
M A P P I N G R E U S A B L E A S P E C T M O D E L S

T O A S P E C T- O R I E N T E D C O D E

max e. kramer

Study Thesis

September 2010

Supervisors:

Prof. PhD. Jörg Kienzle
School of Computer Science

Software Engineering Laboratory
McGill University
Montréal, Canada

Prof. Dr. Ralf H. Reussner
Institute for Program Structures and Data Organization

Software Design and Quality
Karlsruhe Institute of Technology

Karlsruhe, Germany

Max E. Kramer: Mapping Reusable Aspect Models to Aspect-Oriented
Code, Study Thesis, © September 2010

Für Lotte.

Z U S A M M E N FA S S U N G

Aspektorientierte Modelierung bemüht sich bereits während
des Entwurfs von Softwaresystemen Querschnittsbelangen auf
einer abstrakten Ebene zu begegnen, während aspektorientierte
Programmiersprachen wie AspectJ es möglich machen detail-
lierte Interaktionen und Aspekte auf einem niedrigen Abstrak-
tionslevel zu definieren. Die Fragestellung wie modellierte As-
pekte in wiederverwendbaren Code überführt werden können,
sodass Querschnittsbelange erhalten bleiben und auf beiden Ebe-
nen zurückverfolgt werden können, wurde bisher jedoch nicht
abschließend beantwortet.

In dieser Studienarbeit stellen wir eine Abbildung von Reusable

Aspect Models auf AspectJ vor, welche versucht diese Prob-
leme anzugehen, indem sie Quellcode erzeugt der die Struk-
tur und Prinzipien des Modells erhält und eine zurückhaltende
Schnittstelle bereitstellt. Anhand von Beispielen der Aspect-
OPTIMA Fallstudie, die ein Transaktions-Framework realisiert,
beschreiben wir im Detail wie Modellelemente mit Hilfe von
Konstrukten einer aspektorientierten Programmiersprache imple-
mentiert werden können. Schlüsselelemente dieser Abbildung
sind die unauffällige Wiederverwendung von Java Bibliotheken,
die flexible Bindung von Parametern mit Hilfe von Annotationen,
und die transparente Unterstützung von Aspekthierarchien und
konfigurierbaren Produktlinien.

Der Quellcode den wir im Rahmen unserer Fallstudie erhielten
veranschaulicht unsere Abbildungsvorschrift nicht nur anhand
eines Projektes vernünftiger Größe, sondern er demonstriert auch
ihre Abdeckung, da wir mehr als 84% der gesamten Implemen-
tierung generieren konnten.

v

A B S T R A C T

Aspect-Oriented Modeling strives to address cross-cutting con-
cerns at an abstract level during the design of software systems
whereas Aspect-Oriented Programming tools like AspectJ make
it possible to define detailed interactions and aspects on a low
level. But, the problem how modeled aspects can be transformed
in reusable code that allows designers to maintain and trace
cross-cutting concerns on both levels has not been solved so far.

In this thesis we present a mapping from Reusable Aspect

Models to AspectJ that tries to address these problems by gener-
ating source code that maintains the structure and principles of
the model and provides a noninvasive interface. Using examples
from the AspectOPTIMA case study that realizes a transaction
framework, we describe in detail how modeling artifacts can be
implemented with constructs of an aspect-oriented programming
language. Key elements of this mapping are the unobtrusive reuse
of Java libraries, flexible parameter binding through annotations,
and transparent support of aspect hierarchies and product lines.

The code that we obtained for the case study does not only
exemplify our mapping with a reasonable-sized project, it also
demonstrates its comprehensiveness as we generated more than
84% of the complete implementation.

vii

Genial muss einfach sein.

Max Urban

A C K N O W L E D G M E N T S

I am grateful to Prof. Kienzle for all the time and energy he
spent discussing and improving my ideas in Montréal. At my
home university in Karlsruhe the immediate confidence of Prof.
Reussner made this transatlantic project possible and worth the
effort. Many thanks to both of you.

I am thankful to my friend and colleague Benjamin Niedermann
for fighting his way through all the models, code snippets and ex-
planations in this thesis in order to spot mistakes and to improve
the understandability.

ix

C O N T E N T S

1 introduction 1

2 background 3

2.1 Aspect-Oriented Modeling 3

2.2 Aspect-Oriented Programming 4

2.3 Reusable Aspect Models 5

2.4 AspectJ . 7

2.5 AspectOPTIMA . 8

2.6 Open Multithreaded Transactions 8

3 aspectoptima : a transaction framework 11

3.1 Aspects . 11

3.2 Conflict Resolutions 31

4 open multithreaded transactions for aspec-
toptima 37

4.1 Aspects . 37

4.2 Conflict Resolutions 53

5 mapping reusable aspect models to aspectj 59

5.1 Principles & Overall Structure 59

5.1.1 Principles . 59

5.1.2 Overall Structure 59

5.2 Ordinary Aspects . 60

5.2.1 Structural View 60

5.2.2 State View . 70

5.2.3 Message View 71

5.3 Conflict Resolution Aspects 84

5.3.1 Structural View 84

5.3.2 Message View 85

5.4 Configuring Product Lines 89

5.5 Multiple Reuse of Aspects with Different Binding . 93

5.5.1 Duplication Approach 94

5.5.2 Reflection Approach 96

5.6 Limitations & Bugs 99

5.6.1 Overriding Methods 99

5.6.2 Restrictions on Object Names 99

5.6.3 Automatic Information Hiding 100

5.6.4 Removing Functionality or Structure 101

5.6.5 Deviations from Common Patterns 101

x

contents xi

6 using the aspectoptima implementation 103

6.1 AspectOPTIMA . 103

6.1.1 Annotation Interface 103

6.1.2 Method Interface 104

6.1.3 Banking Example 105

6.2 OMTT Extension . 107

6.2.1 OMTT Interface 108

6.2.2 Travel Agency Example 108

7 related work 111

7.1 Mapping Theme/UML to AspectJ 111

7.2 Other Work on All-Aspectual Mappings 112

7.3 Other Work on Aspect-Orientation 113

8 conclusions & future work 115

8.1 Conclusions . 115

8.2 Future Work . 116

a appendix 119

bibliography 131

1
I N T R O D U C T I O N

Throughout the last years, various aspect-oriented modeling ap-
proaches that try to address cross-cutting concerns have been
developed. Most of these approaches make use of sophisticated
model weaving techniques in order to transform the aspect-
oriented model into a model without aspects. These woven mod-
els are typically object-oriented so that existing code generation
techniques can be applied to them.

Aspectual information and resulting benefits are lost if object-
oriented code is generated from woven models. In order to main-
tain traceability and consistency during code generation, efforts
have been made to target aspect-oriented languages. Recent ex-
periments have shown that targeting aspect-oriented platforms
with an “all-aspectual approach results in smaller, less complex
and more modular implementation”. [11].

In this thesis we present a mapping from Reusable Aspect

Models (RAM) to AspectJ that realizes such an all-aspectual
approach. We describe in detail how elements of Reusable As-
pect Models can be mapped to constructs of an aspect-oriented
programming language. In order to develop and proof our con-
ceptual mapping we applied it to the transaction system Aspect-
OPTIMA [19], a case study for aspect-orientation. To increase the
flexibility and comprehensiveness of our approach, we added
support for Open Multithreaded Transactions to the original case
study. Using the extended case study we are able to explain our
mapping with various concrete examples.

We applied our mapping manually to our extended case study
and showed that we were able to derive 88% of the implemen-
tation from the model. The code that we obtained for Aspect-
OPTIMA proves that Reusable Aspect Models can yield almost
complete implementations that maintain the logical structure of
the model. To back up our claim that this is a general property of
our mapping it has to be validated on other case studies.

The remainder of this thesis is structured as followed: Chapter 2

provides background information on Aspect-Oriented Modeling,
Aspect-Oriented Programming, Reusable Aspect Models, As-
pectJ, the AspectOPTIMA case study, and Open Multithreaded
Transactions. In Chapter 3 and Chapter 4 we present the updated
models for AspectOPTIMA and its extension in order to give
the reader the context that is necessary for the examples that
we use to describe our mapping in Chapter 5. The in-depth ex-
planation of our mapping forms the central part of this thesis.

1

2 introduction

It includes sections for each view and for special circumstances
such as product line variations and multiple reuse with different
bindings. Chapter 6 presents the interface for our AspectOP-
TIMA implementation and explains how it can be used along
two small examples. Related work is discussed in Chapter 7. The
last chapter concludes our thesis and presents our thoughts on
future work.

2
B A C K G R O U N D

Aspect-Orientation is a development paradigm that addresses
concerns that cross-cut multiple modules or subsytems. It allows
developers to clearly express cross-cutting concerns that would
otherwise be scattered over multiple modules or subsystems.
Aspect-Orientation integrates smoothly with other paradigms
such as Object-Orientation, and it can be applied at any phase
during the software development process.

2.1 aspect-oriented modeling

Entangling
cross-cutting
concerns in the
model.

Aspect-Oriented Modeling (AOM) allows a system modeler to
identify, represent, separate and compose cross-cutting properties
while designing or analyzing a software system.

During the last decade Aspect-Oriented Programming [13]
techniques have matured to powerful and sophisticated tools that
allow developers to express cross-cutting concerns of large and
complex systems separately [22]. Understanding the technical
details of these mechanisms can be hard. Developers often need
to separate the structure and logic of the analyzed concerns
mentally from the syntax and structure of the code. This process
can be error-prone and may introduce accidental complexity, thus
leading to a shift of complexity instead of reducing it.

Aspect-Oriented Modeling approaches give a modeler the pos-
sibility to reason about cross-cutting concerns individually on
a high level of abstraction without regards to the technical de-
tails of their implementation [17]. By using visual descriptions,
AOM provides the means to transform cross-cutting concerns
into interacting concerns. This allows a modeler to focus on their
semantics, composition and conflicts.

One field of research in Aspect-Oriented Modeling tries to
find appropriate abstractions that express these concerns, their
interactions, and their relationships to non-cross-cutting concerns.
When modeling notations for AOM are developed two possible
approaches can be followed. Some researchers decide to develop
extensions to existing modeling notations that introduce con-
structs that are similar to those of aspect-oriented languages
such as pointcuts and advice [2]. Others develop completely new
notations for AOM.

A part of the Aspect-Oriented Modeling community is con-
cerned with model transformation and composition techniques
in order to develop model weavers that resolve and flatten aspect-

3

4 background

oriented models to conventional models. Such model-weaving
techniques provide consistency checks and they can ease the mod-
eling process by offering a view of the resulting system. Further-
more, they give modelers the freedom to realize aspect-oriented
systems on platforms without support for aspect-oriented lan-
guage constructs.

Aspect-oriented modeling approaches cover the whole software
development cycle and span from requirements elicitation (e.g
AoURN [23]) to detailed design models. Schauerhuber et al. [24]
present an in-depth evaluation of eight AOM approaches and a
conceptual reference model for Aspect-Oriented Modeling.

2.2 aspect-oriented programming

Implementing
cross-cutting

functionality once.

Aspect-Oriented Programming (AOP) [13] is a programming
paradigm that aims at increasing the modularity of software
by allowing developers to separate cross-cutting concerns from
business logic. AOP should not be seen as a replacement for other
programming paradigms such as Object-Oriented Programming
or Procedural Programming but it can extend both.

2.2.1 Motivation

Most software systems contain functionality that cannot be sep-
arated into a single module or subsystem as it affects various
other parts of the system. Cohesive areas of such functionality
may be expressed logically as a single concern but they result in
the implementation of scattered or tangled code if programming
languages without support for aspect-orientation are used. AOP
tries to provide concepts to express such cross-cutting concerns
at a unique location. It lets a programmer explicitly define the
cross-cutting nature of concerns and gives him the possibility to
specify the interaction with other parts of the system with special
language constructs such as join points, pointcuts and advice.

2.2.2 Basic Concepts

In order to encapsulate cross-cutting concerns in one place, most
AOP techniques offer at least three types of aspect-oriented con-
cepts: join points specify certain points in the execution of a pro-
gram that can be intercepted by a programmer during the compi-
lation or runtime of the program. An example for a join point that
is exposed by most AOP platforms is the execution of a method.
Pointcuts can be used by a developer in order to specify which
join points should be selected. For example all executions of
methods that start with set could be captured by a single pointcut.

2.3 reusable aspect models 5

Advice make use of such pointcuts and define how the structure
or behavior of a program should be modified if a join point that
matches the used pointcut is detected. A possible advice could be
a realization of the Observer pattern that calls an update function
after every execution of a setter method.

A structural unit that encapsulates the three fundamental con-
cepts that we presented is called an aspect, and it can be applied
to other code in a process that is called weaving. Asymmetric
Aspect-Oriented Programming approaches distinguish between
aspects and a code base without aspectual information whereas
symmetric techniques have the philosophy that every artifact
belongs to an aspect.

2.3 reusable aspect models

2.3.1 Overview

An aspect-oriented
multi-view modeling
technique.

Reusable Aspect Models (RAM) [20] is an Aspect-Oriented
Modeling approach that supports detailed design using three
modeling notations [18]. With a visual notation that is similar to
the Unified Modeling Language (UML) and additional support
for aspect-oriented techniques it allows developers to define
symmetric models with three different view types. This multi-
view modeling makes it possible to represent every individual
subconcern with its most appropriate modeling notation and
leads to a higher expressivity than single-view approaches.

Each stand-alone aspect defines the structure and behavior of
a package of classes. It has to contain a structural view that is
very similar to a UML class diagram. The invocation protocol
for classes of the structural view can optionally be described in
state views, which are similar to UML state diagrams. Finally,
the behavior of methods that were mentioned in the structural
view can be detailed in message views. They describe message
sequences in a notation that is similar to UML sequence diagrams.
Every of RAM’s view types supports aspect-oriented features that
are not part of UML such as parameters, pointcuts and advice.

The RAM model weaver has composing capabilities for every
diagram type and offers additional consistency checks. Dependen-
cies are automatically resolved and for each sequence diagram
the corresponding state views are taken into account in order to
verify that no message violates the invocation protocol. Even if
this adds additional complexity to the weaving process, it reduces
the likelihood of modeling errors. The use of a method that is
not defined in the structural view or the invocation of a method
that is forbidden in the current system state is already detected
during the modeling process.

6 background

Unfortunately, we cannot discuss RAM in detail but we want
to explain its main concepts and refer the interested reader to the
corresponding publications [1] [18] [20] by Kienzle et al.

2.3.2 Features

structural view The central part of a Reusable Aspect

Model is the structural view that presents all involved classes
with their attributes, methods, and associations similar to class
diagrams in UML. A speciality of RAM is that classes can either
be complete or incomplete, which means that they need to be be
instantiated prior to use. Such mandatory instantiation parame-
ters are marked by prepending the vertical bar character | to their
name1. They can be instantiated in reusing aspects with instan-
tiation directives of the form ParamName → InstantiatingName.
Existing classes and states can be bound with binding directives
by writing NameToBind→ BoundName. Note that RAM makes it
possible to bind every class and method regardless of the fact
whether they are marked as parameters or not.

state view In order to allow the modeler to verify whether
modeled method calls conform to a certain protocol he has the
ability to define such an invocation protocol using state views. For
every class that is mentioned in the structural view it is possible
to define states and transitions that correspond to method calls
using a notation that is similar to UML state diagram. The main
difference to UML is that it is possible to modify states and
transitions that were defined in other aspects by specifing them
in a pointcut partition of the view and defining a replacement in
an advice partition. In Section 5.2.2 we explain why we do not
yet support state views in our mapping to AspectJ .

message view The concrete behavior of a system can be mod-
eled in RAM using message views that make use of parts of the
notation of UML sequence diagrams. It is possible to detail the
behavior of methods that were newly defined in the structural
view or to advice existing methods or method parameters. To
this end an arbitrary sequence of messages can be modeled in the
pointcut part of the message view and the behavior that should
replace every matching message sequence can be defined in an
advice part. That means that even the functionality of methods
that are yet unknown to the modeler but bound to method pa-
rameters in reusing aspects can be modified with this technique.
Existing behavior can be removed or replaced and new behavior
can be inserted after, before, or around the original behavior. For
this purpose it is possible to represent the unmodified behavior

1 Not to be confused with an uppercase i: I

2.4 aspectj 7

of a method in its form before the current advice applied with
a box that contains the wildcard character *. This wildcard box
can then be reused in the advice part in order to define how new
messages have to be inserted.

conflict resolution aspects In order to automatically
detect and resolve conflicts that arise from the combination of
different aspects RAM offers the possibility to define special
conflict resolution aspects. These aspects have all features of
ordinary aspects, but they cannot be instantiated. Instead, they
contain interference criteria that define in which situations the
content of the conflict resolution aspects has to be applied.

product line configuration The RAM approach can be
used to model software product lines thanks to its support for
optional and alternative aspect dependencies. The dependencies
between aspect models are captured using feature diagrams and
mentioned in the depending aspects. Within every aspect it is
possible to define binding directives, instantiation directives, and
message views exclusively for a certain configuration.

2.4 aspectj

An aspect-oriented
extension to the
Java language.

AspectJ [14] is a popular aspect-oriented extension to the Java lan-
guage that can be used in every Java development environment
as it produces pure Java bytecode. A discussion of the detailed
features of AspectJ is beyond the scope of this thesis, but we will
give a quick introduction into its main concepts.

The available join points in AspectJ span from the execution
or call of methods, over field access to the initialization of objects
or classes. Pointcuts can be constructed using wildcard patterns,
fully qualified names or annotation based patterns and they can
be connected with boolean expressions. Advanced pointcuts al-
low programmers to detect the application of specific advice, to
intercept and handle executions, and to define dynamic control
flow conditions. Advice can either be dynamic or static. Dynamic
advice can be applied before, after, or around pointcuts. Static
advice can be used to introduce new member variables or meth-
ods into selected classes or interfaces. All these constructs are
encapsulated within so called aspects that represent a structural
unit similar to classes. For a detailed introduction into the AspectJ
language Ramnivas Laddad’s book “AspectJ in Action” [22] can
serve as a valuable and comprehensive starting point.

8 background

2.5 aspectoptima

A case study for
Aspect-Oriented

Software
Development.

AspectOPTIMA [19] is a transaction framework that was de-
signed as a case study for Aspect-Oriented Modeling and Aspect-
Oriented Programming. We used the existing RAM model of
AspectOPTIMA [18] in order to develop and test our mapping
to AspectJ. During the work on our mapping we updated the
models in order to leverage the full power of our mapping. We
present the new models for AspectOPTIMA independent from
our mapping in Chapter 3.

During the course of his master’s thesis Aspectual Decomposi-
tion of Transactions [4] Bölükbası implemented AspectOPTIMA
using AspectJ. At that time the model of AspectOPTIMA han-
dled aspects of threads, contexts and transactions separately and
included features like persistence that are not part of the actual
model. In the following years a new model of AspectOPTIMA
using Reusable Aspect Models [18] had been developed and
AspectJ was subject to many changes and improvements. For
these reasons the implementation of AspectOPTIMA that de-
rived from the application of our mapping differs greatly from
the first implementation. We were able to use recent features
of AspectJ such as support for Generics and Annotations and
included only very little manual refinements.

In order to obtain a wide range of different modeling circum-
stances we developed an extension to the AspectOPTIMA model
that supports Open Multithreaded Transactions (OMTT). The
principles of OMTT are explained in the following section and
the corresponding Reusable Aspect Models are presented in
detail in Chapter 4.

2.6 open multithreaded transactions

A transaction
strategy for
concurrent

cooperation.

Open Multithreaded Transactions [16] is a transaction model that
addresses concurrency problems of conservative transactional
systems by providing features for controlled cooperation between
threads.

2.6.1 Motivation

Sequential transaction models impede concurrency features of
modern systems by restricting transactions to single threads in
order to achieve isolation. Cooperation between threads is not
foreseen and unregulated concurrency in transactional systems
that were not designed for this purpose can lead to inconsistent
states.

Transactional models that enable concurrency while still guar-
anteeing the ACID [8] properties are of great benefit to distributed

2.6 open multithreaded transactions 9

systems and modern multi-core platforms. Open Multithreaded
Transactions were designed to provide required guarantees for
transactional properties while leaving as much freedom as possi-
ble in order to support cooperation between concurrent threads.

2.6.2 Features

We present the main features of Open Multithreaded Transactions
in order to give the reader a general idea of the requirements for
a model that realizes this transaction model.

Opening - If an arbitrary thread starts a transaction, it will be
the first joined participant of this open transaction.

Nesting - If a participant starts a new transaction, this trans-
action will be a nested child of the previous transaction of this
participant. Sibling transactions that were created by different
participants execute concurrently.

Joining - In order to join a transaction, a thread must either par-
ticipate in a parental transaction or participate in no transaction
at all, and the transaction to be joined must be open. A thread
can only participate in one sibling transaction at a time.

Spawning - Participants of transactions can spawn new partic-
ipants that will automatically become spawned participants of
the innermost transaction of their creator.

Closing - Every participant of a transaction can close it at any
time such that no new threads can join the transaction anymore.
New threads can be spawned inside closed transactions and every
transaction closes automatically once all participants voted on an
outcome.

Isolation - Participants access transactional objects in complete
isolation from other transactions even if these transactions are
descendants of the current transaction.

Voting - Participants can vote on the outcome of the transaction
that they are participating in. Threads that “disappear” without
voting are implicitly voting abort.

Commiting - A transaction reveals changes that were made on
its behalf to transactional objects to the outside world if and only
if all participants voted commit.

Terminating - Spawned participants terminate immediately after
voting on the outcome of a transaction.

Leaving - Joined participants cannot leave a transaction before
its outcome has been decided. Therefore, they are blocked until
the last participant voted commit or until a participant voted abort.

Figure 1 shows an example of two nested Open Multithreaded
Transactions with four joined participants A, B, C and D and two
spawned participants B’ and C’ that demonstrates the blocking
behavior.

10 background

Figure 1: An Example of two nested Open Multithreaded Transactions
involving four existing and two newly spawned threads (from
Kienzle [15]).

3
A S P E C T O P T I M A : A T R A N S A C T I O N
F R A M E W O R K

An updated
modeling case study
for our mapping.

As a case study for Aspect-Oriented Modeling the AspectOP-
TIMA transaction framework helped us to develop our general
purpose mapping from Reusable Aspect Models to AspectJ
that we present in Chapter 5. We will explain our mapping using
examples from this framework that we introduced in Section 2.5.
As some of the functionality of AspectOPTIMA and the inter-
dependencies between its aspects are quite complex, we hope to
ease the understanding of the later examples by presenting the
complete model in advance. However, in order to understand
our mapping examples it is not necessary to know all aspects in
advance. We suggest the reader to use our model description as
a work of reference whenever he is in doubt about the purpose
or meaning of a model that is used to describe our mapping.

While we developed our mapping we modified the original
case study in order to make use of the full power and flexibility
of our mapping. Most of these modifications were made in order
to follow a single modeling style and in order to reduce slight
ambiguities that complicate code generation.

3.1 aspects

AspectOPTIMA consists of 17 aspects and 5 conflict resolution
aspects. We modeled all conflict resolution aspects and present
them in the next section. As time constraints did not permit us
two model the two aspects OptimisticValidation and SemanticClas-
sified we present all remaining 15 conventional aspects in this
section. In order to present aspects before they appear in reusing
aspects, we start with the lowest level of reuse and proceed with
aspects that directly depend on already presented aspects.

In order to give the reader an overview over the complete
framework, we present a feature diagramof AspectOPTIMA in
Figure 2. It includes all aspects, conflict resolutions, composition
rules and variation points of the framework.

3.1.1 AccessClassified

Linking access
information to
methods.

The AccessClassified aspect that we present in Figure 3 intro-
duces a method getAccessKind that returns the access kind for a
given method. This method is introduced into every class that is
bound to the mandatory instantiation parameter |AccessClassified.

11

12 aspectoptima : a transaction framework

Optimistic Validation

Transaction

RecoveringNested

Legend
Mandatory

Optional

Alternative

Conflict Resolutions:
CheckpointingNested
DeferrableNested
NestedTracing
NestedTwoPhaseLocking

TwoPhaseLocking

OutcomeAware

Checkpointing

Composition Rules:
OptimisticValidation requires
Recovering.Deferring
Checkpointable.Traceable requires
Traceable.SemanticClassified
Deferrable.Traceable requires
Traceable.SemanticClassified

ConcurrencyControl

UpdateStrategy

Traceable

AccessClassified LockableSemanticClassified CopyableContext

Deferring

Tracing DeferrableCheckpointable

Figure 2: A feature diagram of the AspectOPTIMA framework showing
all aspects of common single-threaded transactions.

The type AccessKind is specified as an enumeration that contains
the enumeration literals Read, Write, and Update.

Methods for which the access kind shall be retrievable need
to bind the mandatory instantiation parameter |m and have
to provide the access kind as parameter of the parameter. The
behavior of the method getAccessKind is not modeled as we con-
sider the way how this information is stored and retrieved an
implementation detail.

aspect AccessClassified

structural view

+ AccessKind getAccessKind(Method)
+ * |m<AccessKind>(..)

|AccessClassified

|AccessClassified,
|m<AccessKind>

Read
Write
Update

<<enumeration>>
AccessKind

Figure 3: The AccessClassified aspect enables the retrieval of the access
kind for each method that is given as a parameter.

3.1 aspects 13

aspect Traceable depends on AccessClassified

+ Trace createTrace(Method)
+ * |m<AccessKind>(..)

|Traceable

caller: Caller target: |Traceable

|newT: Trace
 newT := create(m, accessKind, target)

structural view

caller: Caller target: |Traceable

newT := createTrace(m)

Pointcut Advice

~ create(Method, AccessKind, |Traceable)
+ |Traceable getTarget()
+ AccessKind getAccessKind()

- Method method
- AccessKind accessKind

Trace

accessKind :=
getAccessKind(m)

1
target

|Traceable,
|m<AccessKind>

AccessClassified instantiation
|AccessClassified
→ |Traceable

|m<AccessKind>
→ |m<AccessKind>

Default
Instantiation
caller → *
Caller → *
target → *

newT := createTrace(m)

message view createTrace

Figure 4: The Traceable aspect provides the functionality to create traces
of method invocations on objects.

3.1.2 Traceable

Infrastructure for
method invocation
traces.

The Traceable aspect shown in Figure 4 relies on the AccessClas-
sified aspect in order to provide the possibility to create traces
for calls to access classified methods. The suffix “-able” indicates
that this aspect is only providing the infrastructure for a tracing
functionality but not the automatic creation of such traces.

