipse Modeling Framework (EMF) [14]. The provided facility allows
us to define the structured data model and generate the required Java code
that is used by TouchRAM. Furthermore, we are able to serialize our models in
XMI (XML Metadata Interchange) format corresponding to that meta-model.
Command-based editing provided by EMF.Edit is used in order to offer the user
undo/redo functionality. The User Interface is notified of changes to the model

through EMFs built-in notification mechanism. The Object Constraint Language
(OCL) is used for constraints on the meta-model, specification of derived prop-
erties and implementation of operations defined in the meta-model.

The RAM weaver, which is invoked by the GUI on command of the user, is
capable of composing multiple models together. Instead of directly implementing
the weaving with Java, TouchRAM uses the Kermeta workbench [1]. Kermeta
provides a model transformation language based on lambda expressions similar
to OCL and works with EMF-based meta-models. Furthermore, Kermeta in-
cludes support for aspect-orientation. Transformations written in Kermeta are
compiled into Scala code, which runs on a standard Java VM.

2.2 Reusable Aspect Models

TouchRAM is based on Reusable Aspect Models (RAM), an aspect-oriented
multi-view modeling approach that integrates class diagram, sequence diagram
and state diagram AOM techniques [10]. As a result, RAM aspect models can
describe the structure and the behavior of a concern under study. Currently,
however, TouchRAM only supports structural modeling.

RAM aspect models define an aspect interface that clearly designate the func-
tionality provided by the aspect, as well as its mandatory instantiation param-
eters [5]. When an aspect model is applied, all mandatory instantiation param-
eters must be mapped to compatible model elements in the application model.
Flexibility is achieved by allowing any model element to optionally be composed
or extended. RAM supports the creation of elaborate aspect dependency chains.
This makes it possible to model an aspect that provides complex functionality
by decomposing it into aspects that provide simpler functionality. At the same
time, aspects providing simpler functionality can be reused in several aspects
of complex functionality. As a result, scattering and tangling of models can be
prevented at all complexity levels.

3 Tool Features supporting Agile Software Design
Modeling raises the level of abstraction in comparison to source code, and there-
fore has the potential for enabling fast exploration of software designs. To make
this possible, though, a modeling tool must be designed accordingly. In this sec-
tion we report on three key features of the TouchRAM tool specifically targeted
at agile software design: the streamlined model manipulation capabilities offered
by the TouchRAM GUI, the reusable design concern library, and navigation
through different levels of abstraction.

3.1 Streamlined Model Manipulation

Exploiting Platform Capabilities The GUI of TouchRAM has been designed
to provide intuitive and fast model manipulation capabilities to ensure that the
user can focus entirely on the task of modeling. This starts by maximally ex-
ploiting the input and output hardware of the platform that the tool is running
on. On the input side, TouchRAM supports multitouch and gesture-based input
as well as standard mouse and keyboard. The tool was designed without modes,
i.e., at any time, the modeler can use gestures or the mouse/keyboard to manip-
ulate the model, depending on what input is most efficient. On the output side,

TouchRAM is designed to support heterogeneous screen sizes, mainly by pro-
viding high performance support for panning and zooming. The user can change
the zoom level at any time by either using the mouse wheel or a two-finger scale
gesture. To assure that a model created on one screen can be opened on a differ-
ent screen without losing the overall overview of the model, TouchRAM scales
models according to the current screen dimensions when opening.

Intuitive Editing General tasks are performed using simple gestures (i.e.,
tap, double-tap and tap-and-hold), which can be achieved using both mouse and
touch input. For example, tap-and-hold is used to create or edit model elements.
When performed on the background, a class is created. Tapping-and-holding
on a class, attribute, or operation edits the element’s name. When done on the
visibility field or return type of an operation or the type of an attribute, a selector
menu pops up displaying semantically correct choices for that element.