With an instantiation directive in the structural view we spec-
ify that the newly defined mandatory instantiation parameters
|Traceable and |m<AccessKind> are bound to the parameters |Ac-
cessClassified and |m<AccessKind> of the reused AccessClassified
aspect. As a result every construct that is bound to the new pa-
rameter will automatically be bound to the linked parameter of
the reused aspect in order to make use of its functionality.

The message view for the method createTrace defines this new
method but uses the general pointcut-advice syntax. The point-
cut defines the message sequence to which the advice should
be applied and contains a single call to the method createTrace.
Whenever this message is found the advice that is defined on
the right side of the message view is applied. It shows that we
retrieve the access information for a given method by calling
getAccessKind. Afterwards, we create a new trace that contains
this information together with a reference to the method and
the target object. Note that methods that are named create and
that return the enclosing type represent constructors in Reusable

Aspect Models . Without such a constructor a class is incom-
plete and needs to be completed with an instantiation or binding
directive or it has to be marked as a mandatory instantiation
parameter by prepending the vertical bar character | to its name.

14 aspectoptima : a transaction framework

3.1.3 Context

Introducing contexts
and their

participants.

In the Context aspect the central notion of contexts and context
participants is introduced as presented in Figure 5. As every
participant is associated to at most one context and every context
to at most one participant, we only need to consider cases in
which a participant creates and immediately enters a new context.

The behavioral logic for this case is presented in the message
views of the methods createAndEnterContext and enterContext. The
first of these methods calls the second one which in turn modifies
the corresponding association properties. When a context is left
by invoking leaveContext the association information is discarded
and the marker method contextCompleted is called.

In addition to these methods with message views we include
infrastructural methods for the modification and use of the as-
sociation information into the structural view. Furthermore, we
mention a static method getCurrent that returns a Participant. It
is used in other aspects to obtain the current participant when
arbitrary method calls that have no direct access to context infor-
mation are advised.

3.1.4 Tracing

Automatic storage of
access information

for method calls.

The Tracing aspect shown in Figure 6 adds an automatic tracing
functionality to the infrastructure of the Context aspect based on
the functionality provided by the Traceable aspect. It advises all
calls to methods that have been bound to the mandatory instan-
tiation parameter |m of a |Traced object by means of a message
view traceMethod. After retrieving the current participant, obtain-
ing its associated context, and creating the corresponding tracing
information it stores this information using the obtained context.
A rectangular box that contains the * character as a wildcard
is used in the pointcut part in order to represent the original
method behavior of the advised method. It is also used in the
advice part in order to define that all the tracing information
is created before the original behavior of the advised method.
The methods of reused aspects that have to be woven into the
message view are mentioned in the message view label using the
keywords affected by in order to give the reader a fast overview
of reused methods.

As Reusable Aspect Models have an automatic information
hiding feature we have to reexpose all reused methods that we
want to make accessible for reusing aspects. Therefore we men-
tion the methods getCurrent, getContext, createAndEnterContext,
and leaveContext of the Context aspect in the |TracingParticipant
class with a public access modifier within the structural view. Au-
tomatic information hiding is discussed in detail in Section 5.6.3.

3.1 aspects 15

0..1

context

aspect Context

structural view

+ |Participant getCurrent()
+ Context getContext()
+ setContext(Context)
+ createAndEnterContext()
~ Context createContext()
+ enterContext(Context)
+ leaveContext()

|Participant

 0..1

participant

caller: Caller target:|Participant

newContext :=
createContext()

caller: Caller target: |Participant

createAndEnterContext()

Pointcut

Advice

enterContext(newContext)

caller: Caller target: |Participant

myContext:
Context

leaveContext()

removeParticipant(target)

message view leaveContext Advice

myContext :=
getContext()

|Participant

setContext(null)

contextCompleted()

~ Context create()
~ addParticipant(|Participant)
~ removeParticipant(|Participant)
+ contextCompleted()

Context

caller: Caller target: |Participant c: Context

enterContext(c)
addParticipant(target)

caller: Caller target: |Participant

enterContext(c)

Pointcut

Advice

setContext(c)

caller: Caller target: |Participant

leaveContext()

Pointcut

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

createAndEnterContext()

Default
Instantiation
caller → *
Caller → *
target → *

message view createAndEnterContext

message view enterContext

Figure 5: The Context aspect adds and administrates an association
between participants and contexts.

16 aspectoptima : a transaction framework

The storage of tracing information is detailed in the structural
view as a set of accessed |Traced objects and a list of Traces are
associated to the class TracingContext. How these data structures
are used is shown in message views. The behavior of addTrace is
to obtain the target from the passed Trace, to insert a reference to
this target into the set of accessed objects, and to finally add the
trace itself to the list of traces.

Whether or not a |Traced object was already accessed can
be answered by the method wasAccessed. It simply returns the
result of a call to the function contains on the set of accessed
objects. Already existing tracing information can be removed for
selected objects with a call to removeTraces. The message view of
this method demonstrates that our decision to store the set of
accessed objects separately makes the removal of traces more
complicated as we need to obtain the corresponding traces itera-
tively. But aspects that reuse the Tracing aspect are relieved from
this additional complexity as they can directly reuse the method
removeTraces by providing a set of objects without any knowledge
of the corresponding Traces.

3.1.5 Copyable

Copying and
replacing the state

of objects.

The model for the Copyable aspect as presented in Figure 7 is
concise but its functionality for cloning and replacing objects is
crucial for many other aspects in the framework.

Two public methods copy and replaceStateWith are declared on
the mandatory instantiation parameter class |Copyable, but they
are not detailed in message views as we consider their behavior
an implementation detail.

3.1.6 Deferrable

Creating and
administrating

multiple versions
of objects.

The Deferrable aspect shown in Figure 8 makes use of the Copy-
able functionality in order to provide the possibility to obtain
different versions of an object. In the structural view we asso-
ciate each |Deferrable object with a map that links contexts to
the corresponding versions of the |Deferrable object. We also link
each |Deferrable object to exactly one |Deferrable object that we
call its original as it refers to the object of which the object in
consideration is a version of.

The method getVersion includes functionality to automatically
create a new version if no version exists yet. First, we check
whether the original association refers to the same object or not. If
the object and its original are different, we are already inspecting
a version and therefore we can return it immediately. But, if the
object and its original are identical, we need to create a new
version, and store a reference to it in the contextToVersionMap.

3.1 aspects 17

1

accessed

aspect Tracing depends on Traceable, Context

structural view depends on Traceable, Context

caller:
Caller

target:
|Traced

|m(..)

Pointcut Advice

+ * |m<AccessKind>(..)

|Traced

~ Set<|Traced> create()
~ add(|Traced)
~ addAll(Set<|Traced>)
~ boolean contains(|Traced)
~ removeAll(Set<|Traced>)

Set

Context instantiation
|Participant →

|TracingParticipant

context := getContext() context:
TracingContext

message view wasAccessed

result := contains(t)

target:
TracingContext

accessed:
Set<|Traced>

result := wasAccessed(t)

Pointcut
Advice

target:
TracingContext

result := wasAccessed(t)

|TracingParticipant
|Traced

|m<AccessKind>

Traceable instantiation
|Traceable → |Traced

|m<AccessKind> → |m<AccessKind>

+ |TracingParticipant getCurrent()
+ TracingContext getContext()
+ createAndEnterContext()
+ leaveContext()

|TracingParticipant

message view removeTraces affected by Traceable.getTarget

toBeRemoved := create()

caller: Caller

removeTraces(t)

Pointcut

Advice

caller: Caller target:
TracingContext

removeTraces(t)

Context binding
TracingContext → Context
createAndEnterContext →

createAndEnterContext
leaveContext → leaveContext

getContext → getContext
getCurrent → getCurrent

~ TracingContext create()
+ boolean wasAccessed(|Traced)
+ Set<|Traced> getAccessed()
+ List<Trace> getTraces()
+ removeTraces(Set<|Traced>)
~ addTrace(Trace trace)

TracingContext

*

~ List<Trace> create()
~ add(Trace t)
~ addAll(List<Trace>)
~ removeAll(List<Trace>)

List

1

traces

target := getTarget()

accessed:
Set<|Traced>

removeAll(toBeRemoved)

removeAll(t)

target :=
getTarget()

caller: Caller

addTrace(trace)

Pointcut

Advice

caller: Caller target:
TracingContext

addTrace(trace)

target:
TracingContext

accessed:
Set<|Traced>

add(trace)

traces:
List<Trace>

trace:
Trace

add(target)

|Traced

Trace

Default
Instantiation
caller → *
Caller → *
target → *

trace := createTrace(|m)

caller: Caller
caller: Caller

Default
Instantiation
caller → *
Caller → *
target → *

add(target)

target:
TracingContext

loop [trace within traces]

opt [remove]

traces:
List<Trace>

trace: Trace

remove := contains(target)

toBeRemoved:
List<Trace>

t:
Set<|Traced>

Default
Instantiation
caller → *
Caller → *
target → *

Default Instantiation
caller → *, Caller → *, target → *

message view addTrace affected by Traceable.getTarget

message view traceMethod affected by Traceable.createTrace, Context,getContext

<<metaclass>>
|TracingParticipant

p := current()
p: |TracingParticipant

caller:
Caller

target:
|Traced

|m(..)

addTrace(trace)

*

1

1

Figure 6: The Tracing aspect uses the Traceable and Context aspects to
automatically create traces and it provides access to them.

18 aspectoptima : a transaction framework

aspect Copyable

+ |Copyable copy()
+ replaceStateWith(|Copyable)

|Copyable

structural view
|Copyable

Figure 7: The Copyable aspect makes it possible to clone objects and to
replace their state.

The message view for updateOriginal demonstrates how we use
the original association and the map from contexts to versions in
order to replace the state of the original object with the state of
the obtained version. It also shows that a version is unnecessary
once its state has been used for an update of the original. We
simply delete a version after such an update.

Removing versions is very simple as we can see in the message
view deleteVersion. All that has to be done is to delete the version
from the associated map with a call to the remove method.

3.1.7 Deferring

Defering method
calls by performing

them on a version
of the target.

AspectOPTIMA’s Deferring aspect as presented in Figure 9 auto-
matically defers calls to transactional objects and performs them
on behalf of the context participant on a separate version that is
provided by Deferrable. It also provides the method performUp-
date that is detailed in a message view and that makes use of
the access information provided by the Tracing aspect: for every
object that was accessed on behalf of the context the method
updateOriginal is called.

Every call to a method that is bound to the mandatory in-
stantiation parameter |m of a |Deferred object is advised using
the behavior of the message view deferMethod. In this view we
retrieve the original object from the object in consideration in
order to decide on which object the original behavior should be
executed. If the original differs from the target, the unchanged
behavior is executed on the target. Otherwise, the current par-
ticipant is obtained, its context is retrieved, the version for this
context is obtained, and the original behavior is executed on it.

3.1.8 Checkpointable

Saving and restoring
different states

of objects.

The Checkpointable aspect as modeled in Figure 10 makes it pos-
sible to establish and discard checkpoints of the state of trans-
actional objects in order to undo operations in case of an abort.

3.1 aspects 19

aspect Deferrable depends on Copyable, Context

+ |Deferrable copy()
+ |Deferrable getVersion(Context)
+ |Deferrable getOriginal()
+ setOriginal(|Deferrable)
+ updateOriginal(Context)
~ deleteVersion(Context)
+ * |m(..)

|Deferrable

structural view
|Deferrable

caller: Caller target: |Deferrable
updateOriginal(context)

caller: Caller target: |Deferrable

updateOriginal(context)

Pointcut
Advice

Copyable instantiation
|Copyable → |Deferrable

 original := getOriginal()

caller: Caller target: |Deferrable
deleteVersion(context)

caller: Caller target: |Deferrable
deleteVersion(context)

Pointcut Advicemessage view deleteVersion

original: |Deferrable
 version := getVersion(context)

replaceStateWith(version)

deleteVersion(context)

remove(context)

~ Map<Context, Deferrable> create()
~ |Deferrable get(Context)
~ remove(Context)
~ put(Context, |Deferrable)

Map
1

contextToVersionMap
1

original

1

caller: Caller target: |Deferrable
version := getVersion(context)

Pointcut
Advicemessage view getVersion affected by Copyable.copy

alt

 original := getOriginal()

[original <> target]

[else]

Context, |Deferrable

Context binding
Context → Context, copy → copy

Default
Instantiation
caller → *
Caller → *
target → *

version := get(context)

version: |Deferrable

contextToVersionMap:
Map<Context,
|Deferrable>

version := copy()

put(context, version)

caller: Caller target: |Deferrable

opt [version = null]

version := getVersion(context)

Default
Instantiation
caller → *
Caller → *
target → *

Default Instantiation
caller → *, Caller → *, target → *

contextToVersionMap:
Map<Context,
|Deferrable>

version := target

1

message view updateOriginal affected by Copyable.replaceStateWith

Figure 8: The Deferrable aspect provides facilities to defer operations
by using Copyable in order to create and maintain different
versions of an object.

20 aspectoptima : a transaction framework

aspect Deferring depends on Tracing, Deferrable

structural view

caller:
Caller

target:
|Deferred

|m(..)

Pointcut Advice

+ * |m<AccessKind>(..)

|Deferred

~ Deferring create()
+ Set<|Deferred> getAccessed()
+ removeTraces(Set<|Traced>)
+ performUpdate()

DeferringContext

|DeferringParticipant
|Deferred

|m<AccessKind>

Pointcut Advice

caller: |Caller target:
|DeferringContext

performUpdate()

+ |DeferringParticipant getCurrent()
+ createAndEnterContext()
+ leaveContext()

|DeferringParticipant

message view performUpdate affected by Tracing.getAccessed, Deferrable.updateOriginal

t: |Deferred
updateOriginal(target)

caller: Caller

Deferrable instantiation
|Deferrable → |Deferred
|m → |m<AccessKind>

Tracing instantiation
|TracingParticipant →
|DeferringParticipant
|Traced → |Deferred
|m<AccessKind> →

|m<AccessKind>

 traced := getAccessed()

original :=
getOriginal()

caller:
Caller

target:
|Deferred

alt [original <> target]

c := getContext()
p: |DeferringParticipant

version :=
getVersion() version: |Deferrable

[else]

target:
|DeferringContext

performUpdate()

*

*

*

loop [t within traced]

Tracing binding
DeferringContext → TracingContext

createAndEnterContext →
createAndEnterContext

leaveContext → leaveContext
getAccessed → getAccessed

removeTraces → removeTraces
getCurrent → getCurrent

Default
Instantiation
caller → *
Caller → *
target → *

Default Instantiation
caller → *
Caller → *
target → *

|m(..)

|m(..)

message view deferMethod affected by Tracing.getContext, Deferrable.getOriginal, Deferrable.getVersion

<<metaclass>>
|DeferringParticipant

p := current()

Figure 9: The Deferring aspect reuses Deferrable and Tracing in order to
automatically defer operations based on the access history.

3.1 aspects 21

aspect Checkpointable depends on Copyable

+ establishNewCheckpoint()
+ restoreLastCheckpoint()
+ discardLastCheckpoint()

|Checkpointable

caller: Caller target:
|Checkpointable

checkpoints:
Stack<|Checkpointable>

push(newCheckpoint)

structural view

caller: Caller target:
|Checkpointable

establishNewCheckpoint()

Pointcut Advice

~ Stack<|Checkpointable> create()
~ push(|Checkpointable)
~ |Checkpointable pop()

Stack

1

checkpoints

newCheckpoint := copy()

|Checkpointable

Copyable instantiation
|Copyable →|Checkpointable

message view establishNewCheckpoint affected by Copyable.copy

caller: Caller target:
|Checkpointable

checkpoints:
Stack<|Checkpointable>

last := pop()

caller: Caller target:
|Checkpointable

restoreLastCheckpoint()

Pointcut Advice

replaceStateWith(last)

restoreLastCheckpoint()

message view restoreLastCheckpoint affected by Copyable.replaceStateWith

caller: Caller target:
|Checkpointable

checkpoints:
Stack<|Checkpointable>

pop()

caller: Caller target:
|Checkpointable

discardLastCheckpoint()

Pointcut Advice

message view discardLastCheckpoint

|Checkpointable

establishNewCheckpoint()

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

discardLastCheckpoint()

Default Instantiation
caller → *, Caller → *, target → *

1

Figure 10: The Checkpointable aspect makes use of Copyable in order to
store and retrieve snapshots of the state of objects.

These checkpoints are full copies of the transactional object that
are provided by Copyable. As we only need to access the last check-
point we can store them in a stack. Such a stack is associated to
every |Checkpointable object and methods for its manipulation
are added.

The message view for establishNewCheckpoint makes use of
Copyable’s method copy and pushes the received duplicate on
the stack. A past state of the object can be restored when the
method restoreLastCheckpoint is called. It simply pops the last
checkpoint from the stack and replaces the state of the current
object with the checkpoint’s state. Removing a checkpoint with
the method discardLastCheckpoint is even simpler as the last ele-
ment of the stack gets popped from the state without being used
or returned.

22 aspectoptima : a transaction framework

3.1.9 Checkpointing

Automatic creation
of checkpoints upon

first access.

The Checkpointing aspect shown in Figure 11 makes use of the
functionality provided by Checkpointable and automatically cre-
ates a checkpoint every time an object is accessed for the first
time. The information needed for this check is provided by the
aspect Tracing. It is also used to provide possibilities to restore or
discard all checkpoints.

Within the message view checkpointMethod we advise every
call to a method that is bound to the mandatory instantiation
parameter |m of the |Checkpointed class. Before the execution of
the original method behavior we retrieve the current participant,
obtain its context and check whether the target of the advised call
was already accessed before. If this is not the case, we establish a
new checkpoint prior to executing the original behavior.

The message view of restoreCheckpoints shows how we restore
the last checkpoint for every accessed object by iterating over the
set of accessed objects and by calling the method restoreLastCheck-
point on it. As this operation is supposed to be an undo operation
we also need to remove all traces that we created for these objects.

A possibility to remove checkpoints without restoring their
state is shown in the message view of discardCheckpoints: simi-
larly to the method restoreCheckpoints we iterate over all accessed
objects, call the method discardLastCheckpoint on them and re-
move the corresponding traces.

3.1.10 OutcomeAware

Lets the participant
vote on a outcome

for its context.

The OutcomeAware aspect as presented in Figure 12 associates
each context with an outcome that will make it possible to decide
whether the corresponding transaction should be committed or
aborted. A participant gets the possibility to vote on an outcome
and leave a context at the same time.

In order to ease the extension of the framework with sophis-
ticated voting and outcome mechanisms, we only require the
abstract class Outcome to provide a method isPositive that returns
a boolean. Our default implementation of an outcome is the class
BinaryOutcome. It contains only a boolean value.

3.1.11 Recovering

Recovering the states
of all accessed objects

in case of failure.

The functionality of the aspects OutcomeAware and Checkpointing
or Deferrable is combined by the Recovering aspect as shown in Fig-
ure 13 in order to automatically restore the state of transactional
objects in case of a transaction with a negative outcome.

Recovering does not introduce any new methods or infrastruc-
ture. It specifies only how already existing aspects should be used

3.1 aspects 23

aspect Checkpointing depends on Tracing, Checkpointable

structural view

+ * |m<AccessKind>(..)

|Checkpointed ~ CheckpointingContext create()
+ Set<|Checkpointed> getAccessed()
+ removeTraces(Set<|Checkpointed> t)
+ restoreCheckpoints()
+ discardCheckpoints()

CheckpointingContext

myContext:
CheckpointingContext

establishNewCheckpoint()

|CheckpointingParticipant,
|Checkpointed,

|m<AccessKind>

+ |CheckpointingParticipant getCurrent()
+ createAndEnterContext()
+ leaveContext()

|CheckpointingParticipant

Checkpointable instantiation
|Checkpointable →

|Checkpointed

Tracing instantiation
|TracingParticipant →

|CheckpointingParticipant
|Traced → |Checkpointed

|m<AccessKind> →
|m<AccessKind>

Tracing binding
CheckpointingContext →

TracingContext
createAndEnterContext →

createAndEnterContext
leaveContext → leaveContext

getCurrent → getCurrent

Default
Instantiation
caller → *
Caller → *
target → *

Pointcut Advice
caller: Caller target:

Checkpointing
Context

restoreCheckpoints()

message view restoreCheckpoints affected by Tracing.getAccessed, Checkpointable.restoreLastCheckpoint

t: |Checkpointed
restoreLastCheckpoint()

accessed := getAccessed()

loop [t within accessed]

removeTraces(toBeRemoved)

Default
Instantiation
caller → *
Caller → *
target → *

toBeRemoved := create()

add(t)

toBeRemoved:
List<Trace>

caller: Caller target:
Checkpointing

Context
restoreCheckpoints()

Pointcut Advice
caller: Caller target:

Checkpointing
Context

discardCheckpoints()

t: |Checkpointed
discardLastCheckpoint()

accessed := getAccessed()

loop [t within accessed]

removeTraces(toBeRemoved)

Default
Instantiation
caller → *
Caller → *
target → *

toBeRemoved := create()

add(t)

toBeRemoved:
List<Trace>

caller: Caller target:
Checkpointing

Context
discardCheckpoints()

message view discardCheckpoints is affected by Tracing.getAccessed, Checkpointable.discardLastCheckpoint

caller:
Caller

target:
|Checkpointable

|m(..)

Pointcut Advice

*

<<metaclass>>
|Checkpointing

Participant
p := getCurrent()

caller:
Caller

|m(..)
p: |Checkpointing

Participant

target:
|Checkpointable

myContext := getContext()

secondTime := wasAccessed(target)

opt [not secondTime]

*

message view checkpointMethod
affected by Tracing.getContext,Tracing.wasAccessed, Checkpointable.establishNewCheckpoint

Figure 11: The Checkpointing aspect automatically maintains snapshots
of objects based on the access history provided by Tracing.

24 aspectoptima : a transaction framework

aspect OutcomeAware depends on Context

structural view

~ OutcomeAwareContext create()
+ contextCompleted()
+ Outcome getOutcome()
+ setOutcome(Outcome o)

OutcomeAwareContext

|OutcomeControllingParticipant

Context instantiation
|Participant →

|OutcomeControlling
Participant

+ |OutcomeControllingParticipant getCurrent()
+ OutcomeAwareContext getContext()
+ createAndEnterContext()
+ voteAndLeaveContext(Outcome v)

|OutcomeControllingParticipant

caller: Caller target:
|OutcomeControlling

Participant
context:
Outcome

AwareContext

voteAndLeaveContext(v)

setOutcome(v)

caller: Caller target:
|OutcomeControlling

Participant
voteAndLeaveContext(v)

Pointcut

context :=
getContext()

leaveContext()

Advice

Context binding
OutcomeAwareContext → Context

createAndEnterContext →
createAndEnterContext

contextCompleted →
contextCompleted

getContext → getContext
getCurrent → getCurrent

1
0..1 outcome

+ boolean isPositive()

Outcome

+ BinaryOutcome create(boolean)
- boolean value

BinaryOutcome

Default
Instantiation
caller → *
Caller → *
target → *

message view voteAndLeaveContext affected by Context.getContext, Context.leaveContext

Figure 12: The OutcomeAware aspect associates contexts to outcomes
and allows the participant to vote on the outcome.

and advises the marker method contextCompleted. We provide a
message view for contextCompleted for the different update strate-
gies as the recovery mechanism is different for both of them.

If the update strategy Checkpointing is chosen, we determine
whether the transaction failed by retrieving the outcome and
calling the method isPositive on it. In case of a negative outcome
we call the method restoreCheckpoints to undo all operations of
the transaction but if the transaction was successful we call the
operation discardCheckpoints instead.

The contextCompleted method for the Deferring variant begins
with a retrieval and inspection of the outcome in order to decide
whether the transaction succeeded. The operations that were de-
ferred are performed on the original objects by calling the method
performUpdate if the transaction was successful. Finally, all traces
are removed regardless of the outcome of the transaction.

3.1.12 Nested

Allowing contexts
to create a nested

hierarchy.

Even though the aspect Nested is not necessary for simple trans-
actions, we decided to model it (Figure 14) in order to support
nested transactions that can be aborted in case of an unsuccessful
parental transaction. To make this possible we associate every
context with children contexts and with a single parental context.

3.1 aspects 25

structural view

+ |RecoveringParticipant getCurrent()
+ RecoveringContext getContext()
+ createAndEnterContext()
+ voteAndLeaveContext()

|RecoveringParticipant

|RecoveringParticipant
|Recoverable

|m<AccessKind>

Pointcut Advice
caller: Caller target:

RecoveringContext

contextCompleted()
outcome :=
getOutcome()

OutcomeAware instantiation
|OutcomeControllingParticipant → |RecoveringParticipant

~ RecoveringContext create()
+ contextCompleted()

RecoveringContext

+ * |m<AccessKind>(..)

|Recoverable

*

caller: Caller

contextCompleted()

failed := not isPositive()

restoreCheckpoints()

outcome:
Outcome

target:
RecoveringContext

opt [outcome <> null]

alt

*

Checkpointing instantiation
|Checkpointed → |Recoverable

|CheckpointingParticipant →
|RecoveringParticipant

|m<AccessKind> → |m<AccessKind>

Pointcut Advice
caller: Caller target:

RecoveringContext

contextCompleted()
outcome :=
getOutcome()

message view contextCompleted (Deferring variant)
affected by OutcomeAware.getOutcome, Deferring.performUpdate, Deferring.removeTraces

*

caller: Caller

contextCompleted()

succeeded := isPositive()

performUpdate()

outcome:
Outcome

target:
RecoveringContext

opt [outcome <> null]

opt [succeeded]

*

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

[failedl]

discardCheckpoints()
[else]

Checkpointing binding
RecoveringContext →
CheckpointingContext

Deferring binding
RecoveringContext →

DeferringContext

Deferring instantiation
|Deferred → |Recoverable

|DeferringParticipant → |RecoveringParticipant
|m<AccessKind> → |m<AccessKind>

accessed := getAccessed()

removeTraces(accessed)

OutcomeAware binding
RecoveringContext → ContextWithOutcome

voteAndLeaveContext → voteAndLeaveContext
createAndEnterContext → createAndEnterContext

getContext → getContext
getCurrent → getCurrent

aspect Recovering depends on OutcomeAware, Checkpointing xor Deferring

message view contextCompleted (Checkpointing variant)
affected by OutcomeAware.getOutcome, Checkpointing.restoreCheckpoints, Checkpointing.discardCheckpoints

failed := true

succeeded := false

Figure 13: The Recovering aspect automatically recovers the state of ob-
jects if they complete with a negative Outcome and supports
two different update strategies.

26 aspectoptima : a transaction framework

Additionally, methods to modify this association are introduced
and the methods for creating and leaving contexts are advised.

By providing a message view for the method createContext
we make sure that the old context of a participant that creates
and enters a new context automatically becomes the parent of
the newly created context. In the message view for the method
leaveContext we check whether a context had a parent whenever
it leaves a context. In such a case we migrate the participant to
the parent context.

The message view addChildrensResults does not correspond to
a method that is defined in the structural view but it is a message
template that is reused in other aspects. This means that methods
of other aspects can be bound to the method m of this message
view in order to reuse the defined logic. The purpose of this
message template is to apply a given method to every child
context and to add the results of these method calls to the overall
result. An example for methods that make use of this message
template are the methods getAccessed and getTraces of the Nested /
Tracing conflict resolution aspect that we present in Section 3.2.1.

3.1.13 Lockable

Automatically
acquiring and

releasing access kind
specific locks.

The Lockable aspect as shown in Figure 15 provides the possibility
to retrieve locks for transactional objects based on the access
kind of methods in order to control concurrency. Every |Lockable
object is associated to a lock object that provides methods to lock
and unlock it.

In the message view of the method getLock we specify that the
associated lock is initialized in a lazy manner when it is used for
the first time. After the initialization the method lock is called on
it. The message view for releaseLock is even simpler as it contains
a single call to the unlock method of the associated lock.

As locks and semaphores are a common solution for concur-
rency problems we decided to keep the model for Lockable on
an abstract level by omitting these implementational details. Al-
though our model does not use the access kind information
directly it allows for sophisticated implementations that use dif-
ferent locks for different types of access.

3.1.14 TwoPhaseLocking

Acquiring locks
incrementally and

releasing them in a
single last step.

TwoPhaseLocking is a concurrency mechanism that acquires locks
for transactional objects stepwise in a first phase and releases all
of them simultaneously in a second phase after the successful
completion of a transaction. The corresponding aspect is pre-
sented in Figure 16 and makes use of the aspects Tracing and
Lockable in order to keep track of all access classified operations

3.1 aspects 27

aspect Nested depends on Context

structural view

+ enterContext()
+ leaveContext()

|NestedParticipant

+ |NestedContext getParent()
~ setParent(|NestedContext p)
~ addChild(|NestedContext c)
+ Set<|NestedContext> getChildren()

NestedContext

children

0..*

caller: Caller target:
|NestedParticipant

enterContext()

Pointcut

Advice

newContext :=
getContext()

parent 0..1

|NestedParticipant

Context instantiation
|Participant →

|NestedParticipant

*

enterContext()

addChild(newContext)

setParent(oldContext)

target:
|NestedParticipant

oldContext:
|NestedContext

caller: Caller

opt [newContext <> null]

opt [oldContext <> null]

*

oldContext :=
getContext()

newContext:
|NestedContext

caller: Caller target:
|NestedParticipant

leaveContext()

Pointcut
Advice

setContext(parentContext)

*

leaveContext()

target:
|NestedParticipant

caller: Caller

opt [parentContext <> null]

*

oldContext :=
getContext()
parentContext :=
getParent()

Context binding
NestedContext → Context

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

Pointcut

Advice

target:
NestedContext

result := m()

caller: Caller

caller: Caller

*

target:
NestedContext

result := m()

*

Default
Instantiation
caller → *
Caller → *
target → *

result:
Collection<T>

loop [c within children]

childResult := m()
c: NestedContext

children := getChildren()

addAll(childResult)

recursive

message view addChildrensResults

message view leaveContext affected by Context.getContext, Context.setContext

message view createContext affected by Context.getContext

Figure 14: The Nested aspect allows for a nested hierarchy of contexts
and maintains it automatically.

28 aspectoptima : a transaction framework

aspect Lockable

+ getLock(AccessKind kind)
+ releaseLock(AccessKind kind)

|Lockable

caller: Caller target: |Lockable

myLock: Lock

getLock(kind)

myLock := create()

structural view

caller: Caller target: |Lockable

getLock(kind)

Pointcut Advice

Lock

~ Lock create()
~ lock(AccessKind kind)
~ unlock(AccessKind kind)

 0..1

myLock

message view getLock

|Lockable

opt [myLock = null]

lock(kind)

caller: Caller target: |Lockable
myLock: LockreleaseLock(kind)

caller: |Caller target: |Lockable

releaseLock(kind)

Pointcut Advice
message view releaseLock

unlock(kind)

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

1

Figure 15: The Lockable aspect provides facilities to acquire and release
locks based on access kinds.

involving transactional objects. If the participant does not already
possess a lock of the corresponding kind for the accessed objects,
such a lock is acquired automatically. When the transaction is
completed and the participant left the context all these acquired
locks are automatically released.

The message view acquireLock advises every call to a method
that is bound to the mandatory instantiation parameter |m of
the |TwoPhaseLocked class. Before the original method logic gets
executed the current participant is retrieved, its context is ob-
tained, and the access kind of the advised operation is retrieved.
A boolean variable is created and initialized to the constant false.
The variable evaluates to true if the context already possesses
a lock of the same kind. After the access kind was obtained all
traces are retrieved and we iterate over them as long as we do
not find out that we already possess a lock of the requested kind.
For every trace we check whether the trace target is identical
to the target of the advised method call. If this is the case we
retrieve the access kind for the trace, and compare it to the access
kind of the advised method. If they are equal, we know that
we already accessed this object with the same access kind. That
means that we already possess a corresponding lock so we can
set the variable to the constant true. If the loop terminates and
the variable is still false we know that we never accessed the same

3.1 aspects 29

object with the same access kind before so we need to acquire a
corresponding lock.

The method leaveContext is advised in a message view that
specifies that we store the context in a temporary variable before
leaving it. After the original method logic we make use of this
temporary variable as we call the method releaseAcquiredLocks
and pass the old context to it.

The behavior of releaseAcquiredLocks is detailed in a message
view as an iteration over all traces that calls the method release-
LockIfPresent using the target and access kind of the trace. We
think that its functionality is revealed by its name and did not
model it in a separate message view because we consider it to be
an implementation detail.

3.1.15 Transaction

Employing all other
aspects to provide an
interface and the
main functionality.

The Transaction aspect as shown in Figure 17 combines the func-
tionality of the Recovering aspect with either the TwoPhaseLocking
or the OptimisticValidation aspect, and optionally with the Nested
aspect. The purpose of the Transaction aspect is to combine the
different update strategies and concurrency models in a vari-
able aspect that serves as the interface of the framework. The
OptimisticValidation aspect is not yet included in the model, but
we mentioned it as a dependency in Transaction as we already
know that it will be used in a way that should not change the
Transaction aspect.

In the message view transactMethod we outline the main func-
tionality of the framework. We advise every call to a method
that is bound to the mandatory instantiation parameter |m of the
class |Transactable. Before the content of the advised method is ex-
ecuted we retrieve the current |TransactionParticipant and check
whether the current method execution is already transacted. If
this is the case, we proceed with the unchanged method behavior.
Otherwise we add a call to beginTransaction before the original
method content and add a call to commitTransaction after it.

The message view for abortTransaction shows how we reuse the
OutcomeAware aspect that is indirectly provided by Recovering.
We create a negative outcome and use it as an argument in a call
to the voteAndLeaveContext method.

Committing a transaction is completely analogous to aborting
it. Therefore the message view commitTransaction is exactly the
same as that of abortTransaction except for the constant true.

The last message view of the aspect details how we decide
whether a method isAlreadyTransacted. We assume that it is not
transacted by initializing a boolean result variable to false and
retrieve the current context of the participant. If such a context
exists, then we change the value of the result variable to true.

30 aspectoptima : a transaction framework

aspect TwoPhaseLocking depends on Tracing, Lockable

structure depends on Tracing, Lockable

+ * |m<AccessKind>(..)

|TwoPhaseLocked

~ TwoPhaseLockingContext
create()

TwoPhaseLockedContext

context := getContext()

currentTraces := getTraces()

traceTarget := getTarget()

|TwoPhaseLockingParticipant
|TwoPhaseLocked
|m<AccessKind>

Pointcut Advice
caller: Caller target: |TwoPhaseLocking

Participant
leaveContext()

- releaseAcquiredLocks(TwoPhaseLockedContext)
- releaseLockIfPresent()

|TwoPhaseLockingParticipant

message view leaveContext affected by Tracing.getContext

Tracing instantiation
|TracingParticipant →

|TwoPhaseLockingParticipant
|Traced → |Locked
|m<AccessKind> →

|m<AccessKind>

accessKind :=
getAccessKind(m)

traceAccessKind :=
getAccessKind()

context:
TwoPhaseLocked

Context

t: Trace

getLock(accessKind)

*
oldContext :=
getContext()

caller: Caller target: |TwoPhaseLocking
Participant

leaveContext()

*

Tracing binding
TwoPhaseLocked

Context →
TracingContext

Lockable instantiation
|Lockable →

|TwoPhaseLocked

Pointcut Advice
caller: Caller target: |TwoPhaseLocking

Participant

releaseAcquiredLocks(c)
traces := getTraces()

message view releaseAcquiredLocks affected by Tracing.getTraces, Tracing.getTarget, Tracing.getAccessKind

traceTarget :=
getTarget()

t: Trace

accessKind :=
getAccessKind()

caller: Caller target: |TwoPhaseLocking
Participant

loop [t within traces]

c: TwoPhaseLocked
Context

releaseLockIfPresent(
 accessKind, traceTarget)

releaseAcquiredLocks(oldContext)

releaseAcquiredLocks(c)

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

message view acquireLock
affected by Tracing.getContext, Tracing.getAccessKind, Tracing.getTraces, Tracing.getTarget Lockable.getLock

caller:
Caller

target:
|TwoPhaseLocked

|m(..)

Pointcut Advice

*

<<metaclass>>
|TwoPhaseLocking

Participant
p := current()

caller:
Caller

|m(..)

p: |TwoPhaseLocking
Participant

target:
|TwoPhaseLocked

Default
Instantiation
caller → *
Caller → *
target → *

alreadyGotThisLockKind := false

loop [t within currentTraces && not alreadyGotThisLockKind]

opt [traceTarget = target]

opt [traceAccessKind = accessKind]

opt [not alreadyGotThisLockKind]

*

alreadyGotThisLockKind := true

Figure 16: The TwoPhaseLocking aspect automatically acquires and re-
leases locks based on the access history provided by Tracing.

3.2 conflict resolutions 31

Note that the crucial method beginTransaction is not detailed in
a message view but directly bound to the method createAndEn-
terContext of the Recovering aspect.

3.2 conflict resolutions

As the combination of different aspects may result in conflicting
behavior RAM offers the possibility to detect and resolve such
conflicts with conflict resolution aspects. In Section 2.3.2 we in-
troduced conflict resolution aspects and their interference criteria
that specify under which circumstances they are instantiated.
The AspectOPTIMA case study makes only use of interference
criteria of the form ClassA = ClassB in order to activate a conflict
resolution aspect only if ClassA is merged with ClassB as a result
of instantiation or binding directives.

3.2.1 Nested / Tracing

Taking tracing
information of child
contexts into
account.

In order to make the tracing information of child contexts avail-
able for parental context we modeled a conflict resolution aspect
for Nested and Tracing as shown in Figure 18.

We advise the method wasAccessed in a message view by insert-
ing additional logic after the original method behavior occurred
and assigned a value to the return variable accessed. If the value
of this variable is not true, we obtain the children from the con-
text and iterate over them as long as the variable remains false.
Within each iteration we assign the result of a call to the method
wasAccessed that we perform on the child context to the result
variable. Therefore, the advised method will return true whenever
a context or one of its descendants accessed an object.

In order to be able to verify whether a context accessed an
object directly without taken its children into account we specify a
new method wasDirectlyAccessed in a separate message view. The
content is the same as the content of the unmodified wasAccessed
method that was defined in the Tracing aspect: a simple call to
the contains method of the associated set of accessed objects.

The methods getAccessed and getTraces should also include the
results of their children and therefore we bind them to the generic
message template addChildrensResults of the Nested aspect. We
specify that these methods are bound to the parameter m and
provide the correct result type Set<|Traced> and List<|Trace>.
This makes sure that the recursive addition of children results as
defined in the Nested aspect is correctly applied to the original
method behavior. In order to show the reuse of the method
addChildrensResults we mention it in the message view labels
with the keywords affected by.

32 aspectoptima : a transaction framework

aspect Transaction depends on Recovering, (TwoPhaseLocking xor OptimisticValidation), opt Nested

structural view

caller:
Caller

target:
|Transactable

|m(..)

Pointcut

Advice

+ * |m<AccessKind>(..)

|Transactable

|m(..)

message view transactMethod

|TransactionParticipant
|Transacted

|m<AccessKind>+ TransactionContext getContext()
+ beginTransaction()
+ abortTransaction()
+ commitTransaction()

|TransactionParticipant

Recovering instantiation
|RecoveringParticipant →
|TransactionParticipant

|m<AccessKind> →
|m<AccessKind>
|Recoverable →
|Transactable

TransactionContext

TwoPhaseLocking binding
 TransactionContext →

TwoPhaseLockedContext

OptimisticValidation instantiation
|OptimisticallyValidatingParticipant →

|TransactionParticipant
|m<AccessKind> → |m<AccessKind>

TwoPhaseLocking instantiation
|TwoPhaseLockingParticipant →

|TransactionParticipant
|m<AccessKind> →

|m<AccessKind>
|TwoPhaseLocked →

|Transactable

OptimisticValidation binding
 TransactionContext →

OptimisticallyValidatingContext

Nested binding
 TransactionContext → NestedContextNested instantiation

|NestedParticipant →
|TransactionParticipant

message view abortTransaction affected by Recovering.voteAndLeaveContext

outcome := create(false) outcome:
BinaryOutcome

Pointcut Advice
caller: Caller target:

TransactionContext

abortTransaction()

caller: Caller target:
TransactionContext

abortTransaction()

voteAndLeaveContext(outcome)

message view commitTransaction affected by Recovering.voteAndLeaveContext

outcome := create(true) outcome:
BinaryOutcome

Pointcut Advice
caller: Caller target:

TransactionContext

commitTransaction()

caller: Caller target:
TransactionContext

commitTransaction()

voteAndLeaveContext(outcome)

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

Recovering binding
 TransactionContext →

RecoveringContext
beginTransaction →

createAndEnterContext
getContext → getContext
getCurrent → getCurrent

Default binding
 |TransactionParticipant →

Thread

alt

[else]

caller: Caller target:
|TransactionParticipant

result := isAlreadyTransacted()

Pointcut

Advice

|m(..)

message view isAlreadyTransacted
caller: Caller target:

|TransactionParticipant

result := isAlreadyTransacted()

myContext :=
getContext()

opt [myContext <> null]

*

<<metaclass>>
|TransactionParticipant

p := current()

caller:
Caller

|m(..)
p: |TransactionParticipant

alreadyT := isAlreadyTransacted()

target:
|Transactable

[alreadyT]

*

*

beginTransaction()

commitTransaction()

Default
Instantiation
caller → *
Caller → *
target → *

result := false

result := true

Figure 17: The Transaction aspect combines the functionality of all other
aspects to provide the possibility of beginning, committing
and aborting transactions.

3.2 conflict resolutions 33

conflict resolution aspect Nested / Tracing

interference criteria
TracingContext =

NestedContext

message view Tracing.wasAccessed affected by Nested.getChildren

Pointcut Advice
target:

TracingContext

accessed := wasAccessed(t)

caller: Caller caller: Caller

*

accessed := wasAccessed(t)

target:
TracingContext

loop [c within children && not accessed]

opt [not accessed]

c: TracingContext

accessed := wasAccessed(t)

*

Default
Instantiation
caller → *
Caller → *
target → *

result := contains(t)

target:
TracingContext

accessed:
Set<|Traced>

result := wasDirectlyAccessed(t)

Pointcut
Advice

target:
TracingContext

result := wasDirectlyAccessed(t)

caller: Caller
caller: Caller

Default
Instantiation
caller → *
Caller → *
target → *

message view Tracing.wasDirectlyAccessed

message view getAccessed affected by Nested.addChildrensResults

children := getChildren()

Nested binding
getAccessed → m

Set<|Traced> → Collection<T>

Nested binding
getTraces → m

List<Trace> → Collection<T>

message view getTraces affected by Nested.addChildrensResults

Figure 18: The conflict resolution aspect for Nested / Tracing recursively
includes all tracing information of child contexts into queries.

3.2.2 Checkpointing / Nested

Avoiding the deletion
of checkpoints that
parental contexts
might need.

As a child context may access objects that have not been accessed
by its parent context we ensure that checkpoints of such objects
are not discarded with a conflict resolution aspect for the aspects
Checkpointing and Nested that we present in Figure 19.

We advise the execution of the method discardCheckpoints for
all objects that are instances of the class CheckpointingContexts as
well as instances of the class NestedContexts: we obtain the set
of accessed objects from the context, create a list of traces that
have to be removed and retrieve the associated parental context.
While we iterate over all accessed objects we check whether a
parental context exists. In such a case we use the wasDirectlyAc-
cessed method that we defined in the previous Nested / Tracing
conflict resolution aspect. If the accessed object that we are cur-
rently inspecting was accessed by the parental context we discard
the last checkpoint of the corresponding object and add it to the
list of objects that have to be removed. This means that check-
points of objects that were not accessed by the parental context

34 aspectoptima : a transaction framework

are not discarded but kept for later undo operations. In a case
without parental context we discard the last checkpoint of the
inspected object and mark it for deletion without further checks.

conflict resolution aspect Checkpointing / Nested
message view Checkpointing.discardCheckpoints
affected by Checkpointing.getAccessed, Nested.getParent, Nested/TracingConflictResolution.wasDirectlyAccessed,
Checkpointing.discardLastCheckpoint, Checkpointing.removeTraces

Pointcut Advice
caller: Caller target:

Checkpointing
Context

discardCheckpoints()

accessed := getAccessed()

removeTraces(toBeRemoved)

Default
Instantiation
caller → *
Caller → *
target → *

toBeRemoved := create()

add(t)

caller: Caller

discardCheckpoints()

interference criteria
CheckpointingContext =

NestedContext

parent := getParent()

target:
Checkpointing

Context

loop [t within accessed]

alt

opt [accessedByParent]

t: |Checkpointed

discardLastCheckpoint()

toBeRemoved:
List<Trace>

accessedByParent := wasDirectlyAccessed(t)

add(t)

[parent <> null]

[else]

add(t)

discardLastCheckpoint()

add(t)

Figure 19: The conflict resolution aspect for Checkpointing / Nested keeps
checkpoints of objects that were not accessed by the parent
context instead of discarding them.

3.2.3 Deferrable / Nested

Originating new
versions from

existing versions of
ancestors.

The purpose of the Defferable / Nested conflict resolution aspect
as shown in Figure 20 is to make sure that the view on different
versions of a deferrable object is consistent for hierarchies of
nested conflicts. More specifically, we need to ensure that a nested
context does not obtain a copy of the initial transactional object
but a version that already reflects the modifications that were
made by parental contexts.

We ensure this behavior by advising the method getVersion of
the Deferrable aspect. At first, we try to obtain a mapped version
directly from the associated contextToVersionMap. If this fails, then
we iterate over all context ancestors until a context is found that
is already in possession of a version of the transactional object in
consideration. Once we found an ancestor with a version of the
object we call the newly defined method copyAndMapNewVersion
in order to duplicate and register a new version.

3.2 conflict resolutions 35

conflict resolution aspect Deferrable / Nested

message view Deferrable.getVersion affected by Nested.getParent, Deferrable.copy, Deferrable.setOriginal

caller: Caller target: |Deferrable
version :=

getVersion(initialContext)

Pointcut Advice

parentContext := getParent()

copyAndMapNewVersion
 (target.original, currentContext)

parent := getParent()

interference criteria
Deferrable.Context =

Nested.NestedContext

caller: Caller target: |Deferrable

version := get(initialContext)

loop [version = null]

alt

opt [parentVersion <> null]

[else]

version := get(parentContext)

message view copyAndMapNewVersion affected by Deferrable.copy, Deferrable.setOriginal

caller: Caller target:
Deferrable

copyAndMapNewVersion(source, context)

Pointcut Advice
caller: Caller target:

Deferrable

newVersion :=
copy()

newVersion:
|Deferrable

source:
|Deferrable

setOriginal(source)

contextToVersionMap:
HashMap<Context,

|Deferrable>

currentContext:
NestedContext

contextToVersionMap:
HashMap<Context,

|Deferrable>

Default
Instantiation
caller → *
Caller → *
target → *

version :=
getVersion(initialContext)

parentVersion := get(parentContext)

[parentContext = null]

copyAndMapNewVersion
 (parentVersion, currentContext)

Default Instantiation
caller → *, Caller → *, target → *

copyAndMapNewVersion(source, context)

put(context, newVersion)

currentContext
:= initialContext

parentContext
:= initialContext

parentContext
:= initialContext

currentContext
:= parentContext

Figure 20: The conflict resolution aspect for Deferrable / Nested makes
sure that versions of parent contexts are used as origin when
new versions are created.

36 aspectoptima : a transaction framework

3.2.4 Nested / TwoPhaseLocking

Keeping locks of
nested contexts

for ancestors.

Our last conflict resolution aspect Nested / TwoPhaseLocking en-
sures that acquired locks are only released if no parental context
exists that might require them as modeled in Figure 21. This
modification reduces the probability of dead-locks and maintains
the conformity to the principle of separated phases for acquiring
and releasing locks. The content of the conflict resolution aspect
is very short: we advise the releaseAcquiredLocks method such that
its original behavior is only executed if no parental context exists.

conflict resolution aspect Nested / TwoPhaseLocking

Pointcut Advice
caller: Caller target: |TwoPhaseLocking

Participant

releaseAcquiredLocks(c)

message view TwoPhaseLocking.releaseAcquiredLocks affected by Nested.getParent

caller: Caller target: |TwoPhaseLocking
Participant

opt [parent = null]

parent := getParent()
releaseAcquiredLocks(c)

Default
Instantiation
caller → *
Caller → *
target → *

interference criteria
TwoPhaseLockedContext =

NestedContext

*

*

c:
|TwoPhase

LockedContext

Figure 21: The conflict resolution aspect for Nested / TwoPhaseLocking
makes sure that only the root context that has no parental
context releases acquired locks.

4
O P E N M U LT I T H R E A D E D T R A N S A C T I O N S F O R
A S P E C T O P T I M A

An extension to the
AspectOPTIMA case
study.

We modeled an extension to the transaction system of Aspect-
OPTIMA that supports Open Multithreaded Transactions in order
to apply our general purpose mapping from RAM to AspectJ
to a reasonable sized case study. The sheer number of aspects
and the fact that a self-contained system is reused and extended
generate a lot of interesting cases that we explored during the
development of our mapping.

We decomposed the features of OMTT that we describe in
Section 2.6.2 in twelve aspects that reuse each other and de-
manded the definition of four conflict resolutions. Our OMTT
aspects depend directly on the aspects OutcomeAware, Transac-
tion, Nested, Context, Lockable, and AccessClassified of the original
AspectOPTIMA model. We were able to reuse their functionality
seamlessly, so we could focus on the advanced features of Open
Multithreaded Transactions.

In Figure 22 we present a feature diagram of our extension
and show which combinations of aspects were resolved with
conflict resolutions. The fact that almost every new aspect de-
pends directly or indirectly on Collaborative illustrates that the
main principle of OMTT is collaboration. The only exception
to this dependency is the aspect Blockable. Together with the as-
pects Pausable, Terminatable, OutcomeVotable and OutcomeVoting it
forms a dependency chain that shows that RAM’s inter-aspect
mechanisms allow fine-grained separation that facilitate reuse.
The OpenMultithreadedTransaction aspect is the heart of our exten-
sion and depends directly or indirectly on every other aspect of
the framework and its extension1. In order to give the reader a
complete view of our extended case study we present all aspects
and dependencies in a single feature diagram in Figure 23.

4.1 aspects

Our Open Multithreaded Transaction model contains twelve as-
pects that package the main functionality and structure in small
units that can be reused in other environments and frameworks.

1 This is not a smell for bad design as in some other software systems but a proof
of the fact that our model contains no unused or superfluous functionality.

37

38 open multithreaded transactions for aspectoptima

Open Multithreaded Transaction

Pausable

OutcomeAware

Legend
Mandatory

SpawnSupportingOutcomeVotable

Terminatable

Transaction

Nested

AspectOPTIMA

OMTT Extension

Conflict Resolutions:
Collaborative / Nested
EntrySynchronizing / SpawnSupporting
ExitSynchronizing / SpawnSupporting
Closable / SpawnSupporting

Lockable

EntrySynchronizing ExitSynchronizing

Closable

OutcomeVoting

Blockable Collaborative

AccessClassified

Shared

Context

Figure 22: A feature diagram of AspectOPTIMA showing all aspects
that were added for Open Multithreaded Transactions or
that are directly reused.

4.1 aspects 39

AspectOPTIMA

OMTT Extension

Legend
Mandatory

Optional

Alternative

Conflict Resolutions:
CheckpointingNested
DeferrableNested
NestedTracing
NestedTwoPhaseLocking
Collaborative / Nested
EntrySynchronizing /
SpawnSupporting
ExitSynchronizing /
SpawnSupporting
Closable /
SpawnSupporting

Composition Rules:
OptimisticValidation requires
Recovering.Deferring
Checkpointable.Traceable requires
Traceable.SemanticClassified
Deferrable.Traceable requires
Traceable.SemanticClassified

Open Multithreaded Transaction

Pausable

SpawnSupportingOutcomeVotable

Terminatable EntrySynchronizing ExitSynchronizing

Closable

OutcomeVoting

Blockable Collaborative

Shared

Optimistic Validation

Transaction

RecoveringNested TwoPhaseLocking

Checkpointing

ConcurrencyControl

UpdateStrategy

Traceable

AccessClassified LockableSemanticClassified CopyableContext

Deferring

Tracing DeferrableCheckpointableOutcomeAware

Figure 23: A feature diagram of AspectOPTIMA showing all aspects
for Open Multithreaded Transactions and common single-
threaded transactions.

40 open multithreaded transactions for aspectoptima

aspect Shared depends on AccessClassified, Lockable

+ * |m<AccessKind>(..)

|Shared

caller: Caller target: |Shared

structural view

caller: Caller target: |Shared
Pointcut Advice

releaseSharedLock(accessKind)

AccessClassified instantiation
|AccessClassified → |Shared

|m<AccessKind> → |m<AccessKind>

Lockable instantiation
|Lockable → |Shared

myLock → sharedLock
getLock → getSharedLock

releaseLock → releaseSharedLock

|m(..)