Certain manipulations can be done very efficiently using multitouch. For
instance, the tool can recognize advanced gesture commands, i.e., drawing a
rectangle to create a class, performing a zig-zag movement to delete a model
element, or drawing a line to create an association. For users that do not have
access to multitouch input, TouchRAM offers (less efficient) mouse equivalents
for these commands, for instance double-clicking on one class to put it into edit
mode, and then clicking another class to create an association between the two.

Of course there are also manipulations that are more efficiently done with the
keyboard and mouse, e.g., writing text or detailed positioning of model elements.
For users that do not have access to a keyboard, TouchRAM displays a popup
touch-keyboard whenever a text input is expected.

Some manipulations can also be accomplished in multiple ways. For instance,
when adding a new operation to a class and a keyboard is available, the whole
signature can be written at once. The given signature is then parsed and checked
for conformance to the meta-model. For example, entering “+ String getName()”
creates an operation called getName which is public, has no parameters and
returns a String. If no keyboard is available, only the model element names
need to be provided using the touch-keyboard. The tool displays the potential
semantically valid visibility, parameters and return types choices to the modeler,
who selects the desired elements with a simple tap.

Tool-assisted Layout Currently TouchRAM does not provide support for
automated layout of class diagrams. However, the modeler can rearrange classes
one by one, or multiple classes simultaneously using multitouch gestures. The
relationships between classes, i.e., associations and inheritance, are repositioned
automatically by the tool using a sophisticated algorithm. The relationship lines
are attached to the class angle depending on the relative position of the related
classes, minimizing line crossings.

3.2 Library of Reusable Design Concern Models

The success of modern programming languages such as Java is partially due to
the fact that they ship with a significant library of reusable code. The Java Class
Library as an example offers a programmer thousands of classes that provide so-
lutions for common implementation concerns, including classes for all common

data structures, such as lists, trees, and maps. That way, a programmer does
not need to code these classes herself, but simply reuses their behavior by in-
stantiating them and calling the appropriate methods.

The idea of the reusable design concern model library (RDCML) that ships
with TouchRAM is similar, but is applied to modeling. Its purpose is to increase
modeling productivity by providing models for common design concerns that
a modeler can use within an application model with minimal effort when ap-
propriate1. Each model in the library is self-contained, i.e., it contains all the
structural and behavioral model elements pertaining to a design concern, and is
typically relatively small (1 - 6 classes). The model interface clearly designates
all the classes, associations and operations that are visible, i.e., that can be in-
stantiated / called at runtime to invoke the functionality provided by the model.
The current models in the RDCML are organized into the following categories:

– The design patterns category contains aspects for the basic structural, be-
havioral and creational design patterns (e.g., Singleton, Observer, Command,
etc.)

– The utility category contains aspects that provide basic functionalities like
copying (Copyable aspect) and naming (Named aspect), as well as data struc-
tures involving multiple objects, such as Map.

– The networking category contains aspects relevant to networking, such as
Serializer, SocketCommunication and NetworkedCommand.

– The workflow category contains aspects that are useful whenever the ap-
plication needs to define and execute flexible workflows. For example, the
current library supports sequential, conditional, timed, nested and parallel
execution of activities.

– The transactions category contains aspects that provide state checkpointing
and recovery support, as well as design solutions for isolating concurrently
running activities.

Applying a Reusable Design Concern When elaborating an application
model, a modeler typically starts by defining application-specific structure and
behavior. When appropriate, she can also choose to apply aspect models from the
RDCML to complete her design. In RAM terminology this is called instantiation.
Aspect models are reusable, because they can be instantiated multiple times in
the same application model, or in several distinct application models.

When the modeler applies an aspect from the library, TouchRAM displays
an instantiation view, which allows the modeler to establish a mapping from
classes and methods in the library model (also called the lower-level aspect)
to the application model (also called the higher-level aspect). The instantiation
view is divided into two parts: the higher-level aspect is viewed in the top and
the lower-level aspect is viewed in the bottom of the view. Tapping on a class in
1 The RDML is not meant to replace standard class libraries. On the contrary, in

order to access functionality provided by standard programming language libraries,
TouchRAM currently provides support for importing Java classes into design models
using reflection.