*

|m(..)

*

accessKind :=
getAccessKind(m)
getSharedLock(accessKind)Default

Instantiation
caller → *
Caller → *
target → *

message view shareMethod affected by AccessClassified.getAccessKind, Lockable.getLock, Lockable.releaseLock

|Shared
|m<AccessKind>

Figure 24: The Shared aspect automatically acquires and releases locks
based on the access kind immediately before and after a
participant accesses a shared object.

4.1.1 Shared

Concurrent access on
shared objects needs
to be restricted even

for participants of
the same transaction.

Shared objects of multithreaded transactions may be accessed
simultaneously so they need to be protected from concurrent
modifications to guarantee consistency. To achieve this the Shared
aspect as shown in Figure 24 reuses the aspects AccessClassified
and Lockable from the original AspectOPTIMA framework.

In the message view shareMethod we advise every call to a
method that is bound to the mandatory instantiation parameter
|m of the class |Shared. Before we execute the unchanged be-
havior we retrieve the access kind of the advised method and
acquire a lock that we release immediately after we executed the
original method content. The obtained sharedLock differs from the
lock of the TwoPhaseLocking aspect as we rename the association
and corresponding methods in Shared. Because of this renaming
it is possible to bind |Shared and |TwoPhaseLocked to a common
class in a reusing aspect without conflicts.

4.1.2 Collaborative

Collaboration is the
central notion of

Open Multithreaded
Transactions.

The Collaborative aspect is presented in Figure 25 and it provides
core functionalities to all other aspects as collaboration is the
main principle of Open Multithreaded Transactions. It allows
a context to be associated with multiple participants and pro-
vides facilities for joining already existing contexts through the
methods joinContext and isAllowedToJoin.

4.1 aspects 41

aspect Collaborative depends on Context, Shared

structural view |CollaborativeParticipant

Context instantiation
|Participant → |CollaborativeParticipant

+ Context getContext()
+ createAndEnterContext()
+ enterContext(CollaborativeContext)
+ leaveContext()
+ joinContext(CollaborativeContext)
- boolean isAllowedToJoin(CollaborativeContext)

|CollaborativeParticipant

0..* participants

~ CollaborativeContext create()
+ addParticipant(|CollaborativeParticipant)
~ removeParticipant(|CollaborativeParticipant)
+ Set<|CollaborativeParticipant> getParticipants()
+ int getParticipantCount()
+ contextCompleted()

CollaborativeContext

caller: Caller

caller: Caller target:
|CollaborativeParticipant

joinContext(c)

Pointcut

Advice

allowed :=
isAllowedToJoin(c)

message view isAllowedToJoin affected by Context.getContext

caller: Caller target:
|CollaborativeParticipant

result := isAllowedToJoin(c)

Pointcut
Advice

joinContext(c)

myContext :=
getContext()

[myContext = null]

[else]

target:
|CollaborativeParticipant

opt [allowed]

caller: Caller target:
|CollaborativeParticipant

alt

enterContext(c)

Context binding
CollaborativeContext → Context

getContext → getContext
createAndEnterContext →

createAndEnterContext
enterContext → enterContext

result := true

caller: Caller

myContext:
CollaborativeContext

leaveContext()

removeParticipant(target)

message view leaveContext affected by Context.getContext, Context.setContext

caller: Caller

leaveContext()

Pointcut Advice

 myContext :=
getContext()

setContext(null)

target:
|CollaborativeParticipant

target:
|CollaborativeParticipant

message view joinContext affected by Context.enterContext

Default Instantiation
caller → *, Caller → *, target → *

result := isAllowedToJoin(c)

Default Instantiation
caller → *, Caller → *, target → *

Default
Instantiation
caller → *
Caller → *
target → *

Shared instantiation
|Shared → CollaborativeContext

|m<AccessKind> →
CollaborativeContext.*

result := true

result := false

1

Figure 25: The Collaborative aspect permits multiple participants in one
context and makes it possible to join existing contexts.

The message view of joinContext uses the result of a call to the
method isAllowedToJoin as a condition for entering the context.
We can consider the message view of isAllowedToJoin a default
implementation that can be changed conveniently if another
behavior is desired. In the modeled standard case a participant
can only join a context if it is not already participating in a context.
The message view for leaveContext is identical to the message
view of Context.leaveContext except for the omitted call to the
marker method contextCompleted. This is a correct modification as
a context with multiple participants is not necessarily completed
once a participant left.

42 open multithreaded transactions for aspectoptima

aspect Blockable depends on Context

structural view |BlockableParticipant

Context instantiation
|Participant → |BlockableParticipant

+ waitForSemaphore()

|BlockableParticipant

~ BlockableContext create()
~ Semaphore getSemaphore()
+ releaseSemaphore()

BlockableContext Context binding
BlockableContext → Context

1

semaphore

~ Semaphore create()
~ acquireUninterruptibly()
~ release()

Semaphore

caller: Caller
caller: Caller target:

BlockableParticipant
waitForSemaphore()

Pointcut
Advice

waitForSemaphore()

target:
BlockableParticipant

myContext :=
getContext()

mySemaphore:
Semaphore

myContext:
BlockableContext

message view waitForSemaphore affected by Context.getContext

mySemaphore :=
getSemaphore()

release()

acquireUninterruptibly()

caller: Caller
message view releaseSemaphore

caller: Caller target:
BlockableContext

releaseSemaphore()

Pointcut
Advice

releaseSemaphore()

target:
BlockableContext

mySemaphore :=
getSemaphore()

mySemaphore:
Semaphore

release()

Default
Instantiation
caller → *
Caller → *
target → *

Default Instantiation
caller → *, Caller → *, target → *

1

Figure 26: The Blockable aspect associates a context to a semaphore and
allows participants to wait until they acquire it.

4.1.3 Blockable

Synchronization
using a semaphore as
a general strategy to

block and release
participants.

The Blockable aspect shown in Figure 26 introduces the gen-
eral principle of blocking a participant of a context through
a semaphore that is associated to the context of the participant.
Under what circumstances a participant is blocked and how it
is released again is not defined in the Blockable aspect itself but
in reusing aspects. For this reason the method waitForSemaphore
is detailed in a message view but never called within the aspect.
In the message view the context of the participant is retrieved,
its semaphore is obtained, and the methods acquireUninteruptibly
and release are called. We release the semaphore immediately
after we obtained it in order to give other participants the possi-
bility to acquire the semaphore as well. This means that a single
permit can release multiple participants.

In order to release the semaphore independent of a possible
acquisition we provide the method releaseSemaphore in a separate
message view. It simply obtains the associated semaphore and
calls the method release on it.

4.1.4 Pausable

Pausing and
continuing a context

and all of its
participants.

The aspect Pausable (Figure 27) augments the Context aspect with
possibilities to pause and continue contexts and their partici-
pants arbitrarily by reusing the Blockable aspect. To achieve this
a boolean variable paused is introduced into the class Pausable-

4.1 aspects 43

aspect Pausable depends on Collaborative, Blockable

structural view
|PausableParticipant

Collaborative instantiation
|CollaborativeParticipant →

|PausableParticipant

+ leaveContext()
~ waitForPausingSemaphore()

|PausableParticipant

~ PausableContext create()
+ Set<|PausableParticipant> getParticipants()
+ contextCompleted()
+ pauseContext()
+ continueContext()
- boolean isPaused()
- setPaused(boolean)
- Semaphore getPausingSemaphore()

- boolean paused
PausableContext

caller: Caller
caller: Caller target:

PausableContext
pauseContext()

Pointcut
Advice

pauseContext()

Collaborative binding
PausableContext →

CollaborativeContext
getParticipants →

getParticipants
contextCompleted →

contextCompleted
leaveContext → leaveContext

p:
|PausableParticipant

waitForPausingSemaphore()

target:
PausableContext

loop [p in participants]

setPaused(true)

caller: Caller
message view addParticipant

caller: Caller target:
PausableContext

addParticipant(p)

Pointcut

Advice

addParticipant(p)

p:
|PausableParticipant

waitForPausingSemaphore()

target:
PausableContext

opt [paused]

paused :=
isPaused()

*

*

participants := getParticipants()
Default

Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

message view pauseContext affected by Collaborative.getParticipants

Blockable instantiation
|BlockableParticipant →

|PausableParticipant

Blockable binding
PausableContext →
BlockableContext

pausingSemaphore → semaphore
getPausingSemaphore →

getSemaphore
waitForPausingSemaphore →

waitForSemaphore
continueContext →
releaseSemaphore

Figure 27: The Pausable aspect provides the functionality to pause a
context and all its participants.

Context along with methods that allow us to use and modify this
variable. The methods pauseContext and continueContext are also
introduced into PausableContext, the later being directly bound to
the releaseSemaphore method of the Blockable aspect. The method
pauseContext however is detailed in a message view: when a con-
text gets paused we simply mark it as paused and make every
participant wait for the pausing semaphore. When a context is
continued the method releaseSemaphore that is bound to continue-
Context releases the semaphore and all participants are unblocked
as they all acquire and release the semaphore.

In order to make sure that participants that are added to a
paused context get paused too we advise the existing method
addParticipant in a message view. Whenever we add a participant
we check whether the context is paused before we continue with
the original behavior. If the participant should be added to a
paused context, we make the participant wait for the semaphore
in order to pause it too.

44 open multithreaded transactions for aspectoptima

aspect Terminatable depends on Pausable

structural view |TerminatableParticipant

Pausable instantiation
|PausableParticipant →
|TerminatableParticipant

+ leaveContext()

|TerminatableParticipant

~ TerminatableContext create()
+ pauseContext()
+ continueContext()
+ terminateContext(|TerminatableParticipant)

TerminatableContext

caller: Callercaller: Caller target:
TerminatableContext

terminateContext(terminator)

Pointcut Advice

terminateContext(terminator)

Pausable binding
TerminatableContext →

PausableContext
leaveContext → leaveContext

opt [p <> terminator] p:
|TerminatableParticipant

leaveContext()

target:
TerminatableContext

loop [p in participants]

message view terminateContext affected by Pausable.getParticipants, Pausable.contextCompleted

Default
Instantiation
caller → *
Caller → *
target → *

participants := getParticipants()

contextCompleted()

pauseContext()

terminator:
|TerminatableParticipant

leaveContext()

Figure 28: The Terminatable aspect allows the immediate termination of
a context by making all participants leave it.

4.1.5 Terminatable

Terminate a context
by forcing all

participants to leave.

The Terminatable aspect shown in Figure 28 makes us of Pausable
in order to provide the functionality to force the termination of a
context and all its participants. For this purpose we declare the
method terminateContext in TerminatableContext as shown in the
structural view. The message view for terminateContext illustrates
that we terminate all participants before we consider a context
terminated and call contextCompleted. In order to be able to make
all other participants leave we exclude the terminator from our
loop and make it leave the context as last participant.

4.1.6 OutcomeVotable

Participants can vote
and agree on a

common outcome.

OutcomeVotable (Figure 29) depends on Terminatable and the Out-
comeAware aspect of the original AspectOPTIMA framework in
order to make it possible to vote on the outcome of a transac-
tion upon leaving its context. The aspect automatically termi-
nates a context once its outcome is decided. In the structural
view we added the methods registerVote, alreadyVoted, compute-
Outcome and isOutcomeDecided to the class OutcomeVotableContext.

4.1 aspects 45

Furthermore, we included an association votes that maps each
OutcomeVotableParticipant to an Outcome.

The message view for the method voteAndLeaveContext replaces
the behavior provided by OutcomeAware. It illustrates that we reg-
ister the provided vote at the associated context prior to leaving
the context. The functionality of registerVote is to add the vote to
the votes map and to check whether the outcome is already de-
cided. If it is decided, we compute the outcome, set the outcome
of the context accordingly and terminate the context.

Reusing aspects can find out whether a participant already
voted or not by calling the method alreadyVoted. It returns the
result of a call to the containsKey method on the associated votes
map in order to decide whether the participant has already been
mapped to a vote. If a reusing aspect wants to use a sophisticated
voting mechanism he has to advise the method computeOutcome
in order to replace our default message view. We assume a postive
outcome and iterate over all registered votes. If we encounter
a negative vote we assign a negative outcome to our return
variable. This means that the default voting strategy requires an
unanimous positive vote for a positive outcome.

4.1.7 OutcomeVoting

Participants that did
not vote yet should
automatically vote
upon leaving.

The aspect OutcomeVoting as shown in Figure 30 makes sure that
every participant that leaves a context automatically votes on
its outcome by using the functionality of OutcomeVotable. The
concise structural view shows that we added only one method
getDefaultVote that provides us with the default voting behavior.

The modification of leaveContext as shown in the corresponding
message view retrieves the context of the participant and deter-
mines whether the participant already voted. If this is not the
case, the getDefaultVote method is called and the returned vote
is registered prior to leaving the context. As a participant that
leaves without voting should implicitly abort the corresponding
transaction we define in a message view for getDefaultVote that a
new negative BinaryOutcome should be returned.

4.1.8 ExitSynchronizing

To maintain isolation
participants need to
leave a context
simultaneously.

ExitSynchronizing (Figure 31) introduces the possibility to syn-
chronize the exit of a context by blocking all exiting participants
until the last participant tried to exit. For this purpose we add the
integer variable blockedParticipantCount, corresponding methods,
and a method isLastExitingParticipant to the ExitSynchronizing-
Context class. We introduce the methods getExitSemaphore and
releaseExitSemaphore into this context class and we introduce the
method waitForExitSemaphore into |ExitSynchronizingParticipant.

46 open multithreaded transactions for aspectoptima

aspect OutcomeVotable depends on OutcomeAware, Terminatable

structural view |OutcomeVotableParticipant

OutcomeAware instantiation
|OutcomeControllingParticipant →

|OutcomeVotableParticipant

+ leaveContext()
+ voteAndLeaveContext(Outcome)

|OutcomeVotableParticipant

~ OutcomeVotableContext create()
+ pauseContext()
+ continueContext()
+ terminateContext(|OutcomeVotableParticipant)
+ registerVote(Outcome, |OutcomeControllingParticipant)
+ boolean alreadyVoted(|OutcomeVotableParticipant)
- Outcome computeOutcome()
- boolean isOutcomeDecided()

OutcomeVotableContext

OutcomeAware binding
OutcomeVotableContext →

ContextWithOutcome

caller: Caller target:
|OutcomeVotable

Participant

myContext:
OutcomeVotable

Context

voteAndLeaveContext(v)

registerVote(v, target)

caller: Caller target:
|OutcomeVotable

Participant
voteAndLeaveContext(v)

Pointcut

myContext :=
getContext()

leaveContext()

Advice
message view voteAndLeaveContext affected by OutcomeAware.getContext, Terminatable.leaveContext

Terminatable instantiation
|TerminatableParticipant →
|OutcomeVotableParticipant

Terminatable binding
OutcomeVotableContext →

TerminatableContext
leaveContext → leaveContext

pauseContext → pauseContext
continueContext → continueContext

terminateContext → terminateContext

registerVote(v, p)

target:
|OutcomeVotable

Context

registerVote(v, p)

Pointcut Advice

message view registerVote affected by OutcomeAware.setContext, Terminatable.terminateContext

caller: Caller caller: Caller

votes.put(v,p)

opt [decided] outcome :=
computeOutcome()

decided :=
isOutcomeDecided()

target:
|OutcomeVotable

Context

setOutcome(outcome)

terminateContext()

~ Map<OutcomeVotableParticipant, Outcome> create()
~ put(|OutcomeVotableParticipant, Outcome)
~ boolean containsKey(|OutcomeVotableParticipant)
~ Collection<Outcome> values()

Map

votes 1

target:
|OutcomeVotable

Context
voted :=

alreadyVoted(p)

Pointcut
Advicemessage view alreadyVoted

caller: Caller

voted :=
alreadyVoted(p)

caller: Caller

containsKey(p)

target:
|OutcomeVotable

Context

target:
|OutcomeVotable

Context
outcome :=

computeOutcome()

Pointcut
Advicemessage view computeOutcome affected by OutcomeAware.BinaryOutcome.create

caller: Caller

outcome :=
computeOutcome()

caller: Caller

outcome := create(true)

positive := isPositive()

target:
|OutcomeVotable

Context

loop [v in votes]

opt [not positive]
outcome := create(false)

votes:
Map<OutcomeVotable
Participant, Outcome>

Default
Instantiation
caller → *
Caller → *
target → *

Default Instantiation
caller → *, Caller → *, target → *

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

|OutcomeVotableParticipant,
Outcome

votes:
Map<OutcomeVotable
Participant, Outcome>

votes := values()

votes:
Map<OutcomeVotable
Participant, Outcome>

outcome:
BinaryOutcome

v:
Outcome

outcome:
BinaryOutcome

1

Figure 29: The OutcomeVotable aspect gives participants of a context
the possibility to vote on an outcome and to determine an
overall outcome from these votes.

4.1 aspects 47

aspect OutcomeVoting OutcomeVotable

structural view
|OutcomeVotingParticipant

 + voteAndLeaveContext(Outcome)

|OutcomeVotingParticipant

~ OutcomeVotingContext create()
+ pauseContext()
+ continueContext()
+ terminateContext(|OutcomeVotableParticipant)
~ Outcome getDefaultVote()

OutcomeVotingContext OutcomeVotable binding

OutcomeVotingContext → OutcomeVotableContext
voteAndLeaveContext → voteAndLeaveContext

pauseContext → pauseContext
continueContext → continueContext

terminateContext → terminateContext

caller: Caller

leaveContext()

caller: Caller target:
|OutcomeVoting

Participant

leaveContext()

Pointcut

myContext :=
getContext()

Advice

message view leaveContext affected by OutcomeVotable.getContext, OutcomeVotable.alreadyVoted, OutcomeVotable.registerVote

*
voted := alreadyVoted(target)

vote := getDefaultVote()

registerVote(vote, target)

myContext:
OutcomeVotingContext

target:
|OutcomeVoting

Participant

opt [not voted]

*

caller: Caller

vote := getDefaultVote()

caller: Caller target:
|OutcomeVoting

Participant

vote := getDefaultVote()

Pointcut Advice

vote := create(false) vote:
BinaryOutcome

target:
|OutcomeVoting

Participant

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

OutcomeVotable instantiation
|OutcomeVotableParticipant →

| OutcomeVotingParticipant

message view getDefaultVote affected by OutcomeVotable.BinaryOutcome.create

Figure 30: The OutcomeVoting aspect automatically votes on an outcome
using a default vote if a participant leaves without voting.

48 open multithreaded transactions for aspectoptima

The message view for leaveContext adds a call to the new
method waitOrReleaseBeforeLeaving before the original method
content. We created a new method instead of inserting its content
directly into the message view of leaveContext in order to have the
possibility to skip the newly added behavior in reusing aspects.
Additional information to this decision is given in Section 4.2.2
where we describe a conflict resolution aspect that uses the new
method to skip the waiting behavior for spawned participants.

Within the message view of the method waitOrReleaseBefore-
Leaving we retrieve the context of the target participant, increase
the number of blocked participants and determine whether we
should block or release the participant by calling isLastExiting-
Participant. If the participant is the last participant that tries to
leave the context we release the associated semaphore thus termi-
nating the waiting period of all other participants. If the current
participant is not the last to leave the context we block it by call-
ing waitForExitSemaphore. The point of computation after these
alternatives is only reached when the participant either released
the semaphore or was released by another participant during the
execution of waitForExitSemaphore. We decrease the number of
blocked participants in both cases.

The method isLastExitingParticipant assumes that the current
participant is not the last as it initializes the return variable last
to false. After this we retrieve the number of blocked participants
as well as the number of participants in general. If the number
of blocked participants is at least as big as the overall number of
participants, the value of the return variable is changed to true.

4.1.9 EntrySynchronizing

Block contexts until
a minimal number

of participants
is reached.

The aspect EntrySynchronizing as modeled in Figure 32 adds
functionality to the Collaborative aspect that is similar to Exit-
Synchronizing but blocks participants that enter a context until a
given number of minimal participants is reached. Methods and
variables that are analogous to those introduced and bound in
ExitSynchronizing are declared in the structural view and detailed
in the two message views waitOrReleaseBeforeEntering and isLast-
EnteringParticipant. In addition to this, an integer variable min-
ParticipantCount and a corresponding getter and setter method
are introduced into the class EntrySynchronizingContext.

Instead of advising the method leaveContext we advise the
method enterContext in a message view in order to call the method
waitOrReleaseBeforeEntering after the original method content of
enterContext. The behavior of the method waitOrReleaseBeforeEn-
tering is completely analogous to the method waitOrReleaseBefore-
Exiting of the aspect ExitSynchronizing.

4.1 aspects 49

aspect ExitSynchronizing depends on Collaborative, Blockable

structural view
|ExitSynchronizingParticipant

Collaborative instantiation
|CollaborativeParticipant → |ExitSynchronizingParticipant

+ Context getContext()
+ leaveContext()
- waitOrReleaseBeforeLeaving()
- waitForExitSemaphore()

|ExitSynchronizingParticipant

~ ExitSynchronizingContext create()
- int getBlockedParticipantCount()
~ increaseBlockedParticipantCount()
~ decreaseBlockedParticipantCount()
~ Semaphore getExitSemaphore()
~ releaseExitSemaphore()
~ boolean isLastExitingParticipant

- int blockedParticipantCount
ExitSynchronizingContext

caller: Caller

leaveContext()
caller: Caller target:

|ExitSynchronizingParticipant
leaveContext()

Pointcut

Advice

waitOrReleaseBeforeLeaving()

target:
|ExitSynchronizingParticipant

Collaborative binding
ExitSynchronizingContext → Context

getContext → getContext

*

caller: Caller

waitOrReleaseBeforeLeaving()

caller: Caller target:
|ExitSynchronizingParticipant

waitOrReleaseBeforeLeaving()

Pointcut Advice

myContext :=
getContext()

last := isLastExitingParticipant()

increaseBlockedParticipantCount()

target:
|ExitSynchronizingParticipant

alt

myContext:
ExitSynchronizingContext

 [last]

[else]

releaseExitSemaphore()

waitForExitSemaphore()

decreaseBlockedParticipantCount()

*

message view waitOrReleaseBeforeLeaving affected by Context.getContext, Blockable.waitForSemaphore, Blockable.releaseSemaphore

message view isLastExitingParticipant affected by Context.getParticipantCount

caller: Caller target:
ExitSynchronizing

Context

last := isLastExitingParticipant()

Pointcut

Advice

caller: Caller target:
ExitSynchronizing

Context
last := isLastExitingParticipant()

blocked := getBlockedParticipantCount()

opt [blocked >= participants]

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

participants := getParticipantCount()

Blockable instantiation
|BlockableParticipant →

|ExitSynchronizingParticipant

Blockable binding
ExitSynchronizingContext → BlockableContext

exitSemaphore → semaphore
getExitSemaphore → getSemaphore

waitForExitSemaphore → waitForSemaphore
releaseExitSemaphore → releaseSemaphore

last := false

last := true

message view leaveContext

Figure 31: The ExitSynchronizing aspect blocks leaving participants until
the last participant left.

50 open multithreaded transactions for aspectoptima

However, the message view of isLastEnteringParticipant is not
completely analogous to that of isLastExitingParticipant. Instead
of comparing the number of waiting participants with the overall
number of participants we check whether more participants than
the minimal number of participants are waiting.

4.1.10 Closable

Refuse participants
if a context is

closed explicitly
or automatically.

The Closable aspect (Figure 33) extends the aspect Collaborative
and introduces a possibility to close a context as a mean of
preventing participants from joining it. Furthermore the notion
of an upper bound of participants is introduced such that the
context is automatically closed once this bound is reached. In
the structural view we introduce a boolean variable closed and an
integer variable maxParticipantCount into the class ClosableContext.
By initializing this variable to Integer.MAX_VALUE we define that
per default a context will not be closed automatically. Apart from
getter and setter methods for these variables we introduce a
method isLastAllowedParticipant into the class ClosableContext.

The existing method joinContext is advised in a message view
such that its original behavior is only executed if a call to is-
Closed returns false. This simple advice prevents participants from
joining closed contexts. In a message view for the method add-
Participant we specify that we check whether we added the last
participant that is still allowed to join after the execution of the
original behavior of addParticipant. If this is the case we auto-
matically close the context by calling setClosed with the boolean
constant true as parameter.

The newly defined method isLastAllowedParticipant is similar
to the method isLastEnteringParticipant of the EntrySynchronizing
aspect and it is detailed in a message view. We assume that
the recently added participant was not the last by creating a
boolean return variable that we initialize to false. Then we obtain
the overall number of participants and the maximal number of
participants that is allowed for this context. If both sizes are the
same, we change the value of our return variable to true.

4.1.11 SpawnSupporting

Participants can
spawn new

participants that
automatically

become siblings.

The aspect SpawnSupporting as shown in Figure 34 gives a con-
text participant the possibility to spawn further participants
that automatically participate in its context thereafter. We intro-
duce an integer variable spawnedParticipantCount and its methods
getSpawnedParticipantCount and increaseSpawnedParticipantCount
into the class SpawnSupportingContext. Additionaly, the methods
createNewParticipant and spawnParticipant and a boolean variable

4.1 aspects 51

aspect EntrySynchronizing depends on Collaborative, Blockable

structural view |EntrySynchronizingParticipant

Collaborative instantiation
|CollaborativeParticipant →

|EntrySynchronizingParticipant

+ createAndEnterContext()
+ joinContext(EntrySynchronizingContext)
- waitForEntrySemaphore()

|EntrySynchronizingParticipant

- int getMinParticipantCount()
+ setMinParticipantCount(int)
- int getWaitingParticipantCount()
~ increaseWaitingParticipantCount()
~ decreaseWaitingParticipantCount()
~ Semaphore getEntrySemaphore()
~ releaseEntrySemaphore()
~ boolean isLastEnteringParticipant

- int minParticipantCount
- int waitingParticipantCount

EntrySynchronizingContext

caller: Caller

waitOrReleaseBeforeEntering(c)

caller: Caller target:
|EntrySynchronizingParticipant

waitOrReleaseBeforeEntering(c)

Pointcut Advice

context := getContext()

last := isLastEnteringParticipant()

target:
|EntrySynchronizingParticipant

opt [context = c]

c:
EntrySynchronizingContext

alt

increaseWaitingParticipantCount()

[last] releaseEntrySemaphore()

[else] waitForEntrySemaphore()

decreaseWaitingParticipantCount()

Default
Instantiation
caller → *
Caller → *
target → *

message view isLastEnteringParticipant

caller: Caller target:
EntrySynchronizing

Context

last := isLastEnteringParticipant()

Pointcut

Advice

caller: Caller target:
EntrySynchronizing

Context
last := isLastEnteringParticipant()

waiting := getWaitingParticipantCount()

opt [waiting >= min]

Default
Instantiation
caller → *
Caller → *
target → *

min := getMinParticipantCount()

Collaborative binding
EntrySynchronizingContext →

CollaborativeContext
createAndEnterContext → createAndEnterContext

joinContext → joinContext

Blockable instantiation
|BlockableParticipant →

|EntrySynchronizingParticipant

Blockable binding
EntrySynchronizingContext → BlockableContext

entrySemaphore → semaphore
getEntrySemaphore → getSemaphore

waitForEntrySemaphore → waitForSemaphore
releaseEntrySemaphore → releaseSemaphore

caller: Caller

enterContext()

message view enterContext

caller: Caller target:
|EntrySynchronizingParticipant

enterContext(c)

Pointcut

Advice

waitOrReleaseBeforeEntering(c)

target:
|EntrySynchronizingParticipant

*
*

Default
Instantiation
caller → *
Caller → *
target → *

last := false

last := true

message view waitOrReleaseBeforeEntering affected by Collaborative.getContext, Blockable.releaseSemaphore, Blockable.waitForSemaphore

Figure 32: The EntrySynchronizing aspect blocks entering participants
until a number of minimally required participants is reached.