Figure 1. Instantiation View of TouchRAM

the bottom view highlights the classes that it can be mapped to in the higher-
level aspect. Just like for standard model manipulations, the tool assists the
modeler in creating semantically correct mappings. This is illustrated in Fig. 1.
It depicts a situation where a modeler applies the Observer design pattern model
to a StockExchange application model. She has already mapped the |Subject
class of the lower-level aspect to the Stock class, and the |Observer class to the
StockWindow class, and is now in the process of mapping the |modify operation
of |Subject. Since |modify is part of class |Subject in the lower-level aspect, and
|Subject was already mapped to Stock in the higher-level aspect, TouchRAM
marks only the methods of Stock with matching parameters as selectable.

The Observer example also nicely illustrates why reusable design concern
models are more powerful than OO programming language libraries. Class li-
braries can only encapsulate implementation concerns if the structural and be-
havioral interface for the concern is contained in a single class. This is not the
case for the Observer design pattern, since it involves two classes (Subject and
Observer) with distinct behavioral responsibilities (modify, notify, update, etc.).

3.3 Navigating Levels of Abstraction

Instantiations can not only be used to reuse models of the RDCML. A modeler
can define her own reusable aspect models, which allows her to decompose a big
application model into several smaller inter-dependent models that describe dif-
ferent application-specific design concerns. TouchRAM supports complex model
dependency chains, and hence big models can be built by combining many small
aspect models that describe the design at different levels of abstraction. For ex-
ample, the low-level aspect Observer shown in Fig. 1 actually depends on an
even lower-level aspect called ZeroToManyAssociation, which uses the Java im-
plementation class java.util.Set to link an instance of a |Data class to many

instances of the |Associated class. The Observer aspect uses this low-level de-
sign concern to link a |Subject instance with many |Observers, as shown in the
instantiation directives on the bottom line of Fig. 1.

When using TouchRAM, it is not uncommon to create software designs with
model hierarchies with many layers of abstraction/models. A modeler can pro-
ceed in a top-down manner, starting at high-level application-specific models,
and incrementally adding lower-level design details, either self-modeled or from
the RDCML. Conversely, the modeler can also start by designing lower-level
models first, and then raise their level of abstraction by adding higher-level
models that depend on them.

TouchRAM allows the modeler to easily navigate through the model hier-
archy. When she opens an aspect model, a list of its instantiations is shown in
the bottom of the editing view. She can view the instantiated aspect simply by
tapping on an instantiation: a new view opens to display the instantiated aspect.
This allows the modeler to focus on each individual design concern at each level
of abstraction in isolation.

TouchRAM also allows the modeler to visualize how a higher-level aspect
interacts with a lower-level aspect. Tap-and-hold on an instantiation instructs
the RAM weaver to combine the lower-level aspect with the higher-level one
according to the instantiation mapping to yield a woven model that displays the
model elements from both models, i.e., from both levels of abstraction. Using this
feature, the modeler can selectively visualize specific lower-level design details,
for instance for analysis reasons.

To experiment with different designs, the modeler can exchange design mod-
els at a given level of abstraction with other ones providing similar functional-
ity. Typically this simply involves replacing an instantiation in the higher-level
model, and then asking the weaver to compose the models again.

Finally, with the “weave all” command, the modeler can instruct the weaver
to “flatten all levels of abstraction” and produce a woven model that contains
all the specified design details. The details on how the weaver handles model
hierarchies are presented in the next section.

4 Hierarchical Model Weaving
The core of the class diagram weaver in TouchRAM is based on the symmetric
composition technique proposed by France et al. [11] that was implemented in
a tool called Kompose [8,2]. In essence, Kompose merges two class diagrams
into one by looking at the signature of the model elements in each diagram,
and then combining those with matching signatures. After the merge, post-
merge directives can be used in order to make changes to the resulting model, if
necessary. In order to support reuse, pre-merge directives can be used to prepare
a generic model for a specific use, e.g., to change general model element names
to names used in the application model so that the signature-based weaving
algorithm will merge them.