52 open multithreaded transactions for aspectoptima

aspect Closable depends on Collaborative

structural view
|ClosableParticipant

Collaborative instantiation
|CollaborativeParticipant → |ClosableParticipant

+ joinContext(CollaborativeContext)

|ClosableParticipant

~ ClosableContext create()
+ addParticipant(|CollaborativeParticipant)
~ boolean isClosed()
+ setClosed(boolean)
+ setMaxParticipantCount(int)
- int getMaxParticipantCount()
- boolean isLastAllowedParticipant()

- boolean closed
- int maxParticipantCount := Integer.MAX_VALUE

ClosableContext

caller: Caller
message view joinContext

caller: Caller target:
|ClosableParticipant

joinContext(c)

Pointcut

Advice

joinContext(c)
closed := isClosed()

target:
|ClosableParticipant

opt [not closed]

c:
ClosableContext

caller: Caller

message view addParticipant

caller: Caller target:
ClosableContext

addParticipant(p)

Pointcut

Advice

addParticipant(p)

last := isLastParticipant()

setClosed(true)

target:
ClosableContext

opt [last]

*

Collaborative binding
ClosableContext → CollaborativeContext

joinContext → joinContext

*

*

*

message view isLastAllowedParticipant affected by Collaborative.getParticipantCount

caller: Caller target:
ClosableContext

last := isLastAllowedParticipant()

Pointcut

Advice

caller: Caller target:
ClosableContext

last := isLastAllowedParticipant()

participants := getParticipantCount()

opt [participants = max]

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

max := getMaxParticipantCount()

last := false

last := true

Figure 33: The Closable aspect allows explicit and implicit closure of
contexts by specifying a maximal number of participants.

4.2 conflict resolutions 53

aspect SpawnSupporting depends on Collaborative

structural view
|SpawnSupportingParticipant

Collaborative instantiation
Context.|CollaborativeParticipant → |SpawnSupportingParticipant

+ joinContext(SpawnSupportingContext)
- |SpawnSupportingParticipant createNewParticipant()
+ |SpawnSupportingParticipant spawnParticipant()
+ boolean isSpawned()
~ setSpawned(boolean)

- boolean spawned
|SpawnSupportingParticipant

~ SpawnSupportingContext create()
- int getSpawnedParticipantCount()
~ increaseSpawnedParticipantCount()

- int spawnedParticipantCount
SpawnSupportingContext

caller: Caller

message view spawnParticipant affected by Collaborative.getContext, Collaborative.enterContext

caller: Caller

result := spawnParticipant()

Pointcut Advice

result := spawnParticipant()

target:
|SpawnSupportingParticipant

Collaborative binding
SpawnSupportingContext → Collaborative.Context

joinContext → joinContext

target:
|SpawnSupportingParticipant

result :=
createNewParticipant()

result:
|SpawnSupporting

Participant

increaseSpawnedParticipantCount()

myContext :=
getContext()

setSpawned(true)

myContext:
|SpawnSupportingContext

enterContext(myContext)Default
Instantiation
caller → *
Caller → *
target → *

Figure 34: The SpawnSupporting aspect allows the creation of new partic-
ipants that are automatically joining their creator’s context.

spawned with its getter and setter methods are introduced into
the class SpawnSupportingParticipant.

The detailed behavior of spawning a participant is illustrated in
the message view of spawnParticipant: after creating a new partici-
pant we mark it as spawned and retrieve the actual context of the
spawning participant. We make the newly spawned participant
enter it and increment the number of spawned participants.

4.1.12 OpenMultithreadedTransaction

Combining all other
aspects in a single
interface.

The OpenMultithreadedTransaction aspect as modeled in Figure 35

combines the functionality provided by all other aspects of our
framework into one aspect and contains no own additional logic
or structure. In its structural view only the methods that should
be available to the user of the framework are exposed and linked
using binding directives.

4.2 conflict resolutions

In Section 2.3.2 we introduced RAM’s conflict resolution aspects
that detect and resolve conflicts automatically using interference
criteria that specify under which circumstances conflict reso-
lutions are instantiated. Our Open Multithreaded Transactions
model contains three conflict resolution aspects that coordinate
the interaction between two existing aspects each.

54 open multithreaded transactions for aspectoptima

aspect OpenMultiThreadedTransaction depends on Nested, OutcomeVoting,
EntrySynchronizing, ExitSynchronizing, SpawnSupporting, Closable, Transaction
structural view

|OMTTParticipant
|OMTTResource

|m

Closable instantiation
|ClosableParticipant →

|OMTTParticipant

+ beginTransaction()
+ abortTransaction()
+ commitTransaction()
+ OMTTContext getContext()
+ joinContext(OMTTContext)
+ |OMTTParticipant spawnParticipant()

|OMTTParticipant
~ OMTTContext create()
+ setMinParticipantCount(int)
+ pauseContext()
+ continueContext()
+ terminateContext(|OMTTParticipant)
+ setMaxParticipantCount(int)
+ setClosed(boolean)

OMTTContext

Closable binding
OMTTContext →
ClosableContext

setClosed → setClosed
setMaxParticipantCount →

setMaxParticipantCount

+ * |m<AccessKind>(..)

|OMTTResource

Transaction instantiation
|TransactionParticipant →

|OMTTParticipant
|TransactionalResource→

|OMTTResource

Transaction binding
OMTTContext → TransactionContext

beginTransaction → beginTransaction
|m<AccessKind> → |m<AccessKind>

Nested instantiation
|NestedParticipant →

|OMTTParticipant

Nested binding
OMTTContext →
NestedContext

OutcomeVoting instantiation
|OutcomeVotingParticipant →

|OMTTParticipant

OutcomeVoting binding
OMTTContext →

OutcomeVotingContext
pauseContext →

pauseContext
continueContext →

continueContext
terminateContext →

terminateContext

EntrySynchronizing instantiation
|EntrySynchronizingParticipant →

|OMTTParticipant

EntrySynchronizing binding
OMTTContext →

EntrySynchronizingContext
setMinParticipantCount →

setMinParticipantCount
beginTransaction →

createAndEnterContext

ExitSynchronizing instantiation
|ExitSynchronizingParticipant →

|OMTTParticipant

ExitSynchronizing binding
OMTTContext →

ExitSynchronizingContext
getContext → getContext

SpawnSupporting instantiation
|SpawnSupportingParticipant →

|OMTTParticipant

SpawnSupporting binding
OMTTContext →

SpawnSupportingContext
spawnParticipant →

spawnParticipant
joinContext → joinContext

Default binding
|OMTTParticipant →

Thread

Figure 35: The OpenMultithreadedTransaction aspect combines the func-
tionality of all other aspects and exposes their methods.

4.2 conflict resolutions 55

4.2.1 Collaborative / Nested

Participants are
only allowed to join
descendants of their
current context.

The conflict resolution aspect Collaborative / Nested that we present
in Figure 36 automatically applies whenever an object of the class
CollaborativeContext is also an instance of the class NestedContext.
It replaces the message view for Collaborative.isAllowedToJoin in
order to allow a participant that is already associated to a context
to join another context if the context that should be joined is a
direct or indirect parent of the currently associated context.

The content of the message view for isAllowedToJoin begins
with the initialization of a result variable to false and the retrieval
of the associated context. If no context is associated, the result
variable is immediately set to true. Otherwise, the parent of the
context that should be joined is retrieved and a while loop is
used in order to iterate over its ancestors until the context that
is currently associated to the participant is found. If such an
ancestor context is found, we know that we try to join a child
of the current context and change the result variable to true.
Otherwise, we keep on climbing up the context hierarchy as long
as a parental context that differs from the current context exists.
If the loop terminates at a context that has no parent context
without ever inspecting the context that should be joined in the
hierarchy, then the result variable that still evaluates to false is
returned because a context that is no descendant of the current
context was passed as an argument.

conflict resolution aspect Collaborative / Nested

message view Collaborative.isAllowedToJoin affected by Collaborative.getContext, Nested.getParent

caller: Caller target:
|NestedParticipant

result :=
isAllowedToJoin(c)

Pointcut Advice

myContext :=
getContext()

[myContext = null]

[else]

caller: Caller

alt

parent := getParent()

parent := getParent()

target:
|NestedParticipant

loop [while parent <> null && not result]

opt [parent = myContext]

c: NestedContext

interference criteria
CollaborativeContext =

NestedContext

parent:
NestedContext

Default
Instantiation
caller → *
Caller → *
target → *

result :=
isAllowedToJoin(c)

result := false

result := true

result := true

Figure 36: The conflict resolution aspect for Collaborative / Nested allows
participants to join a context if the current context is an
ancestor of the context that should be joined.

56 open multithreaded transactions for aspectoptima

4.2.2 ExitSynchronizing / SpawnSupporting

Do not synchronize
spawned participants
upon leaving as they
terminate afterwards.

In order to allow spawned participants to leave a context with-
out being blocked in presence of the ExitSynchronizing aspect we
modeled a conflict resolution aspect ExitSynchronizing / Spawn-
Supporting as shown in Figure 37. The message view for the
method waitOrReleaseBeforeLeaving is modified in order to check
whether a participant is spawned. Only for participants that have
not been spawned we proceed with the original blocking behav-
ior such that spawned participants are able to leave a context
without beeing blocked.

As indicated in Section 4.1.8 we defined a separate method
waitOrReleaseBeforeLeaving even if it is only used once in order
to model the skipping of the blocking behavior concisely. RAM
would also give us the possibility to include the blocking be-
havior directly into the method leaveContext and to work with a
pointcut that contains the blocking behavior and replaces it with
nothing in case of a spawned participant. As this would lead to
an unnecessary duplication of the blocking behavior and a far
more bigger conflict resolution aspect we decided to create the
new method waitOrReleaseBeforeLeaving.

The message view for the method isLastExitingParticipant rede-
fines this method in order to subtract the number of spawned
participants from the overall number of participants during the
comparison with the number of blocked participants. If the sum
of blocked and spawned participants equals the overall num-
ber of participants we know that every participant that was not
spawned is currently blocked. This means that we can change the
result variable to true in order to indicate that the last participant
tried to leave the context.

4.2.3 Closable / SpawnSupporting

Exclude spawned
participants from the

maximal number of
allowed participants.

The conflict resolution aspect Closable / SpawnSupporting that we
present in Figure 38 excludes spawned participants from the
condition for the automatic closing of a context. This is achieved
by a redefinition of the method isLastAllowedParticipant. Similarly
to the isLastExitingParticipant method of the ExitSynchronizing /
SpawnSupporting conflict resolution aspect, we retrieve the num-
ber of spawned participants and subtract it from the number of
overall participants. The resulting number is compared with the
maximal number of allowed participants and the result is only
set to true if they are equal. This means that a context is automat-
ically closed when the number of participants that have not been
spawned reaches the maximal number of allowed participants.

4.2 conflict resolutions 57

conflict resolution aspect ExitSynchronizing / SpawnSupporting

caller: Caller

waitOrReleaseBeforeLeaving()

message view ExitSynchronizing.waitOrReleaseBeforeLeaving affected by SpawnSupporting.isSpawned

caller: Caller target:
|ExitSynchronizing

Participant
waitOrReleaseBeforeLeaving()

Pointcut Advice
target:

|ExitSynchronizingParticipant

opt [spawned]*

spawned := isSpawned()

*

caller: Caller

last := isLastExitingParticipant()

caller: Caller target:
|ExitSynchronizingContext

last := isLastExitingParticipant()

Pointcut Advice
target:

|ExitSynchronizingContext

opt [blocked + spawned = participants]

blocked := getBlockedParticipantCount()

message view ExitSynchronizing.isLastExitingParticipant affected by ExitSynchronizing.getBlockedParticipantCount,
SpawnSupporting.getSpawnedParticipantCount, ExitSynchronizing.getParticipantCount

interference criteria
ExitSynchronizingContext =

SpawnSupportingContext

Default
Instantiation
caller → *
Caller → *
target → *

Default
Instantiation
caller → *
Caller → *
target → *

spawned := getSpawnedParticipantCount()

participants := getParticipantCount()

last := false

last := true

interference criteria
ExitSynchronizingParticipant =

SpawnSupportingParticipant

Figure 37: The conflict resolution aspect for ExitSynchronizing / Spawn-
Supporting excludes spawned participants from exit synchro-
nization as they automatically terminate upon leaving.

conflict resolution aspect Closable / SpawnSupporting
message view Closable.isLastAllowedParticipant
affected by Closable.getMaxParticipantCount, SpawnSupporting.getSpawnedParticipantCount

caller: Caller
caller: Caller target:

ClosableContext

last := isLastAllowedParticipant()

Pointcut

Advice

last := isLastAllowedParticipant()

max := getMaxParticipantCount()

target:
ClosableContext

opt [participants - spawned = max]interference criteria
ClosableContext =

SpawnSupportingContext

spawned := getSpawnedParticipantCount()
Default

Instantiation
caller → *
Caller → *
target → *

participants := getParticipantCount()

last := false

last := true

Figure 38: The conflict resolution aspect for Closable / SpawnSupporting
determines if the maximal number of allowed participants is
reached without counting spawned participants.

5
M A P P I N G REUSABLE ASPECT MODELS TO ASPECTJ

A general purpose
mapping that can be
used as a draft for a
future code
generator.

The main purpose of the models that we presented in the two pre-
vious chapters is to serve as a case study that helps us to define a
mapping from Reusable Aspect Models to AspectJ. In order to
ease the understanding and analysis of our mapping we will de-
scribe it in detail using examples taken from the AspectOPTIMA
case study. Although we applied our mapping manually we hope
that it can serve as a starting point for the implementation of
a code generator. Wherever possible we tried to prefer a more
general solution that can be used for other models as well over
an adapted solution that makes use of properties of this specific
case study. Therefore the code that we obtained by applying our
mapping has not to be seen as an attempt to implement this
specific case study but as an illustrating example of our general
purpose mapping.

The next section presents the overall structure of the mapped
code and the techniques that we used to obtain it. Subsequently
we will describe the mapping along the different views of the
modeling technique Reusable Aspect Models.

5.1 principles & overall structure

5.1.1 Principles

The main goals during the development of our mapping where to

• preserve the identity and modularity of modeled concerns

• reduce the necessity of manual implementation efforts

• produce code that can be reused with minimal effort

• maintain the traceability of concerns

• lay the foundations for an evolvable and reversible mapping
that could one day be used for round-trip engineering

5.1.2 Overall Structure

RAM aspects as
Java packages.

As every aspect in RAM corresponds to a package of classes
we decided to maintain this structure within the code too. As a
starting point a main package for every RAM project is created.
Within the main package of every project we create the two

59

60 mapping reusable aspect models to aspectj

packages aspects and conflictresolutions. For every ordinary
RAM aspect we create a subpackage in the package aspects

bearing the name of the aspect in lowercase letters and containing
all artifacts of the RAM aspect. The artifacts of conflict resolution
aspects are located in a subpackage of conflictresolutions

whose name is the concatenation of both involved aspects in
alphabetic order and lowercase letters.

Directly in the main package we create three AspectJ as-
pects AnnotationInheritance, ConfigurationEnforcement, and
AspectPrecedence. The latest defines precedence rules by listing
all aspects in the order of reuse starting with the aspect at the
root of the directed acyclic reuse graph thus giving it highest
precedence. The role and content of the two other aspects will be
discussed in Section 5.2.1.6 and Section 5.4.

5.2 ordinary aspects

Reusable Aspect Models consist of ordinary aspects enclosing
three different types of views and of conflict resolution aspects
that have the same structure and an additional feature that acti-
vates them if their interference criteria are met.

5.2.1 Structural View

The structural view is the core of each RAM aspect as it contains
the classes of the aspect with its attributes, methods and associ-
ations. It is based on class diagrams of the Unified Modeling

Language and supports additional features such as declaration
and initialization of methods or classes as mandatory instantia-
tion parameters, and binding of elements across aspects.

5.2.1.1 Complete Classes

If a class has a name that does not start with an “|” and its
method section lists a constructor it is considered a complete
class in RAM. A constructor is a method named create that
returns its enclosing type.

Unobtrusive and
automatic reuse of

Java classes and
interfaces.

reusing the java library In order to allow modelers to
reuse Java’s library classes without polluting the model with
artifacts that are specific to this language and of little value for
other target languages we decided to use an automatic reuse
mechanism: We maintain a list of supported library classes and
interfaces (shown in Figure 92 in the appendix) and associate
every interface to a default implementation class. For every com-
plete class in the model we check whether it has a name that is
identical to the name of a Java class or interface on the library list.

5.2 ordinary aspects 61

aspect Deferrable depends on Copyable, Context

+ |Deferrable copy()
+ |Deferrable getVersion(Context)
+ |Deferrable getOriginal()
+ setOriginal(|Deferrable)
+ updateOriginal(Context)
~ deleteVersion(Context)
+ * |m(..)

|Deferrable

structural view
|Deferrable

Copyable instantiation
|Copyable → |Deferrable

~ Map<Context, Deferrable> create()
~ |Deferrable get(Context)
~ remove(Context)
~ put(Context, |Deferrable)

Map
1

contextToVersionMap
1

original

1

Context, |Deferrable

Context binding
Context → Context, copy → copy

1

Figure 39: Structural view of the Deferrable aspect showing the unobtru-
sive reuse of Java’s class Map.

If this is the case we inspect the methods mentioned in the struc-
tural view and compare them to the methods of the Java library
class or interface. In case of an interface we match the constructor
methods with the constructors of the default implementation that
is linked to this interface.

The complete class is mapped to this library class or interface
if the modeled class contains only methods with signatures that
match methods of the library class or interface. Parameters that
are defined at the modeled class using the template parameter
visualization of the Unified Modeling Language need to match
the type parameters of the library class or interface. If we dis-
covered a mapping to an interface, then we use the associated
default implementation class whenever a constructor is called
but all associations or method variables have the general type of
the interface in order to keep the code as independent as possible
from the chosen default implementation class.

An example where we automatically reuse the Java inter-
face java.util.Map together with its default implementation
java.util.HashMap is shown in Figure 39 and Figure 40. The
methods get, remove, and put match the method signatures of
java.util.Map and the constructor matches a constructor in the
corresponding default implementation class java.util.HashMap.
Note that the mapping of the template parameters Context and
Deferrable to the type parameters K and V is taken into account
during the signature matching process.

Library classes and interfaces are also automatically reused if
an argument or return type of a method refers to a class that is
neither modeled in the enclosing RAM aspect nor in any other
RAM aspect of the same project. In such a case we use the first
class or interface with the same name on our library list. An
example for this is the class java.lang.reflect.Method which
is used in the aspect Traceable as an argument for the method
createTrace and as an argument for the constructor of the class
Trace. The message view of this method is also discussed in

62 mapping reusable aspect models to aspectj

public interface Deferrable extends Copyable {

// public method signatures from structural view

Deferrable getVersion(Context context);

Deferrable getOriginal();

void setOriginal(Deferrable original);

void updateOriginal(Context context);

}

aspect DeferrableAspect {

// bind annotations to mandatory instantiation parameters

declare parents : @DeferrableClass * implements Deferrable;

// attributes & associations from structural view

private Map<Context, Deferrable> Deferrable.contextToVersionMap =

new HashMap<Context, Deferrable>();

private Deferrable Deferrable.original = null;

// declared methods without message views

public Deferrable Deferrable.getOriginal() {

// auto-generated getter implementation

return this.original;

}

public void Deferrable.setOriginal(Deferrable original) {

// auto-generated setter implementation

this.original = original;

}

...

}

Figure 40: Mapped code for the structural view of the complete class
Deferrable (see Figure 39) showing interface methods, the
type hierarchy modification, fields, and default implementa-
tions for methods without message views.

Section 5.2.3.5 in order to explain concrete calls to constructors
along the Figures 53 and 54.

Interfaces and
inter-type

declarations even for
complete classes.

mapping user created classes If a complete class in the
aspect model is not recognized as an instance of an existing
Java class, a Java implementation is generated from scratch. The
straightforward idea of mapping the complete class to a standard
Java class is not sufficient, as it is possible that the modeled
class has to be merged with other classes as an effect of binding
directives. If a complete class would be a standard Java class we
would be unable to implement such a merge as Java does not
support multiple inheritance.

But as it is possible to make a Java class implement multiple
interfaces we can use an indirect introduction mechanism employ-
ing interfaces and inter-type declarations in order to implement
the merging of classes: for every complete class of the model we
create a new public Java interface with the same name and an
AspectJ aspect within the file of this interface. In this aspect we
introduce fields and methods into the interface using AspectJ’s
inter-type declaration mechanism as described in the following
sections. How these interfaces make it possible to merge classes
when we map binding directives to code is discussed in detail in
Section 5.2.1.7.

5.2 ordinary aspects 63

@Target({ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

public @interface DeferrableClass {

// empty

}

Figure 41: Java annotation for the mandatory instantiation parame-
ter Deferrable (see Figure 39) restricted to classes with a
Target(ElementType.TYPE) annotation.

As interfaces cannot be instantiated in Java we create a pub-
lic class that implements the corresponding interface for every
complete class of a RAM aspect. The name of this implementa-
tion class is the name of the modeled class with an additional
“Impl” appended to it. Implementation classes are only needed to
provide instantiation facilities and are empty except for possible
constructors that we discuss in detail in Section 5.2.1.5.

A special case of user created complete classes are enumera-
tions. For every modeled enumeration we create a public Java

enumeration that simply lists the enumeration literals that are
given in the model in uppercase letters.

5.2.1.2 Incomplete Classes

Incomplete classes
need to be
instantiated or
bound.

In RAM classes that have no constructor are considered incom-
plete and need to be completed during the weaving process. This
can either be done by prepending an “|” to their name in order to
mark them as mandatory instantiation parameters or by includ-
ing a binding directive that binds them to a complete class. In
both cases we skip the library reuse matching that we described
above and implement incomplete classes almost the same way
we implement complete classes that have not been matched to a
library class or interface. The only difference is that we omit the
creation of an implementation class as incomplete classes cannot
be instantiated.

If an incomplete class is marked as a mandatory instantia-
tion parameter we create a Java annotation that has the same
name and the word “Class” appended to it. Figure 41 presents
such an annotation for the mandatory instantiation parameter
Deferrable. Note that we make sure that only classes are instan-
tiated to this parameter by annotating the annotation itself with
@Target(ElementType.TYPE).

We use annotations internally in order to map instantiation
directives and externally to give users the possibility to instantiate
parameters by annotating their classes. Instantiation directives
are discussed in detail in Section 5.2.1.6 and Chapter 6 explains
how to use the mapped code.

64 mapping reusable aspect models to aspectj

aspect ClosableContextAspect {

...

// attributes & associations from structural view

private boolean ClosableContext.closed = false;

private int ClosableContext.maxParticipantCount = Integer.MAX_VALUE;

...

}

Figure 42: Mapped code for attributes and relations of the Closable-

Context class (see Figure 33) showing default and manual
initialization of resulting fields.

5.2.1.3 Attributes

Attributes of classes that are mentioned in the structural view
of a RAM aspect are implemented as plain Java fields that are
introduced into the interface that corresponds to the class using
AspectJ’s inter-type declaration. Access modifiers +, ∼, and −
are canonically mapped to public, protected, and private. But
as we are convinced that it is good object-oriented style to declare
fields private you will find no example of the other two access
modifiers for fields in our case study.

In order to reduce manual implementation refinements to the
required minimum we provide modelers with the possibility
to initialize simple attributes by appending “:=” to an attribute
identifier. The resulting initialization statement is the unmodi-
fied string that follows “:=” in the model and therefore we can
support initializations like Integer.MAX_VALUE as used in the
ClosableContext class shown in Figure 42.

5.2.1.4 Associations

Java fields and
HashSets for single

and multiple
associations.

Associations between classes in Reusable Aspect Models are
implemented using Java fields whose names correspond to the
given role names and whose types depend on the specified mul-
tiplicity. For this reason our mapping can only yield correct code
for associations with explicit multiplicities and at least one role
name. If an association has only one role name we interpret it
as unidirectional and introduce a field with the same name into
the interface that corresponds to the class at the other end of the
association. A second role name for the other direction means
a bidirectional association and results in additional code that is
obtained exactly the same way.

If the multiplicity that corresponds to a role is specified as “0..1”
in a RAM aspect, then the type of the resulting field is simply the
type of the associated class and we initialize the field explicitly
to null. A multiplicity of “1” results in the same type but the
field is now initialized using the parameterless constructor of the
associated class. If an association has a multiplicity of “0..*” or

5.2 ordinary aspects 65

“1..*” the type of the corresponding field is a java.util.Set that
is parameterized using the type of the associated class.

Our mapping could easily be extended to support multiplicities
of type “n” or “m..n” by creating n fields in the first case and
a HashSet whose add method is advised in order to preserve
multiplicity constraints. As this is a straightforward extension
that was not necessary for the AspectOPTIMA case study we
will not discuss it in detail. Note that all fields that correspond
to associations are declared using the private access modifier in
order to prevent unauthorized access.

5.2.1.5 Methods

Methods that are mentioned in the structural view of a Reusable

Aspect Model but have no own message view can be mapped to
two types of Java methods: If their functionality can be derived
from their name we create a complete default implementation.
Otherwise we only create method-stubs that need to be completed
manually after code generation. In both cases we mention a
method in the Java interface that corresponds to its enclosing
type if its access modifier is public.

Methods with
signatures that
follow common
patterns can be
implemented
automatically.

default implementations for common methods The
probably most common type of methods whose functionality can
be completely inferred from their name are getter and setter
methods for attributes or associations. If the name of a param-
eterless method in RAM is “get” followed by the capitalized
name of an attribute or association of the enclosing type and its
return type is the type of this attribute or associated class we
consider it a getter method. For such methods we create a de-
fault implementation that returns the value of the corresponding
field. Note that for attributes of type boolean a getter method
starts with “is“ instead of “get“. A method whose name is “set”
followed by the capitalized name of an attribute or association of
the enclosing type, that takes exactly one parameter that matches
the type of this attribute or association and whose return type
is void is considered a setter method. It’s implementation is a
single statement that assigns the value of the passed argument to
the corresponding field.

For attributes of type int we support two more special method
types to ease the manipulation of the corresponding values. A
method whose name starts with “increment” or “decrement” fol-
lowed by the capitalized name of an int attribute of the enclosing
type and whose return type is void is implemented as a single
statement that increases or decreases the corresponding value
by one. We use various methods of this kind in our Open Multi-
threaded Transaction model in order to keep track of the number
of participants that fulfill a certain property. Their use shrank

66 mapping reusable aspect models to aspectj

+ Context getContext()
+ createAndEnterContext()
+ enterContext(CollaborativeContext)
+ leaveContext()
+ joinContext(CollaborativeContext)
- boolean isAllowedToJoin(CollaborativeContext)

|CollaborativeParticipant

0..* participants

~ CollaborativeContext create()
+ addParticipant(|CollaborativeParticipant)
~ removeParticipant(|CollaborativeParticipant)
+ Set<|CollaborativeParticipant> getParticipants()
+ int getParticipantCount()
+ contextCompleted()

CollaborativeContext

1
Figure 43: Extract of the structural view of the Collaborative aspect show-

ing an association with multiplicity > 1 and corresponding
modification and retrieval methods.

our message views as they make it possible to express these
operations with one instead of three messages.

Associations with multiplicity > 1 can have three more method
types for which we define automatic implementations that ease
the addition, removal, and counting of elements. If a method
returns nothing, takes exactly one argument of the same type
as an associated class with multiplicity > 1 and its name is
“add” followed by the capitalized name of the association role
without the last letter being a “s”, then we consider it an adder
method. Such methods are implemented with a single call to
the add method on the Set that corresponds to the association.
The same pattern with a “remove” instead of an “add” describes
remover methods that are implemented with a single call to the
remove method on the corresponding Set. A method that takes no
arguments, returns an int and whose name is “get” followed by
the capitalized name of the role of an association with multiplicity
> 1 that is in turn followed by the string “Count” is considered a
counter method. The implementation of these methods directly
returns the result of a call to the size method of the Set that
corresponds to the association.

Note that the pattern for getter methods that we described
above is modified slightly for associations with multiplicity > 1:
The return type of such method is not the type of the associated
class itself but a Set that contains elements of this type. Figure 43

and Figure 44 demonstrate how an association with multiplicity
> 1 is implemented and show the default implementation for the
corresponding adder, remover, getter and counter methods.

Implementation of
field initializing

constructors.

special role of constructors Constructor methods have
a special syntax in Reusable Aspect Models and Java so that
they require a specific mapping. In RAM a method can be iden-
tified as a constructor when it is named create and returns its
enclosing type. In Java, however, the return type of a constructor
is implicit and must not be mentioned but the method name
needs to be equivalent to the name of the enclosing type.

5.2 ordinary aspects 67

public interface CollaborativeContext extends Context {

// public method signatures from structural view

void addParticipant(CollaborativeParticipant participant);

Set<CollaborativeParticipant> getParticipants();

int getParticipantCount();

}

aspect CollaborativeContextAspect {

// attributes & associations from structural view

private Set<CollaborativeParticipant> CollaborativeContext.participants =

new HashSet<CollaborativeParticipant>();

// declared methods without message views

public void CollaborativeContext.addParticipant(CollaborativeParticipant participant) {

// auto-generated adder implementation

this.participants.add(participant);

}

void CollaborativeContext.removeParticipant(CollaborativeParticipant participant) {

// auto-generated remover implementation

this.participants.remove(participant);

}

public Set<CollaborativeParticipant> CollaborativeContext.getParticipants() {

// auto-generated getter implementation

return this.participants;

}

public int CollaborativeContext.getParticipantCount() {

// auto-generated counter implementation

return this.participants.size();

}

...

}

Figure 44: Mapped code for the structural view of the complete class
CollaborativeContext (see Figure 43) showing the imple-
mentation of an association with multiplicity 0..∗ and the
corresponding modification and retrieval methods.

68 mapping reusable aspect models to aspectj

+ Trace createTrace(Method)
+ * |m<AccessKind>(..)

|Traceable

~ create(Method, AccessKind, |Traceable)
+ |Traceable getTarget()
+ AccessKind getAccessKind()

- Method method
- AccessKind accessKind

Trace

1
target

Figure 45: The Trace class taken from the Traceable model contains fields
and a constructor that initializes them.

public interface Trace {

...

}

aspect TraceAspect {

...

// declared methods without message views

...

TraceImpl.new(Method method, AccessKind accessKind, Traceable target) {

// auto-generated constructor using fields

this();

this.method = method;

this.accessKind = accessKind;

this.target = target;

}

...

}

Figure 46: Intertype declaration of a constructor of the class Trace (see
Figure 45) that initializes fields with given parameters.

We implement a parameterless constructor by adding an empty
Java constructor to the implementation class that corresponds
to the modeled class. Note that this in only redundant if the
constructor is modeled with a public access modifier as Java’s
implicit default constructor is public.

Constructors that take arguments are matched against the
attributes of the enclosing class. If a constructor takes only argu-
ments that match the types of attributes or associated classes and
at most one argument for each attribute and associated class we
create a default implementation that initializes the corresponding
fields with the values of the arguments. As these fields might
be private we need to define the constructor in the aspect that
corresponds to its enclosing type and not in the implementation
class1. An example of such a constructor is shown in Figure 45

and the resulting code that initializes the fields of the modeled
attributes is presented in Figure 46.

methods as mandatory instantiation parameters

Methods that are marked as mandatory instantiation parameters
yield no direct implementation but a Java annotation that can
be used to instantiate the parameter. Analogous to the annota-

1 For fields and methods that were introduced using AspectJ’s inter-type decla-
ration mechanism the access modifiers refer to the defining aspect and not to
the enclosing type.

5.2 ordinary aspects 69

+ AccessKind getAccessKind(Method)
+ * |m<AccessKind>(..)

|AccessClassified

Figure 47: The class AccessClassified from the aspect of the same name
showing the use of methods as parameterized mandatory
instantiation parameters.

@Target({ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface AccessClassifiedMethod {

AccessKind value();

}

Figure 48: Java annotation for the mandatory instantiation parame-
ter method in the class AccessClassified (see Figure 47)
showing the use of annotation elements for parameters.

tion for parameter classes that we described in Section 5.2.1.2
we create an annotation with the name of the enclosing class
followed by “Method”. We use the name of the enclosing class
as the parameter names are mostly single letters that reveal little
information. If a class contains more than one mandatory instan-
tiation parameter method we need to use the name of the method
itself or enumerate the parameters but this case never occurred in
the AspectOPTIMA case study. We restrict the target type using
the annotation @Target(ElementType.METHOD) in order to make
sure that only methods can be marked using such annotations.

If the parameter itself is parameterized we add corresponding
methods for each parameter to the Java annotation. An example
of such a method parameter is shown in Figure 47 and Figure 48.

method stubs for remaining methods If a method has
no separate message view and is neither a constructor, nor a
mandatory instantiation parameter nor a method whose imple-
mentation can be derived from its signature we introduce an
empty method stub. If the method has a return type we return
the default constant of this type in order to keep the generated
code compileable. To help the programmer spot such incomplete
methods stubs we add a todo comment that marks this method
stub as incomplete.

5.2.1.6 Instantiation Directives

Type and annotation
inheritance
implement parameter
instantiation.

RAM’s instantiation directives are used to assign classes or meth-
ods to mandatory instantiation parameters and are implemented
by type hierarchy modifications or annotation inheritance. Let
us consider an aspect A that depends on an aspect B and whose
structural view contains a class C and an instantiation directive
D → C where D is a mandatory instantiation parameter of B.

70 mapping reusable aspect models to aspectj

This directive is mapped to an inheritance relation between D
and C such that D extends C.

In order to treat classes that are indirectly used as a value of
a mandatory instantiation parameter by means of an instantia-
tion directive the same way as classes that were directly used
as a parameter by means of an annotation we inherit annota-
tions according to instantiation directives. Therefore the directive
D→ C from our previous example results in a statement declare
@type: @DClass : @CClass that tells the AspectJ compiler to
automatically add the annotation CClass to each class that has
been annotated using DClass. Annotation declarations like this
are located in the AspectJ aspect AnnotationInheritanceAspect
in the main package of the project.

If a parameterized method parameter |m<ParamType> in a
class D is instantiated using another parameterized method pa-
rameter |n<ParamType> in a class C, then we use a similar mech-
anism to inherit the annotation and its parameter values. For
every possible parameter value v we add the AspectJ statement
declare @method : (@DMethod(v) * *.*(..)) : @CMethod(v);

to the AnnotationInheritance aspect. Note that this means that
we can only generate correct code for mandatory method instan-
tiation parameters that are itself parameterized with a finite and
enumerable parameter or not parameterized at all.

5.2.1.7 Binding Directives

Complete classes or methods can be bound to other classes or
methods and are implemented through type inheritance or dele-
gating methods. An aspect A that depends on an aspect B and
whose structural view contains a class C and a binding directive
C→ D where D is a class in B means that the two classes C and
D should be merged. As all structure and logic is introduced
into the corresponding interfaces it is sufficient to define that C
extends D. If a method m of C is bound to a method n of D we
need to consider two possible cases: If m and n have the same
name the binding already took place as C inherited all methods
of D. In case of different names we implement the method m
with a single call to n while preserving possible parameters.

5.2.2 State View

RAM’s state views allow a modeler to define an invocation proto-
col to which the modeled message views must conform. As code
generation usually occurs after a model checking step one might
argue that all message views for which code should be generated
already conform to the invocation protocol and therefore state
views need not to be implemented. This is only partially true as a

5.2 ordinary aspects 71

system may produce invalid message sequences at runtime even
if all message views conform to the invocation protocol.

Nevertheless state views are not necessary to realize a system
with the functionality that was modeled in Reusable Aspect

Models and therefore we decided to exclude them from our
general purpose mapping. Despite that, we believe that it would
be possible and beneficiary to implement state views as addi-
tional runtime checks and we will sketch our idea for a possible
mapping in the following. As a first step we would need to imple-
ment the data structures and transition mechanism of a general
purpose state automaton. This infrastructure would need to be
introduced into every object whose message invocations are re-
stricted by a state view. As RAM’s state views support parallel
states we would require an implementation that allows us to pass
from a set of states into another set of states. Using the specific
information of each state view we would need to advise every
execution of the methods that are used as transition labels. Before
the execution of the original method we would need to verify
that the object on which the method was invoked resides in an
allowed state and then we would make it pass into the target
state of the corresponding transition in the state view.

5.2.3 Message View

The behavior of methods that are declared in structural views
of Reusable Aspect Models is defined in message views that
are mapped to various ways of defining and modifying Java

methods.
In the following sections 5.2.3.1 to 5.2.3.4 we discuss the dif-

ferent settings in which message views can be defined and what
structural implications this has for the implementation of their
content. The detailed mapping for single messages and constructs
within a message view is explained in Section 5.2.3.5.

5.2.3.1 Defining New Methods

New methods are
injected into the
interface of the
enclosing class.

If a method of a class is detailed in a message view and a method
with the same signature has not been declared in a class that
is directly or indirectly merged with this class as a result of
binding or instantiation directives, then we call this method
newly defined. Such methods are implemented using AspectJ’s
inter-type declaration mechanism within the AspectJ aspect that
corresponds to the interface of the enclosing class. The return
type and parameter types for the introduced method are obtained
from the corresponding structural view and the parameter names
are mentioned in the message view’s pointcut.

72 mapping reusable aspect models to aspectj

RAM allows arbitrary message patterns in the pointcut part of a
message view but when methods are newly defined the pointcut
is always of the following form: a single message labeled with the
name of the method and names for passed arguments in round
brackets that is sent from the lifeline of a caller object to an object
of the type that is declaring the method. The sender and receiver
objects may have arbitrary names but in the AspectOPTIMA case
study we stuck to the names caller and target.

A default instantiation directive caller→ *, Caller→ *, target→ *
means that the advice will apply for callers of arbitrary type and
in cases where the caller and target might be named differently. In
order to be able to refer to the caller and target object in messages
we need to give them names and cannot simply write e.g *:*
for the caller. We could specify the type of the caller directly
as * in the lifeline box as we do not refer to it later on but the
concrete name Caller gives us the possibility to instantiate the
type differently in a reusing aspect by writing Caller→ SomeType.
Such a restriction on the caller type would be implemented with
a call pointcut in combination with a this pointcut in AspectJ .

5.2.3.2 Advising Existing Methods

Methods can be
advised before,

around, or after the
original behavior.

The modification of a method that has been defined earlier in a
Reusable Aspect Model is mapped to classical AspectJ code
using a before, around, or after advice. In the pointcut of the
message view such a modification is modeled the same way a
first definition is modeled but an additional wildcard box on the
lifeline of the target and a return message are added. The wild-
card box represents all message sequences that are initiated by
the target between the call and return of the method and therefore
stand for the behavior of the method before the advice applies.

Depending on the use of this wildcard box in the advice part
of the message view we map the modeled sequence to different
types of dynamic AspectJ advice. If the original behavior occurs
in between new messages or not at all we use an around advice.
A sequence that starts with the wildcard box and is followed
by new messages is mapped to an after advice. Finally a se-
quence that ends with the placeholder for the original messages
is implemented using a before advice.

All advice types are implemented using an AspectJ advice
declaration signature of the form adivcePart : pointcutPart

contextCollection. In case of an around advice the advice part
of the signature starts with the return type of the advised method.
The name of the advice type follows after that and with the
sequence (AdvisingType targetName, ArgType argName, ...)

we conclude the advice part by declaring the objects that are
needed in the context collection part. AdvisingType is the type of
the class that inherits but advises the method and targetName is

5.2 ordinary aspects 73

the name for the concrete object of this type that was used in the
model. The list of argument types is retrieved from the structural
view and the argument names are retrieved from the message
label in the pointcut part of the message view.

The pointcut part of the advice signature specifies that we
want to advise the execution of the method whose name is
given in the header of the message view. The exact form is
execution(returnType DeclType.mName(..)) which restricts the
advice to the exact method in consideration. The return type can
be retrieved from the corresponding structural view and the name
of the declaring type can be discovered by searching through all
classes that were directly or indirectly merged with the class that
lists the method in the structural view. The sequence (..) after
the name of the method means that we do not restrict the type
and number of arguments in this part of the signature.

In the last part of the advice signature we collect context infor-
mation in order to use it in the advice body. This part takes the
form && target(targetName) && args(argName, ...) , binds
the variables that we defined in the first part, and restricts the
application of the advice to targets of the advising type.

The wildcard box is an element that may only occur in mes-
sage views that advise existing methods or methods that are
mandatory instantiation parameters. Therefore we explain its
implementation before we discuss the implementation of other
elements in Section 5.2.3.5. If this placeholder for the original
method behavior appears in the advice part on the same lifeline
as it appears in the pointcut part we create a proceed statement
that is parameterized with all arguments of the advice without
any change. It is however possible to model the wildcard box on
the lifeline of another object than the target object but this new
target for the original behavior needs to be of the same type as
the original target object. In such a case we produce the same
proceed statement but replace the variable representing the orig-
inal target with the variable of the object on which the wildcard
box was placed. An example of such a replaced wildcard box is
shown in the context of mandatory instantiation parameters in
the next section using Figure 49 and Figure 50.

5.2.3.3 Advising Mandatory Instantiation Parameters

Advising mandatory
instantiation
parameter methods
means advising
unknown existing
methods.

The advisory of a method that is a mandatory instantiation pa-
rameter is modeled and implemented in a very similar way to
that for the advisory of existing methods. The only difference
is that we cannot know in advance what name, return type and
parameters such a method will have. Therefore the structural
pattern for the pointcut and advice part are the same except for
the fact that the label of the message that corresponds to the
advised method does not list the name of the arguments but the

74 mapping reusable aspect models to aspectj

caller:
Caller

target:
|Deferred

|m(..)

Pointcut Advice

original :=
getOriginal()

caller:
Caller

target:
|Deferred

alt [original <> target]

c := getContext()
p: |DeferringParticipant

version :=
getVersion() version: |Deferrable

[else]

*

*

*

Default
Instantiation
caller → *
Caller → *
target → *

|m(..)

|m(..)

message view deferMethod affected by Tracing.getContext, Deferrable.getOriginal, Deferrable.getVersion

<<metaclass>>
|DeferringParticipant

p := current()

Figure 49: The message view deferMethod from the Deferring aspect
advising a mandatory instantiation parameter.

wildcard characters .. that represent all arguments regardless of
their number, type or order.

The structure of the mapped implementation of such an advice
is similar but the parts that were concerned with arguments
are eliminated and the pointcut part changes. No longer do we
mention the return type, declaring type, name and arguments of a
concrete method. Instead, we specify that we want to advise every
method that is marked with the annotation AdvisingTypeMethod

that corresponds to the mandatory instantiation parameter by
writing execution(@AdvisingTypeMethod * *.*(..)).

An example for a message view that advises a mandatory
instantiation parameter is taken from the Deferring aspect and
shown in Figure 49. The model for deferred methods and the
mapped code presented in Figure 50 also demonstrate the use of
a wildcard box as a placeholder for the original method behavior.
Note that the advice is always located in the aspect that corre-
sponds to the class in which the method is inherited and advised.
In order to preserve the explanatory name of the message view
we annotate the advice using the annotation AdviceName.

5.2.3.4 Mapping Behavior Involving Generic Types

Whenever a method parameter makes use of a generic type we
cannot use our mapping with annotations, as AspectJ does not
support pointcuts with type parameters. For this reason we resort
to abstract aspects that can be parameterized with a type. We
wrap the advice that corresponds to a message view with type
parameters in an abstract aspect and define an abstract pointcut

5.2 ordinary aspects 75

public interface Deferred extends Deferrable, Traced {

...

}

aspect DeferredAspect {

...

// methods shown in message views

@AdviceName("deferMethod")

Object around(Deferred target):

execution(@DeferredMethod * *.*(..)) && target(target) {

Deferrable original = target.getOriginal();

if (original != target) {

return proceed(target);

}

else {

...

return proceed(version);

}

}

}

Figure 50: Extract of the mapped code for the message view deferMethod
(see Figure 49) showing the annotation based advice signa-
ture and parameterized proceed statements.

that is used in the advice. Instead of binding parameters to such
message views with annotations, we need to define concrete
aspects that extend the abstract aspect, provide values for the
type parameters and instantiate the abstract pointcut in order
to specify which method(s) should be bound. This means that
the code of models with generic types, in contrast to all other
generated code, cannot be used in legacy systems where it is
impossible to insert AspectJ code.

An example use of this technique can be shown with the Nested
aspect, which makes it possible for transaction contexts to be
nested inside each other. Nested defines a behavioral template
with a generic type in a message view addChildrensResults as
shown in Figure 51. The model executes the unmodified behavior
of the advised method, and then proceeds to iterate over all chil-
dren contexts in order to apply the parameter method recursively
to them. The result of each recursive invocation is added to the
overall result and returned.

In the code that corresponds to this message view (Figure 52)
we specify the type parameter T, a type that extends Collection

(line 1), such that every instantiation of our abstract pointcut
(line 2) will not need to contain it. It is sufficient to use T as
return type of our around advice (line 3) and wherever it is used
for variables. We retrieve the currently executing method from
AspectJ’s join point information (line 4) in order to invoke it
recursively on the children objects (line 5). The invoke method
can throw exceptions if it is used improperly so we need to wrap
it in a try-catch block (line 6) even if our code is generated in a
way that ensures that no reflection exceptions are ever thrown.

76 mapping reusable aspect models to aspectj

message view addChildrensResults

Pointcut

Advice

target:
NestedContext

result := m()

caller: Caller

caller: Caller

*

target:
NestedContext

result := m()

*

Default
Instantiation
caller → *
Caller → *
target → *

result:
Collection<T>

loop [c within children]

childResult := m()
c: NestedContext

children := getChildren()

addAll(childResult)

recursive

Figure 51: Template message view addChildrensResults of the Nested as-
pect showing a non-recursive proceed block and a recursive
call for the method parameter m.

1 public abstract aspect NestedContextAddChildrensResultsAspect <T extends Collection<?>> {

2 public abstract pointcut m(NestedContext target);

@AdviceName("addChildrensResults")

3 T around(NestedContext target) : m(target) {

T result = null;

try {

result = proceed(target);

Set<NestedContext> children = target.getChildren();

for (NestedContext c : children) {

4 Method m = ((MethodSignature) thisJoinPointStaticPart.

getSignature()).getMethod();

5 T childResult = (T) m.invoke(c, (Object[]) null);

result.addAll(childResult);

}

6 } catch (Exception e) {

if (e instanceof InvocationTargetException)

7 throw new SoftException(e);

// swallow reflection exceptions

e.printStackTrace();

}

return result;

}

}

Figure 52: Mapped code for the template addChildrensResults (see Fig-
ure 51) involving a generic type parameter T as return type.

5.2 ordinary aspects 77

However, the bound method itself may throw exceptions that
the reflection API wraps in InvocationTargetExceptions. These
need to be re-thrown2.

The use of generic behavior with type parameters cannot be
implemented with annotations but leads to the definition of
concrete aspects that extend the abstract aspects and instantiate
the abstract pointcuts. In order to exemplify the implementation
of the use of type parameterized methods we provide an example
use of the generic method addChildrensResults and present the
corresponding code in Section 5.3 in Figure 65 and Figure 66.

5.2.3.5 Message View Content

Once the structural framework for a message view has been
determined and mapped to AspectJ code we analyze individual
messages and constructs within the content area of a message
view and map them to code. Most of the elements of RAM’s
message views are similar to elements of UML sequence diagrams
and yield a straightforward mapping to Java code. Nevertheless
we need to impose restrictions on the way how elements are used
within message views in order to be able to obtain complete and
correct code from our mapping.

Implement messages
to receiver objects as
method invocations
on the receiver.

mapping messages In order to be mapped successfully a
message view has to adhere to the structural patterns that we dis-
cussed in the previous sections by containing only one message
from a caller to a target object in the pointcut part and the same
message in the advice part. Messages that appear in the advice
part after this first message and that are sent from an object a to
an object b are implemented with a single Java statement that
invokes the message of the same name on the object b using the
same arguments. Self-messages require no separate mapping.

Initially the receiver of a message can only be the target object
from the pointcut pattern or an object that is associated to this tar-
get in the structural view of the aspect that contains the message
view. In case of a message to an associated object the base of the
method invocation is the variable of the corresponding field ob-
tained either from the special variable this in case of a inter-type
declaration of the method or from the variable representing the
target object in case of an AspectJ advice. Note that associations
in RAM are only accessible from classes within the same aspect
and therefore an object can not send a message to an object of a
class that corresponds to an association outside the actual RAM
aspect. By using getter methods with proper names this restric-
tion can be bypassed without the need for further modeling as

2 Since the advised methods do not need to declare to throw the checked
InvocationTargetException, we must wrap all exceptions in AspectJ’s pre-
defined SoftException.

78 mapping reusable aspect models to aspectj

caller: Caller target: |Traceable

|newT: Trace
 newT := create(m, accessKind, target)

caller: Caller target: |Traceable

newT := createTrace(m)

Pointcut Advice

accessKind :=
getAccessKind(m)

message view createTrace

Default
Instantiation
caller → *
Caller → *
target → *

newT := createTrace(m)

Figure 53: The message view createTrace from the Traceable aspect show-
ing the creation of new variables and the use of constructors.

getter methods are mapped to complete default implementations
as explained in Section 5.2.1.5.

Messages labeled with the name create stand for calls to con-
structors and the type for a resulting constructor call in Java is
the type of the receiver of the message. If the name of the re-
ceiver object is not already in use we create a variable declaration
statement that defines a variable of the same name using the
receiver type and assign the result of the constructor call to it.
This assignment can but does not need to be made explicit in
the message view by prepending the name of the receiver object
followed by := to the message label.

A label of an arbitrary message represents a variable assign-
ment if it is of the form var := method(p, ...) where var is an
arbitrary identifier and the list of parameters p, ... can be of any
length. Such a variable assignment is implemented as a Java

assignment statement whose right side corresponds to the code
that we would have obtained by mapping only the part after
the := characters. If the used variable identifier does not match a
parameter variable of the advised method nor the role name of an
available association, then we declare a new Java variable using
the identifier. The type of the variable is inferred from the right
side of the assignment as the return type of the called method. In
case of a call to a method that returns a value of boolean type we
allow the direct negation of the result prior to the assignment. In
the model this is expressed with the keyword not following the
:= characters and in our code we simply insert a ! before the call.

In Figure 53 we present the message view for the method
createTrace of the Traceable aspect as an example that contains
messages that create new variables and call constructors. The
implementation of this message view as shown in Figure 54

creates a new variable of type AccessKind and assigns the return
value of a call to the method getAccessKind to it.

return values and internal statements If a method
has a non-void return type, a modeler may omit the optional
asynchronous return message at the end of a message view in
cases where this is unambiguous. The implementation of such

5.2 ordinary aspects 79

public interface Traceable extends AccessClassified {

...

}

aspect TraceableAspect {

...

// methods shown in message views

public Trace Traceable.createTrace(Method m) {

AccessKind accessKind = this.getAccessKind(m);

return new TraceImpl(m, accessKind, this);

}

}

Figure 54: Implementation of the message view createTrace (see Fig-
ure 53) creating a new variable and calling a constructor.

an implicit or explicit return message is a Java return statement
involving the result variable that is mentioned in the label of
the first message from caller to sender. In cases where the last
element of a message view is a note or a message specifying an
assignment to the result variable we merge the return statement
and variable assignment into a single return statement in order
to obtain shorter code that is easier to read.