Kompose does not directly support aspect hierarchies as defined in RAM, and
therefore can not be used as such to support incremental top-down or bottom-
up modeling as described in subsection 3.3. We had to considerably modify and
extend the approach to fit our needs.

4.1 Instantiation Types

To use a design concern model within another design model, the modeler specifies
an instantiation mapping between the two models as described in subsection 3.2.
Elements that can be mapped are classes, operations, associations, attributes,
and parameters. Currently there are two types of instantiations that can be
created: depends and extends. The two types correspond to the two different
ways of using TouchRAM to incrementally build models of significant size.

The depends instantiation is used when the two models are modeling differ-
ent levels of abstraction of the software design, as it is the case for top-down or
bottom-up development. With depends, the modeler is required to provide map-
pings for all lower-level model elements that she wants to expose at the higher
level. The visibility of all unmapped elements is by default switched from public
to aspect-private [5] by the weaver to encapsulate the low-level details.

The extends instantiation is used when the designer’s intent is to increment
a current design model with additional functionality. Since in this case both
design models are at the same level of abstraction, they often refer to the same
model elements. Therefore, with extends, default mappings are created for all
model elements that have the same signature, and all model elements from the
lower-level model maintain their visibility properties during the weaving process.

4.2 Weaving Instantiations

In order to allow design exploration across levels of abstractions and increments
in a flexible and agile way, our weaver must be capable of weaving any two
directly dependent design concern models within a hierarchy together. The re-
sulting model must be one that correctly replaces the two original models within
the hierarchy. This is achieved by updating the instantiation directives from the
lower level.

For example, in Fig. 2 A depends on B, which in turn depends on C and
D. When weaving B into A to yield a new model A+B, our algorithm needs to
update the instantiations made in B that originally mapped elements from C and
D to elements in B to now map the elements from C and D to the corresponding
elements in A. In our example, aspect A mapped |B->|A and Y->X, but aspect
B mapped |C->|B and |D->Y. After weaving B into A, the updated mappings
are |C->|A and |D->X.

The general rule to update instantiations at weave time is as follows: Given
two aspects A and B where A depends on B, for each mapping m1 in A where
a left hand side element appears on the right hand side of a mapping m2 in B
(text colored in red linked by dotted lines in Fig. 2), create a new mapping in
A between the left hand side element of m2 and the right hand side elements of
m1 (text colored in blue linked by dashed lines in Fig. 2).

4.3 Weaving Algorithm

The following list summarizes the steps that our weaver executes to weave a
reusable design concern model B into model A:

1. Process extends instantiations: If the instantiation is of type extends, cre-
ate default mappings for all model elements in B that have corresponding

aspect A depends on B
structural view |A

 - int a
|A

Instantiations:
B:

aspect B depends on C, D
structural view

|B

 - int b
|B

Instantiations:
C:
D:

|C → |B;
|D → Y;

- int x
X

- int y
Y

aspect C
structural view |C

 - int c
|C

aspect D
structural view |D

 - int d
|D

aspect A depends on C,D
structural view

|A

- int a
- int b

|A

Instantiations:
C:
D:

|C → |A;
|D → X;

- int x
- int y

X

Before Weaving B into A After Weaving B into A

|B → |A; Y → X;

aspect C
structural view |C

 - int c
|C

aspect D
structural view

 - int d
|D

Figure 2. Updating Instantiation Directives During Weaving

model elements in A. For classes, the names must match. For operations, the
signature must match.

2. Check for name clashes: In the woven model, two classes representing differ-
ent design classes can not have the same name. Therefore, if at this point
there exists a class in B with a name that matches the name of a class in A,
but there is no mapping defined between the classes and the signatures of
the operations in the classes do not match, the weaver terminates with an
exception. The modeler is prompted to resolve the name conflict by either
renaming the class in A or by defining an explicit mapping.

3. Weave: Merge model elements from B with model elements from A according
to the instantiation mapping. Elements in B that are not mapped explicitly
are simply copied into A. This yields the woven model A+B.

4. Update instantiations: Update the instantiations in B according to the rule
described above and add them to A+B.

5 Conclusion

This paper presented TouchRAM, a multitouch-enabled tool for agile software
design modeling aimed at developing scalable and reusable software design mod-
els. The tool highlights are: 1) a streamlined user interface that exploits mouse
and touch-based input to enable intuitive and fast model editing, 2) a library of
reusable design concern models, and 3) support for model interfaces and elabo-
rate hierarchical model dependencies. With TouchRAM, a modeler can rapidly
build complex software designs following either a top-down, bottom-up, or incre-
mental design approach. The tool provides facilities to inspect different levels of
abstraction of the design being modeled by navigating the model dependencies,
to combine individual models in order to provide insight on how different models
interact, as well as generate a complete woven model, if desired.

To the best of our knowledge, TouchRAM is currently the only AOM tool sup-
porting aspect hierarchies. Unfortunately we were not able to verify that claim,
since the other existing AOM tools that can be used for software design are not
readily available for the general public. These include: the Motorola WEAVR [7],
which is a proprietary tool for modeling with the SDL notation, MATA [15], an
AOM plugin for Rational Architect, and the UML/Theme tool [6].

We are currently working on providing export/import functionality to/from
standard UML to integrate TouchRAM with other MDE tools used for software
development. We are also planning on adding support for sequence diagrams and
state diagrams to specify the behavior of software designs as described in [10].
Finally, we want to integrate some of the ideas of researchers from the HCI com-
munity that have worked on touch-based manipulations of diagrams in order to
improve the TouchRAM interface. For instance, Frisch et al. [9] present a way
for handling complex and large models by introducing off-screen visualization
techniques in order to effectively navigate software models. The basic premise of
their work is to represent model elements that are clipped from the current view-
able area by proxies. Schmidt et al. [13] present several interesting multitouch
interaction techniques designed for the exploration of node-link diagrams.

References

1. Kermeta. http://www.kermeta.org
2. Kompose. http://www.kermeta.org/mdk/kompose/
3. MT4j - Multitouch for Java. http://www.mt4j.org
4. Tangible User Interface Objects. http://www.tuio.org
5. Al Abed, W., Kienzle, J.: Information Hiding and Aspect-Oriented Modeling. In:

14th AOM Workshop, Denver, CO, USA, Oct. 4th, 2009. pp. 1–6 (October 2009)
6. Carton, A., Driver, C., Jackson, A., Clarke, S.: Model-driven theme/UML. Trans-

actions on Aspect-Oriented Software Development (2008)
7. Cottenier, T., Berg, A.V.D., Elrad, T.: The motoroal weavr: Model weaving in a

large industrial context. In: Industry Track of the 5th International Conference on
Aspect-Oriented Software Development (AOSD’06). ACM, Bonn, Germany (2006)

8. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for automatic
model composition. In: 11th AOM Workshop, Nashville, TN (2007)

9. Frisch, M., Dachselt, R.: Off-screen visualization techniques for class diagrams. In:
5th International Symposium on Software Visualization. pp. 163–172. ACM (2010)

10. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD 2009, March 1 - 6, 2009. pp. 87 – 98. ACM Press (March 2009)

11. Reddy, R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., Song, E., Georg,
G.: Directives for composing aspect-oriented design class models. Transactions on
Aspect-Oriented Software Development LNCS 3880, Springer-Verlag (2006)

12. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39, 41–47 (2006)
13. Schmidt, S., Nacenta, M., Dachselt, R., Carpendale, S.: A set of multi-touch graph

interaction techniques. In: ITS 2010. pp. 113–116. ACM (2010)
14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. Addison-Wesley Professional, 2nd edn. (2009)
15. Whittle, J., Jayaraman, P.: Mata: A tool for aspect-oriented modeling based on

graph transformation. Lecture Notes In Computer Science 5002, 16–27 (2008)