As it is impossible to express other statements than method
calls in sequence diagrams we make use of notes in order to
model assignment statements that involve constants in RAM.
The implementation of these notes is a simple assignment to
the variable with the name on the left side of the “:=“ using the
value of the constant on the right side. If a variable with the
used identifier does not exist yet we declare a new variable and
determine the type directly from a list of constants. So far we
only used the boolean constants true and false but a mapping for
integer number constants and string constants is equally trivial.

Conditional and
alternative combina-
tion fragments have
direct equivalents
in Java .

conditional and alternative sequences

The most simple control flow construct that message views of
Reusable Aspect Models support are option combination frag-
ments that are directly mapped to equivalent if-statements in Java.
The code that corresponds to the optional message sequence is
placed in the body of the corresponding if-statement. As the
conventions for sequence diagrams differ from Java syntax we
map the boolean operators <> to !=, = to ==, and not to !. Note
that we do not support hidden message calls in conditions of
an option combination fragment in order to keep our mapping
simple and to encourage what we consider good style.

Very similar elements of message views are alternation combi-
nation fragments that are implemented with an initial if- and con-
sequent else-if-statements. Every alternative message sequence is
mapped as if it would be outside the fragment and the resulting
code is placed in the block of the corresponding if- or else-if-
statement. The mapping for conditions is the same as for option

80 mapping reusable aspect models to aspectj

Pointcut Advice
caller: Caller target:

RecoveringContext

contextCompleted()
outcome :=
getOutcome()*

caller: Caller

contextCompleted()

failed := not isPositive()

restoreCheckpoints()

outcome:
Outcome

target:
RecoveringContext

opt [outcome <> null]

alt

*

Default
Instantiation
caller → *
Caller → *
target → *

[failedl]

discardCheckpoints()
[else]

message view contextCompleted (Checkpointing variant)
affected by OutcomeAware.getOutcome, Checkpointing.restoreCheckpoints, Checkpointing.discardCheckpoints

failed := true

Figure 55: The message view contextCompleted for the Checkpointing
variant of the Recovering aspect containing an option and an
alternation combination fragment.

combination fragments except for the special [else] condition that
yields an else-statement instead of an else-if-statement.

In Figure 55 and 56 we present the message view and the imple-
mentation for the Checkpointing variant of the method contextCom-
pleted from the Recovering aspect as an example of a method that
contains an option and an alternation combination fragment.

Repetitive sequences
are implemented
with while loops,

iterators, and
for-each-loops.

loop combination fragments The most powerful control
flow constructs that can be used in RAM’s message views are
loop combination fragments that we implement using Java’s
while and for-each loops. The code that we obtain from mapping
the content of the loop fragment is always placed into the block
of the corresponding Java loop.

Our implementation of the condition and initialization part of a
loop however differs depending on the structure of the condition
that was used in the model. A boolean condition as it can be used
in optional and alternation combination fragments is mapped to a
plain while loop whose conditional expression is obtained in the
same way as described above for option combination fragments.

If the condition of a loop contains the keyword within, then the
modeled loop iterates over the elements of a collection and our
implementation needs to contain the corresponding logic for the
creation and modification of a pivot element. In order to be able to
create a complete implementation of this suggestive condition we
need to rely on the assumption that the type of the variable that
we should iterate over is a subclass of java.util.Collection.
Given the possibility to implicitly reuse Java library classes as

5.2 ordinary aspects 81

public interface RecoveringContextCheckpointing

extends RecoveringContext, CheckpointingContext {

...

}

aspect RecoveringContextCheckpointingAspect {

...

// methods shown in message views

before(RecoveringContextCheckpointing context) :

execution(void Context.contextCompleted()) && target(context) {

Outcome outcome = context.getOutcome();

boolean failed = true;

if (outcome != null) {

failed = !outcome.isPositive();

}

if (failed) {

context.restoreCheckpoints();

} else {

context.discardCheckpoints();

}

}

}

Figure 56: Implementation of the Recovering variant of the message
view contextCompleted (see Figure 55) showing the mapping
of option and alternation combination fragments to if- and
else-statements.

described in Section 5.2.1.1 we believe that this restriction is easy
to fulfill for users of RAM.

An example of a simple loop combination fragment is given
in Figure 57 with the message view of performUpdate from the
Deferring aspect. Every element of the variable traced is processed
iteratively using a pivot name t in order to send a message
updateOriginal to it. The implementation of this message view
using a for-each loop is shown in Figure 58.

For loop combination fragments whose condition is not com-
posite we use Java’s compact for-each loop as it produces the
leanest and most readable code. The collection that is to be it-
erated over is stated directly after the within keyword in the

Pointcut Advice

caller: |Caller target:
|DeferringContext

performUpdate()

message view performUpdate affected by Tracing.getAccessed, Deferrable.updateOriginal

t: |Deferred
updateOriginal(target)

caller: Caller

 traced := getAccessed()

target:
|DeferringContext

performUpdate()

loop [t within traced]Default Instantiation
caller → *
Caller → *
target → *

Figure 57: The message view performUpdate of the Deferring aspect con-
taining a loop combination fragment that iterates over a
collection using the keyword within.

82 mapping reusable aspect models to aspectj

public interface DeferringContext extends TracingContext {

...

}

aspect DeferringContextAspect {

// methods shown in message views

public void DeferringContext.performUpdate() {

Collection<Traced> traced = getAccessed();

for (Traced t : traced) {

((Deferrable) t).updateOriginal(this);

}

}

}

Figure 58: Code for the method performUpdate of the Deferring aspect
(see Figure 57) demonstrating the use of for-each loops to
implement loop combination fragments involving within.

modeled condition and occurs last in the resulting Java loop but
provides the type for the pivot variable. This pivot type forms the
beginning of our for-each-loop condition followed by the name
of the pivot element that is mentioned in the condition before the
within. The variable name of the collection that is to be iterated
over appears last after a separating colon.

In case of a composite loop condition that combines a within
iteration with boolean expressions we cannot use Java’s simple
for-each-loop. Instead, we need to work with a classical iterator
and a while loop. Our code begins with the declaration of an
iterator variable that is parameterized with the element type of
the collection and initialized by calling the iterator method
on the collection. The following while-loop has a compound
condition that combines a call to the hasNext function of the
iterator with the boolean expression of the loop combination
fragment. We start the block of the while loop with the declaration
of the variable for the pivot element and directly assign the return
value of a call to the next function on the iterator to it. The code
that corresponds to the content of the loop combination fragment
is inserted immediately after this statement.

Figure 59 presents the message view for the method wasAc-
cessed in the Nested / Tracing conflict resolution aspect that con-
tains a loop combination fragment with a compound condition.
This condition c within children && not accessed expresses that we
want to iterate over all elements c of the variable children as long
as the value of the variable accessed is false. The resulting code
is shown in Figure 60 and involves an iterator variable whose
information is used for the loop condition and binding of the
pivot element.

ensuring type safety In RAM the type of an object in a
message view might be more specific than the return type of
the method that provided the object. In our implementation we

5.2 ordinary aspects 83

interference criteria
TracingContext =

NestedContext

message view Tracing.wasAccessed affected by Nested.getChildren

Pointcut Advice
target:

TracingContext

accessed := wasAccessed(t)

caller: Caller caller: Caller

*

accessed := wasAccessed(t)

target:
TracingContext

loop [c within children && not accessed]

opt [not accessed]

c: TracingContext

accessed := wasAccessed(t)

*

Default
Instantiation
caller → *
Caller → *
target → *

children := getChildren()

Figure 59: Message view for the method wasAccessed in the Nested / Trac-
ing conflict resolution aspect comprising a loop combination
fragment with a compound condition.

privileged aspect TracingContextAspect {

...

// methods shown in message views

boolean around(NestedContext target, Traced t) :

execution(boolean TracingContext.wasAccessed(..)) && target(target) && args(t) {

boolean accessed = proceed(target, t);

if (!accessed) {

Set<NestedContext> children = target.getChildren();

Iterator<NestedContext> childrenIterator = children.iterator();

while (childrenIterator.hasNext() && !accessed) {

NestedContext c = childrenIterator.next();

accessed = ((TracingContext) c).wasAccessed(t);

}

}

return accessed;

}

...

}

Figure 60: Code for the wasAccessed method in the Nested / Tracing
conflict resolution aspect (see Figure 59) using an iterator to
implement a loop with a compound condition.

84 mapping reusable aspect models to aspectj

enforce these types with explicit type conversions. If the lifeline
of an object specifies a type that differs from the return type of
the method that returned the object, we insert a downcast to the
type that is mentioned for the lifeline between the corresponding
call and assignment.

In case of within loops that specify a different type for the pivot
element than the iterated collection we prepend an inline cast
to the modeled type to every method call on the pivot element.
The current status of the AspectJ compiler does not allow inter-
type introduction on generic classes whose type parameter is
also generic. For this reason we could not realize our plan to
parameterize every type such that methods of reused aspects will
correctly return the more specific types of the reusing aspect. We
hope that further improvements on the AspectJ compiler will
make it possible to use inter-type introduction on generic classes
with generic types as this would allow us to avoid these typecasts.

5.3 conflict resolution aspects

Conflict resolution
aspects are privileged

aspects with
interference criteria.

In order to automatically detect and resolve conflicts between
reused aspects RAM supports the definition of conflict resolu-
tion aspects. These aspects have all features of ordinary aspects,
but they cannot be instantiated. Instead, they are automatically
applied if their interference criteria are met. To support that, our
mapping needs to generate code for conflict resolution aspects
that is only executed when the corresponding criteria hold.

In the AspectOPTIMA case study all interference criteria are
of the form ClassA = ClassB. Such a criterion captures cases in
which the binding and instantiation directives of the aspects that
define the involved classes and the directives of a reusing aspect
resulted in a merge of both classes.

An additional feature of conflict resolution aspects is that they
are given access to methods, classes and associations with pack-
age access modifier for both involved aspects. This means for
example that message views of a conflict resolution aspect have di-
rect access to associated objects and can contain calls to methods
that would not be visible from plain aspects. Our implementation
achieves this by prepending the keyword privileged to every
AspectJ aspect that results from a RAM conflict resolution aspect.

5.3.1 Structural View

Our AspectOPTIMA case study contains no conflict resolution
aspect with a structural view, but our mapping would be able to
implement such views with an interference criterion of the form
A = B without further complications. In a preparatory step we
would need to define an interface AB that stands for the merged

5.3 conflict resolution aspects 85

conflict resolution aspect Closable / SpawnSupporting
message view Closable.isLastAllowedParticipant
affected by Closable.getMaxParticipantCount, SpawnSupporting.getSpawnedParticipantCount

caller: Caller
caller: Caller target:

ClosableContext

last := isLastAllowedParticipant()

Pointcut

Advice

last := isLastAllowedParticipant()

max := getMaxParticipantCount()

target:
ClosableContext

opt [participants - spawned = max]interference criteria
ClosableContext =

SpawnSupportingContext

spawned := getSpawnedParticipantCount()
Default

Instantiation
caller → *
Caller → *
target → *

participants := getParticipantCount()

last := false

last := true

Figure 61: The conflict resolution aspect Closable / SpawnSupporting
shows the use of methods of both merged classes on a target
of type ClosableContext.

type and we would make every class that is an instance of both
merged classes implement this interface with a type hierarchy
modification of the form declare parents: (@AClass @BClass

*) implements AB. The content of the structural view could then
be implemented almost the same way as described in Section 5.2.1
with the only difference that the new interface AB would be used
instead of A or B.

5.3.2 Message View

The implementation of message views of conflict resolution as-
pects follows the same rules as described in Section 5.2.3 for
message views of plain aspects with slight modifications. We will
discuss these modifications for three different structural circum-
stances in which message views can occur and present the special
case of a conflict resolution aspect with type parameters.

5.3.2.1 Structural Circumstances

Let us now consider a message view of a conflict resolution
aspect with an interference criterion ClassA = ClassB that advises
an existing method (see Section 5.2.3.2) that is initially declared
in one of the merged classes, say ClassA, and unavailable in the
other, say ClassB. In such a case we specify in the advice part
of the corresponding aspect signature that the target object is
of type ClassB. The result is that we only advice the execution
of the method in a case where ClassA provided the method and
the target is an instance of ClassB. This means that the target is
an instance of both classes. An example for such an interference
criterion guaranteeing advice signature is shown in Figure 62 for
the Closable / SpawnSupporting conflict resolution aspect that we
present again in Figure 61.

86 mapping reusable aspect models to aspectj

privileged aspect ClosableContextAspect {

...

// methods shown in message views

boolean around(SpawnSupportingContext target) :

execution(boolean ClosableContext.isLastParticipant()) && target(target) {

boolean result = false;

int participants = target.getParticipantCount();

int max = ((ClosableContext) target).getMaxParticipantCount();

int spawned = target.getSpawnedParticipantCount();

if (participants - spawned == max) {

result = true;

}

return result;

}

}

Figure 62: Code for the conflict resolution aspect Closable / SpawnSup-
porting (see Figure 61) showing the interference criteria guar-
anteeing target variable of type SpawnSupportingContext

and an inline typecast for getMaxParticipantCount.

In case of a message view with the same interference criterion
ClassA = ClassB that advises an existing method that is not ini-
tially declared in one of the merged classes, we need to add a
further pointcut to the corresponding advice signature in order
to ensure the interference criterion. This is necessary because As-
pectJ forces us to specify the declaring type in the pointcut part
of the advice as the type of the lowest class in the type hierarchy
that declared the method. An advice that only specifies that the
target object is of type ClassA for example would apply in every
case where a class that extends the declaring class is merged with
ClassA. Therefore we append a pointcut of the form if(target

instanceof ClassB) to the advice signature, thus restricting our
advice to the cases that meet the interference criterion.

The last circumstance of a message view of a conflict resolution
aspect is the definition of a completely new method. As such
a method does not need to be specified in a structural view if
it is only reused in the defining conflict resolution aspect, we
need to retrieve the structural information from the defining
method view and from a message view that contains a call to
the new method. The declaring class for our new method is the
class of the target of the corresponding message in the pointcut
part of the message view. From a call to the new method in
another message view we obtain the parameter types as the types
of the concrete arguments of that call. As the method is only
used within this conflict resolution aspect we are guaranteed to
find such a call. If this would not be the case the new method
would never be used and could be ignored. An example of such
a definition of a new method is copyAndMapNewVersion of the
conflict resolution aspect Deferrable / Nested as shown in Figure 63.
The code of the corresponding method, presented in Figure 64,

5.3 conflict resolution aspects 87

conflict resolution aspect Deferrable / Nested

message view Deferrable.getVersion affected by Nested.getParent, Deferrable.copy, Deferrable.setOriginal

caller: Caller target: |Deferrable
version :=

getVersion(initialContext)

Pointcut Advice

parentContext := getParent()

copyAndMapNewVersion
 (target.original, currentContext)

parent := getParent()

interference criteria
Deferrable.Context =

Nested.NestedContext

caller: Caller target: |Deferrable

version := get(initialContext)

loop [version = null]

alt

opt [parentVersion <> null]

[else]

version := get(parentContext)

message view copyAndMapNewVersion affected by Deferrable.copy, Deferrable.setOriginal

caller: Caller target:
Deferrable

copyAndMapNewVersion(source, context)

Pointcut Advice
caller: Caller target:

Deferrable

newVersion :=
copy()

newVersion:
|Deferrable

source:
|Deferrable

setOriginal(source)

contextToVersionMap:
HashMap<Context,

|Deferrable>

currentContext:
NestedContext

contextToVersionMap:
HashMap<Context,

|Deferrable>

Default
Instantiation
caller → *
Caller → *
target → *

version :=
getVersion(initialContext)

parentVersion := get(parentContext)

[parentContext = null]

copyAndMapNewVersion
 (parentVersion, currentContext)

Default Instantiation
caller → *, Caller → *, target → *

copyAndMapNewVersion(source, context)

put(context, newVersion)

currentContext
:= initialContext

parentContext
:= initialContext

parentContext
:= initialContext

currentContext
:= parentContext

Figure 63: The definition and use of a new method copyAndMapNewVer-
sion in the conflict resolution aspect Deferrable / Nested.

demonstrates the direct access to the field that corresponds to the
contextToVersionMap association of the Deferrable aspect.

5.3.2.2 Conflict Resolutions with Type Parameters

The restriction to use abstract and extending pointcuts and as-
pects for conventional aspects with type parameters also applies
to conflict resolution aspects. In Section 5.2.3.4 we explained this
special case using the method template method addChildrensRe-
sults from the the aspect Nested. We will now use the conflict
between the aspects Nested and Tracing in order to show a mes-
sage view of a conflict resolution aspect that uses the generic
template method of our prior example.

88 mapping reusable aspect models to aspectj

privileged aspect DeferrableAspect {

...

// methods shown in message views

...

private void Deferrable.copyAndMapNewVersion(Deferrable source, Context context) {

Deferrable newVersion = (Deferrable) source.copy();

newVersion.setOriginal(source);

this.contextToVersionMap.put(context, newVersion);

}

}

Figure 64: Code for the copyAndMapNewVersion method of the conflict
resolution aspect Deferrable / Nested (see Figure 63) showing
privileged access to the association field contextToVersionMap.

message view getTraces affected by Nested.addChildrensResults
Nested binding
getTraces → m

List<Trace> → Collection<T>

Figure 65: The message view getTraces from the Nested / Tracing conflict
resolution aspect binding the template addChildrensResults.

Our conflict resolution aspect Nested / Tracing was modeled
in order to make traces that were gathered in a child context
also available to the parent context. To achieve the desired ef-
fect, the conflict resolution aspect applies the template behavior
addChildrensResults (Figure 51) to the method getTraces (Fig-
ure 65). The results is that all traces of children contexts are added
to the traces of a context before the result is returned.

To achieve the same effect in AspectJ , our mapping produces
a concrete aspect that extends the abstract aspect (Figure 52) as
shown in Figure 66. Its purpose is to assign the return type pa-
rameter to List<Trace> and to instantiate the abstract pointcut m
to the method getTraces. The conflict criteria TracingContext =

NestedContext is also visible in the generated code: in the point-
cut definition we intercept executions of the getTraces method of
a TracingContext, but the declared target type is NestedContext.

5.3.2.3 Message View Content

The content of a message view that is contained in a conflict
resolution aspect is mapped to AspectJ code the same way a
message view of a plain aspect would be mapped, except for one
additional rule: Whenever a message is passed to an object of

aspect GetTracesAddChildrensResultsAspect extends AddChildrensResultsAspect<List<Trace>> {

public pointcut m(NestedContext target) :

execution(List<Trace> TracingContext.getTraces()) && target(target);

}

Figure 66: Mapped code for the method getTraces (see Figure 65) ex-
tending the abstract aspect for addChildrensResults.

5.4 configuring product lines 89

one of the merged classes that corresponds to a method that is
not available at this class we insert an inline typecast to the other
merged class into the corresponding method call statement. The
conflict resolution aspect Closable / SpawnSupporting that already
served as an example in Section 5.3.2.1 also demonstrates the use
of such inline typecasts as shown in Figure 62.

5.4 configuring product lines

Due to its support for optional and alternative aspects, Reusable

Aspect Models allow a modeler to create a line of software
products with varying configuration. When we map a model
with support for different configuration possibilities to code we
need to account for every possible variation.

A RAM aspect that supports different variants is modeled the
same way as other aspects except for three little modifications:
The list of reused aspects can contain elements of the form (As-
pectA xor AspectB) to denote alternatives and elements of the form
opt AspectC to denote optional aspects. In both cases a message
view can be defined only for a certain configuration by appending
(AspectV variant) to the name of the message view where AspectV
stands for the aspect that is used in this variant of the aspect.

In case of an alternative variant of the form AspectA xor As-
pectB we create a Java enumeration that lists both possibilities
for convenient reuse in all involved aspects. The name of this
enumeration is the name that was given to this alternative in the
feature diagram of the project and the enumeration literals bear
the name of the reused aspects. As an example of an aspect with
an alternative variant we present the structural view of the Recov-
ering aspect in Figure 67. The binding and instantiation directives
for the alternative aspects Checkpointing and Deferring are only
executed in the variant that uses the corresponding aspect. As
this alternative was named UpdateStrategy in the feature diagram
of AspectOPTIMA (Figure 2), the resulting enumeration bears
the same name. We present it in Figure 68.

An optional variant requires no special structure that is reused,
and binding and instantiation directives involving an optional
aspect are only applied if the corresponding variant is chosen.
In both variation cases, alternative and optional, we need to de-
termine for every class whether its structure or behavior change
due to the variation. Such a change is effected by different instan-
tiation or binding directives or variant specific message views
for methods of a class. If we observe a changed structure or be-
havior for a class we create an additional interface that extends
the original interface of that class and has the name of the aspect
that causes the variation appended to its name. Furthermore, we
account for the variation in the annotation that corresponds to the

90 mapping reusable aspect models to aspectj

structural view

+ |RecoveringParticipant getCurrent()
+ RecoveringContext getContext()
+ createAndEnterContext()
+ voteAndLeaveContext()

|RecoveringParticipant

|RecoveringParticipant
|Recoverable

|m<AccessKind>

OutcomeAware instantiation
|OutcomeControllingParticipant → |RecoveringParticipant

~ RecoveringContext create()
+ contextCompleted()

RecoveringContext

+ * |m<AccessKind>(..)

|Recoverable

Checkpointing instantiation
|Checkpointed → |Recoverable

|CheckpointingParticipant →
|RecoveringParticipant

|m<AccessKind> → |m<AccessKind>

Checkpointing binding
RecoveringContext →
CheckpointingContext

Deferring binding
RecoveringContext →

DeferringContext

Deferring instantiation
|Deferred → |Recoverable

|DeferringParticipant → |RecoveringParticipant
|m<AccessKind> → |m<AccessKind>

OutcomeAware binding
RecoveringContext → ContextWithOutcome

voteAndLeaveContext → voteAndLeaveContext
createAndEnterContext → createAndEnterContext

getContext → getContext
getCurrent → getCurrent

aspect Recovering depends on OutcomeAware, Checkpointing xor Deferring

Figure 67: Structural view of the Recovering aspect with an alternative
for reused aspects and corresponding binding and instantia-
tion directives.

public enum UpdateStrategy {

// enumeration literals for reused aspects

CHECKPOINTING {

@Override

public String toString() {

return "Checkpointing";

}

},

DEFERRING {

@Override

public String toString() {

return "Deferring";

}

};

}

Figure 68: Enumeration for the UpdateStrategy alternative of the Recov-
ering aspect (see Figure 67) preserving the original literal
names in the toString method.

5.4 configuring product lines 91

@Target({ ElementType.TYPE })

@Retention(RetentionPolicy.RUNTIME)

public @interface TransactableClass {

UpdateStrategy updateStrategy();

ConcurrencyControl concurrencyControl();

}

Figure 69: Annotation for the class Transactable of the Transaction aspect
(see Figure 17) showing parameters for an inherited and
newly defined alternative.

@Target({ ElementType.TYPE })

@Retention(RetentionPolicy.RUNTIME)

public @interface TransactionParticipantClass {

UpdateStrategy updateStrategy();

ConcurrencyControl concurrencyControl();

boolean nested();

}

Figure 70: Annotation for the Transaction aspect’s TransactionParticipant
class (see Figure 17) containing parameters for two alterna-
tives and an optional reuse.

class by parameterizing it. In case of an alternative the parameter
has the corresponding enumeration as type and in case of an
optional aspect we add a boolean parameter that evaluates to
true if the aspect is chosen.

As variations are preserved in reusing aspects we need to ap-
ply the same technique to classes that are merged with varying
classes in reusing aspects. This means that for every class we
need to account for every possible configuration that results in
a different structure or behavior for this class. An example that
demonstrates these effects is the Transaction aspect as it inherits
the alternative UpdateStrategy from the reused Recovering aspect,
defines a new alternative ConcurrencyControl, and depends op-
tionally on the Nested aspect. The code for the annotation for the
class Transactable is shown in Figure 69. Note that both alterna-
tives have an effect on this class, but the optional Nested aspect
has no effect on it. In contrast to this the class TransactionPartici-
pant is affected by the Nested option too and therefore contains
an additional boolean parameter as shown in Figure 70.

Our annotation inheritance technique that we discussed in Sec-
tion 5.2.1.6 is also affected by the variation parameters. When we
declare an annotation on an element that is marked with an anno-
tation that involves variation parameters we need to preserve this
information for the newly added annotation. An example of this
is the configuration for the alternative UpdateStrategy that needs
to be passed on from the annotation of a Transactable object of the
Transaction aspect to the annotation that marks it as Recoverable
for the Recovering aspect as shown in Figure 71.

All code that results from the variation independent part of a
structural view and from message views that do not list a special

92 mapping reusable aspect models to aspectj

// Transaction instantiates Recovering

declare @type :

@TransactableClass(updateStrategy = UpdateStrategy.CHECKPOINTING) * :

@RecoverableClass(UpdateStrategy.CHECKPOINTING);

declare @type :

@TransactableClass(updateStrategy = UpdateStrategy.DEFERRING) * :

@RecoverableClass(UpdateStrategy.DEFERRING);

...

// Transaction instantiates TwoPhaseLocking xor OptimisticValidation

declare @type :

@TransactableClass(concurrencyControl = ConcurrencyControl.TWOPHASELOCKING) * :

@TwoPhaseLockedClass;

declare @type :

@TransactableClass(concurrencyControl = ConcurrencyControl.TWOPHASELOCKING) * :

@TwoPhaseLockedClass;

declare @type :

@TransactableClass(concurrencyControl = ConcurrencyControl.OPTIMISTICVALIDATION) * :

@OptimisticallyValidatedClass;

declare @type :

@TransactableClass(concurrencyControl = ConcurrencyControl.OPTIMISTICVALIDATION) * :

@OptimisticallyValidatedClass;

Figure 71: Extract from the AnnotationInheritance aspect that for-
wards configuration information for Transactable objects
(see Figure 17) to the Recoverable annotation.

variant is introduced into the variation independent interfaces.
These general interfaces extend all interfaces that correspond to
bound or instantiated classes of directives that are valid for all
variations. An example for invariant methods are beginTransaction
etc. of the Transaction aspect. As variation independent methods
may use methods that are not inherited from a variation inde-
pendent aspect but inherited in every variation we need to make
these methods available in the general interface. We achieve this
by making the general interface extend all interfaces that corre-
spond to classes that are merged with the class in consideration
in all possible variants. An example for such indirectly invari-
ant interfaces are TracingParticipant and OutcomeAwareParticipant
that are extended by the variation independent interface Recov-
eringParticipant as OutcomeAware is an aspect that is reused in
every variation and Tracing is an aspect that is reused in both
alternatives Checkpointing and Deferring.

Code that results from variation specific message views is
introduced into the special interfaces of that variant. The mapping
of instantiation and binding directives that are variation specific is
also applied to these special interfaces. An example of a variation
specific method is contextCompleted from the Recovering aspect.

To ensure that a user or modeler can never choose both op-
tions of an alternative we create a special AspectJ aspect named
ConfigurationEnforcement in the main package of every project.
In this aspect we use AspectJ’s facilities to declare weaver errors
at compiletime and specify that involved classes can never be
marked with annotations that correspond to both alternatives.

5.5 multiple reuse of aspects with different binding 93

aspect ConfigurationEnforcementAspect {

// declare runtime errors if xor exclusions are violated

declare error : execution(* (@CheckpointedClass @DeferredClass *).*(..)) :

"The configuration parameter \"update strategy\" of the |\"Recovering\" aspect " +

"is an exclusive or! You cannot use both options simultaneously!";

...

// declare runtime errors if composition rules are violated

declare error : execution(* (@OptimisticallyValidatedClass @CheckpointedClass *).*(..)) :

"The value \"Checkpointing\" for the configuration parameter \"update strategy\" is " +

"not allowed in combination with the value \"OptimisticValidation\" " +

"for the configuration parameter \"concurrency control\"!";

}

Figure 72: ConfigurationEnforcement aspect containing weaver error
declarations for configurations that are forbidden due to
alternatives or composition rules.

An extract from this ConfigurationEnforcement aspect that also
ensures composition rules that are mentioned in the feature dia-
gram is shown in Figure 72.

5.5 multiple reuse of aspects with different binding

So far we only considered cases of reuse where classes were
bound to reused classes exactly once. During the design of a
system cases can occur where a reused class is merged more
than once with an existing class due to instantiation or binding
directives. This is only useful if the names of the attributes, asso-
ciations and methods of this reused class are renamed in at least
all but one reusing aspect.

two mapping approaches In order to support these multi-
ple reuses we need to generate code that gives us the possibility
to rename fields and methods and to use these fields and meth-
ods accordingly. We developed two mapping approaches that
can be applied independent of each other for different aspects
within a single system. The first approach simply duplicates the
code of the reused aspect with new names for fields and methods
whereas the second approach does not duplicate modeled logic
but uses Java’s Reflection API to access renamed fields and
methods. We do not believe that one of both approaches has
unbeatable advantages over the other but that both should be
used in different circumstances in order to generate the best code
within each context.

The duplication approach has the disadvantage that modeled
logic is duplicated such that implementational refinements of
this logic need to be performed at multiple places. This leads to
higher maintenance efforts and a higher probability of failure.
A big advantage of this approach however is that no additional
overhead is introduced as no expensive calls to methods of the
Java Reflection API are used.

94 mapping reusable aspect models to aspectj

The code that we obtain from the reflection approach is leaner
and easier to update and maintain than the duplicated code
of the first approach. But we pay this advantage with lower
performance due to reflective access to methods and fields. The
instantiation or binding directives that made it necessary to use
one of these approaches however have a more direct equivalent
in the reflection approach than in the duplication approach.

A future code generator should offer a modeler the possibility
to decide for every aspect that is reused more than once which
approach he wants to use. This would ensure that small aspects
that are already complete such that their code is unlikely to be
changed can be implemented with the cheap duplication ap-
proach whereas the logic of bigger aspects that might be changed
later on is not spread over the system when the reflection ap-
proach is used.

5.5.1 Duplication Approach

In our extended AspectOPTIMA case study with support for
Open Multithreaded Transactions we decided to implement the
multiple reuse of the Lockable aspect using the duplication ap-
proach. This means that the code that we created for the Lockable
aspect is used directly in the TwoPhaseLocking aspect as it changes
no name of any entity. For the Shared aspect that uses Lockable
with different names for methods and attributes we duplicate the
original Lockable code and use these different names.

In both cases we do not work directly with the interface that
corresponds to the Lockable class but define new interfaces whose
name is LockableFor followed by the name of the reusing aspect.
The classes TwoPhaseLocked and Shared extend these specifc in-
terfaces instead of the general Lockable interface as the ordinary
mapping would require.

The code for the reuse of Lockable in TwoPhaseLocking is shown
in Figure 73. As TwoPhaseLocking reuses Lockable with unchanged
names for attributes and methods the resulting interface extends
the Lockable interface directly and is empty except for a declare

parents directive. This AspectJ directive makes sure that every
class that implements the Lockable as well as the TwoPhaseLocked
interface automatically implements the interface that we created
specially for this reuse of Lockable.

The Shared aspect however reuses the Lockable aspect with dif-
ferent names for the field myLock and the methods getLock and
releaseLock as shown in Figure 74. For this reason the resulting
LockableForShared interface does not extend the Lockable interface
but contains exactly the same code as this interface except for
the changed names and the declare parents directive. The cor-
responding code for this reuse is shown in Figure 75.

5.5 multiple reuse of aspects with different binding 95

public interface LockableForTwoPhaseLocking extends Lockable {

// empty: direct reuse of the default binding for Lockable

}

aspect LockableForTwoPhaseLockingAspect {

// bind annotations to mandatory instantiation parameter interfaces

declare parents :

(@LockableClass @TwoPhaseLockedClass *) implements LockableForTwoPhaseLocking;

// empty: direct reuse of the default binding for Lockable

}

Figure 73: Mapped code for the direct reuse of Lockable in TwoPhaseLock-
ing (see Figure 15 and 16) with unchanged entity names.

aspect Shared depends on AccessClassified, Lockable

+ * |m<AccessKind>(..)

|Shared

structural view

AccessClassified instantiation
|AccessClassified → |Shared

|m<AccessKind> → |m<AccessKind>

Lockable instantiation
|Lockable → |Shared

myLock → sharedLock
getLock → getSharedLock

releaseLock → releaseSharedLock

|Shared
|m<AccessKind>

Figure 74: Structural view of the Shared aspect containing an instantia-
tion directive that changes the names of an association and
two methods of the reused Lockable aspect.

public interface LockableForShared {

// public method signatures from structural view

void getSharedLock(AccessKind accessKind);

void releaseSharedLock(AccessKind accessKind);

}

aspect LockableForSharedAspect {

// bind annotations to mandatory instantiation parameters

declare parents :

(@LockableClass @SharedClass *) implements LockableForShared;

// attributes & associations from structural view

private Lock LockableForShared.mySharedLock = new LockImpl();

// declared methods without message views

// empty

// methods shown in message views

public void LockableForShared.getSharedLock(AccessKind accessKind) {

...

}

public void LockableForShared.releaseLock(AccessKind accessKind) {

...

}

}

Figure 75: Mapped code for the reuse of Lockable in Shared (see Fig-
ure 74) with a renamed attribute and two renamed methods.

96 mapping reusable aspect models to aspectj

aspect Blockable depends on Context

structural view
|BlockableParticipant

Context instantiation
|Participant → |BlockableParticipant

+ waitForSemaphore()

|BlockableParticipant

~ BlockableContext create()
~ Semaphore getSemaphore()
+ releaseSemaphore()

BlockableContext Context binding
BlockableContext → Context

1

semaphore

~ acquireUninterruptibly()
~ release()

Semaphore

caller: Caller
caller: Caller target:

BlockableParticipant
waitForSemaphore()

Pointcut
Advice

waitForSemaphore()

target:
BlockableParticipant

myContext :=
getContext()

mySemaphore:
Semaphore

myContext:
BlockableContext

message view waitForSemaphore affected by Context.getContext

mySemaphore :=
getSemaphore()

release()

acquireUninterruptibly()

caller: Caller
message view releaseSemaphore

caller: Caller target:
BlockableContext

releaseSemaphore()

Pointcut
Advice

releaseSemaphore()

target:
BlockableContext

mySemaphore :=
getSemaphore()

mySemaphore:
Semaphore

release()

Default
Instantiation
caller → *
Caller → *
target → *

Default Instantiation
caller → *, Caller → *, target → *

1

Figure 76: The model for the Blockable aspect containing the association
semaphore and the methods getSemaphore, releaseSemaphore,
and waitForSemaphore that are renamed in reusing aspects.

5.5.2 Reflection Approach

A more sophisticated approach accesses fields and methods us-
ing Java’s Reflection API in order to avoid code duplication.
It has been applied to the reuses of the Blockable aspect of the
Open Multithreaded Transaction extension to AspectOPTIMA.
The Blockable aspect itself is presented again in Figure 76. It is a
good example for our general mapping for multiple reuses as it
contains an attribute as well as a dependency between methods
that needs to be maintained even when they are renamed. The
message views of these methods are implemented in static meth-
ods of two helper classes BlockableParticipantMessages and
BlockableContextMessages. In Figure 77 we present the code for
BlockableContextMessages that also contains a helper method
to retrieve the getter method getSemaphore. Note that instead of
calling the getSemaphore method directly it is called using the
passed binding mapping and Java’s Reflection API. This means
that no matter how we renamed the getSemaphore method in a
reusing aspect we will always be calling the right method from
within the corresponding releaseSemaphore method.

All reuses of Blockable are syntactically equivalent such that it
is sufficient to discuss the reuse in the ExitSynchronizing aspect.
Figure 78 presents the structural view of the ExitSynchronizing
aspect in which the semaphore association and three methods of
Blockable are renamed within a binding directive. We implement
this binding with a class that contains nothing but a static field

5.5 multiple reuse of aspects with different binding 97

class BlockableContextMessages {

// static version of methods shown in message views

static void releaseSemaphore

(BlockableContext blockableContext, Map<String,String> bindingMap) {

try {

Class<? extends BlockableContext> blockableContextClass = blockableContext.getClass();

Method getSemaphoreMethod = getGetSemaphoreMethod(blockableContextClass, bindingMap);

Semaphore mySemaphore =

(Semaphore) getSemaphoreMethod.invoke(blockableContext, (Object[]) null);

mySemaphore.release();

} catch (Exception e) {

// swallow

e.printStackTrace();

}

}

// helper methods for access to bound fields and methods

static Method getGetSemaphoreMethod

(Class<? extends BlockableContext> blockableContextClass, Map<String,String> bindingMap)

throws SecurityException, NoSuchMethodException {

String getSemaphoreName = (bindingMap == null) ? "getSemaphore" : bindingMap.get("getSemaphore");

Method method = blockableContextClass.getDeclaredMethod(getSemaphoreName, (Class<?>[]) null);

method.setAccessible(true);

return method;

}

}

Figure 77: Helper class BlockableContextMessages containing the
method releaseSemaphore of BlockableContext that is de-
tailed in a message view (see Figure 76) and a helper method
for the getter method getSemaphore.

map that links the names of associations, attributes, and methods
to their new names in the reusing aspect. The resulting code for
ExitSynchronizing is shown in Figure 78.

Similary to the LockableForShared interface in the duplication
approach that we discussed in the preceding chapter we create an
interface BlockableForExitSynchronizing for the reuse of Blockable
within ExitSynchronizing. Note that we still need to introduce the
field that corresponds to the association that was renamed to
exitSemaphore and the adjunct getter method3. The conceptual
difference however is that complete methods that are detailed
in message views are no longer introduced. Instead of that we
introduce a single method call to the static implementation of
the message view in the helper class BlockableContextMessages
and provide the binding as an argument. The resulting code for
ExitSynchronizing’s reuse of Blockable is shown in Figure 80.

For this short example the length and obscurity of the calls to
the methods of Java’s Reflection API might not seem worth the
effort. Nevertheless we believe that for complicated examples that
may require fine tuning after the modeling phase the advantage
of having all behavioral logic at a single spot weights out the
additional reflection infrastructure.

3 We do not use a general getter method that uses reflection to access the field as
this is far more expensive than a single line of code even if it is ”duplicated”.

98 mapping reusable aspect models to aspectj

aspect ExitSynchronizing depends on Collaborative, Blockable

structural view
|ExitSynchronizingParticipant

Collaborative instantiation
|CollaborativeParticipant → |ExitSynchronizingParticipant

+ Context getContext()
+ leaveContext()
- waitOrReleaseBeforeLeaving()
- waitForExitSemaphore()

|ExitSynchronizingParticipant

~ ExitSynchronizingContext create()
- int getBlockedParticipantCount()
~ increaseBlockedParticipantCount()
~ decreaseBlockedParticipantCount()
~ Semaphore getExitSemaphore()
~ releaseExitSemaphore()
~ boolean isLastExitingParticipant

- int blockedParticipantCount
ExitSynchronizingContext

Collaborative binding
ExitSynchronizingContext → Context

getContext → getContext
Blockable instantiation

|BlockableParticipant →
|ExitSynchronizingParticipant

Blockable binding
ExitSynchronizingContext → BlockableContext

exitSemaphore → semaphore
getExitSemaphore → getSemaphore

waitForExitSemaphore → waitForSemaphore
releaseExitSemaphore → releaseSemaphore

Figure 78: Structural view of the ExitSynchronizing aspect containing an
binding directive that changes the names of an association
and three methods of the reused Blockable aspect.

class BlockableForExitSynchronizingBinding {

// mapping from Blockable to ExitSynchronizing fields and methods

static Map<String, String> map = new HashMap<String, String>();

// initialize binding upon construction of aspect

static {

map.put("semaphore", "exitSemaphore");

map.put("getSemaphore", "getExitSemaphore");

map.put("waitForSemaphore", "waitForExitSemaphore");

map.put("releaseSemaphore", "releaseExitSemaphore");

}

}

Figure 79: Helper class containing the binding from names of associa-
tions, attributes, and methods of the Blockable aspect to their
equivalents in the ExitSynchronizing aspect (see Figure 78).

public interface BlockableContextForExitSynchronizing extends BlockableContext {

// public method signatures from structural view

Semaphore getExitSemaphore();

void releaseExitSemaphore();

}

aspect BlockableContextForExitSynchronizingAspect {

// attributes & associations from structural view

Semaphore BlockableContextForExitSynchronizing.exitSemaphore;

// declared methods without message views

public Semaphore BlockableContextForExitSynchronizing.getExitSemaphore() {

// auto-generated getter implementation

return this.exitSemaphore;

}

// methods shown in message views

public void BlockableContextForExitSynchronizing.releaseExitSemaphore() {

BlockableContextMessages.

releaseSemaphore(this, BlockableForExitSynchronizingBinding.map);

}

}

Figure 80: Code for ExitSynchronizing’s reuse of Blockable (see Figure 78)
showing the introduction of a field, a duplicated getter
method and a reflective method for the message view re-
leaseExitSemaphore.

5.6 limitations & bugs 99

5.6 limitations & bugs

5.6.1 Overriding Methods

Ensuring that
overridden methods
are used throughout
an around advice.

In Java a method that is overriding a method of a superclass
is only executed when the static type of the target is the class
that overrode the method. Let us consider an aspect that con-
tains a class that overrides a method that is already available as
a result of a binding or instantiation directive. This overriden
behavior would only take effect if the method is called on a target
whose static type reflects the type used in the overriding aspect.
However, calls from within methods of reused aspects would
not use the type of the reusing aspect and therefore execute the
unchanged behavior. To prevent this from happening we have to
add an around advice for every overriden method.

We will explain this workaround using the class Collaborative-
Context from the Collaborative aspect. The method addParticipant

and its analog removeParticipant are already defined within the
Context aspect but with another functionality as they refer to
the single association participant and not to the manifold associa-
tion participants. This means that we need to make sure that our
more specific methods are called whenever the target is of type
CollaborativeContext or of any of its subclasses. To this end we
advise the execution of the existing adder and remover method
in Context such that they call the corresponding methods in
CollaborativeContext.

Without this technique the method enterContext in the class
Participant would always call Context.addParticipant even
for a CollaborativeContext. Note that this is not only an As-
pectJ limitation as it would have the same effect on standard
classes with member methods. The problem arises from a clash
of principles between Aspect-Orientation and strict type systems.
Aspects should be oblivious and therefore the behavior of a
method that is defined in one aspect may be changed by another
aspect. In strictly-typed languages like Java however the target
and therefore behavior of a method call should be guaranteed
during compile time. The question whether or not this is a use-
ful requirement is controversial. However, such cases in which
methods with auto-generated default implementations infer with
existing methods in superclasses might be rare, but they can
easily be handled with the described technique.

5.6.2 Restrictions on Object Names

No support for
restrictions on caller
or target names.

In our model every default instantiation directive of a message
view binds the name of the caller and the name of the target of
the advised call to the wildcard character *. Any other instantia-

100 mapping reusable aspect models to aspectj

void around(CollaborativeContext target, CollaborativeParticipant participant) :

execution(void Context.addParticipant(..)) && target(target) && args(participant) {

// auto-generated overriding of existing adder

target.addParticipant(participant);

}

void around(CollaborativeContext target, CollaborativeParticipant participant) :

execution(void Context.removeParticipant(..)) && target(target) && args(participant) {

// auto-generated overriding of existing remover

target.participants.remove(participant);

}

Figure 81: Workaround for the overridden methods addParticipant

and removeParticipants ensuring that the specialized imple-
mentation of these methods is called where needed.

tion that restricts the name of the caller or target would not be
supported by our mapping as AspectJ offers no possibilities to
encode such restrictions.

Nevertheless, we believe that such restrictions could be imple-
mented if they should ever be modeled. A solution could be to
work with different interfaces that reflect different names and ex-
tend a common interface that is independent of the names. Such
a solution would increase the complexity of the implementation
significantly. It is, however, questionable how often such restric-
tions will be modeled as a method normally behaves identically
regardless of the name of the caller or target.

5.6.3 Automatic Information Hiding

Reused methods are
automatically hidden
in the model but not

in the code.

A central feature of Reusable Aspect Models is its automatic
information hiding for reused aspects [1]. Let us consider a public
method that is declared in a class of a reused aspect and that
becomes available in a reusing aspect due to an instantiation
or binding directive. The access modifier of such a method is
automatically changed in the reusing aspect to package in order
to protect it from improper use in aspects that reuse the reusing
aspect. If a modeler wants to provide access to a reused method,
he needs to expose the method by listing it with a public access
modifier in the structural view.

As explained in Section 5.2.1.6 and 5.2.1.7 we implement the
merging of classes that results from binding and instantiation
directives through inheritance. For this reason all public methods
of a reused class become and remain available in reusing classes
that were merged with it. That means that our mapping does not
support automatic information hiding yet.

We considered modifying our mapping in order to support
automatic information hiding, but decided to prioritize the sim-
plicity and understandability of the obtained code. A code gen-
erator, however, could give the modeler the possibility to decide

5.6 limitations & bugs 101

on a per-class basis whether he wants to generate code with or
without automatic information hiding for the class in question.

If the modeler would choose to automatically hide methods
of reused aspects we would need to change the way we imple-
ment instantiation and binding directives. A solution could be
to associate an object of a class of a reused aspect with a class
in the reusing aspect instead of merging them. As a result we
would need to introduce delegating methods into the class of
the reusing aspect. These methods would call the corresponding
methods on the associated object and could be omitted if they
are not exposed with a public access modifier in the structural
view of the reusing aspect.

5.6.4 Removing Functionality or Structure

Functionality can
only be removed
indirectly and
structure cannot be
removed at all.

So far, neither Reusable Aspect Models nor our mapping pro-
vide direct possibilities to explicitly remove functionality or struc-
ture. Due to the pointcut and advice syntax of message views,
however, it is possible to indirectly remove behavior by listing it
in the pointcut and omitting it in the advice. A concise possibility
to do this is to introduce a separate method for the behavior
that should be removed and to model a short message view that
advises every call to this method. An example for this technique
is discussed in Section 4.2.2 for the ExitSynchronizing / SpawnSup-
porting conflict resolution aspect.

If a possibility to explicitly remove behavior or structure should
be included into Reusable Aspect Models our mapping would
need to be updated accordingly.

5.6.5 Deviations from Common Patterns

Our mapping
imposes additional
restrictions on RAM
to avoid ambiguity.

At various points our mapping relies on specific syntax that is
common but not necessary for Reusable Aspect Models . If a
model does not follow the slight assumptions and restrictions
that we made, especially for the content of message views or
interference criteria, it will be hard or even impossible to auto-
matically obtain code using our mapping. Therefore we believe
that a code generator that realizes our mapping should explic-
itly list these restrictions in guidelines or even provide dynamic
interface dialogues that explain and resolve possible ambiguity
problems. One example could be to allow a modeler to extend
the list of supported classes and interfaces from the Java library
whenever the code generator encounters a class whose methods
are not detailed in message views.

6
U S I N G T H E A S P E C T O P T I M A
I M P L E M E N TAT I O N

We completed the code that we obtained from the application
of our mapping to the AspectOPTIMA case study by adding
implementational details that were not modeled and by provid-
ing interfaces through which our code can be used in existing
environments or in new projects. In order to test our implemen-
tation we created test cases for each aspect and two descriptive
examples that demonstrate how to use our code.1

In the following section we present two interfaces and an ex-
ample for the part of AspectOPTIMA that supports conventional
transactions and in the succeeding section we show how to use
AspectOPTIMA’s Open Multithreaded Transactions. We tried
to evaluate the comprehensiveness of our mapping by measur-
ing how much code was obtained from our mapping and how
much code was added or modified afterwards and we present
the results in Chapter 8.

6.1 aspectoptima

The part of AspectOPTIMA that provides facilities for conven-
tional transactions can be used through two interfaces. An anno-
tation interface allows users of the framework to annotate their
existing source code using the annotations provided by Aspect-
OPTIMA without calling a single method of the framework.
Additionaly a programmatic interface is provided that allows
users to explicitly begin, commit, or abort transactions.

6.1.1 Annotation Interface

If a user does not want to change existing source code he has the
possibility to annotate his code using the Java Annotations that
are automatically created by our mapping. The annotated source
code can still be compiled using a conventional Java compiler and
the resulting behavior will be identical to the behavior that would
have been produced from the source code without annotations.
However, if a user compiles the annotated source code with an
AspectJ compiler and provides a reference to the AspectOPTIMA
source code the transaction support will automatically be woven
into the existing code.

1 The complete model and implementation for AspectOPTIMA is available at
www.cs.mcgill.ca/~joerg/SEL/RAM.html.

103

http://www.cs.mcgill.ca/~joerg/SEL/RAM.html

104 using the aspectoptima implementation

Although a user could use partial functionality by annotat-
ing his code with annotations that correspond to reused aspects
we assume that in most cases it will be sufficient to use the
annotations provided by the Transaction aspect. These annota-
tions are TransactableClass for classes whose fields should
be saved and restored for transactions, TransactableMethod for
methods that represent operations that should be transacted, and
TransactionParticipantClass in case a user wants other classes
than java.lang.Thread to be a participant of a transaction. All
annotations contain configuration parameters in order to account
for different update strategy and concurrency control variants.

In addition to these annotations that we obtained automat-
ically from our mapping we provide two more annotations
that ease the use of the framework. AutoTransactedClass can
be used similarly to TransactableClass in order to annotate
classes whose content should be saved and restored. The dif-
ference to TransactableClass is that we added an AspectJ in-
struction that adds a TransactableMethod annotation to every
method of the class so that all operations on that class are au-
tomatically transacted. The second annotation that we added
is AbortTransactionOnThrowing that takes a class that extends
java.lang.Throwable as a parameter. If a method is marked with
this annotation the corresponding transactions are automatically
aborted whenever a Throwable object that is an instance of the
class that is provided as parameter is thrown.

6.1.2 Method Interface

A second possibility to access the functionality provided by
the AspectOPTIMA framework for conventional transactions
is to use our small API. The class AspectOPTIMA in the pack-
age ca.mcgill.sel.aspectoptima.interfacing provides static
methods that begin, commit, or abort a transaction. The different
update strategy and concurrency control variants are selected by
passing corresponding string constants to the methods. To explic-
itly begin a transaction that is a nested child of the current trans-
action the static method beginChildTransaction is provided. An
extract from the JavaDoc for this class and its methods is shown
in Figure 89 in the appendix.

The programmatic interface is an extension to the annota-
tion interface as users are still required to mark classes whose
content should be taken into account in transactions with the
TransactableClass annotation. It extends the possibilities of the
annotation interface as it gives users the possibility to begin,
abort, or commit transactions independent of existing structure.
Users that exclusively use annotations can only begin transactions
when an annotated method is called.

6.1 aspectoptima 105

@AutoTransactedClass(updateStrategy = UpdateStrategy.DEFERRING,

concurrencyControl = ConcurrencyControl.TWOPHASELOCKING, nested = false)

public class Account implements Serializable {

private int id;

private float balance;

private float limit;

public Account() { /* needed for java.io.Serializable */ }

protected Account(int id, float balance, float limit) {

this.id = id;

this.balance = balance;

this.limit = limit;

}

protected int getId() {

return this.id;

}

protected float getBalance() {

return this.balance;

}

protected void withdraw(float amount) throws InsufficientFoundsException {

if (this.balance - amount < limit) {

throw new InsufficientFoundsException();

}

this.balance -= amount;

}

protected void deposit(float amount) {

this.balance += amount;

}

}

Figure 82: The banking example’s Account class containing fields, get-
ters and setters, and methods to withdraw or deposit money.

6.1.3 Banking Example

In order to demonstrate the concrete use of our transaction frame-
work and the interfaces we provide a small example of a sim-
plified banking scenario that supports the transfer of money
from one bank account to another. Our Account class (shown in
Figure 82) consists of an account id, a current balance and an
overdraft limit. The only possible interactions with an account are
operations to withdraw or deposit money. Note that all methods
are automatically transacted using the deffering update strategy
and the concurrency control two-phase-locking as we used corre-
sponding parameters in the annotation @AutoTransactedClass.

A more fine-grained approach is used in our Bank class (shown
in Figure 83) that manages accounts and provides a transfer

method: We only define that the Bank class supports transac-
tions by annotating it with TransactableClass but we decide
on a per-method basis that only the transfer method should
be transacted by annotating it with TransactableMethod. The
AbortTransactionOnThrowing annotation is an additional feature
of our framework that gives the user the possibility to specify
that an transaction should automatically be aborted if an ex-
ception of a given type is thrown. We use it in order to define

106 using the aspectoptima implementation

@TransactableClass(updateStrategy = UpdateStrategy.DEFERRING,

concurrencyControl = ConcurrencyControl.TWOPHASELOCKING)

public class Bank implements Serializable {

private Map<Integer, Account> idToAccountMap = new HashMap<Integer, Account>();

public Bank() { /* needed for java.io.Serializable */ }

protected Bank(Collection<Account> accounts) {

super();

for (Account account : accounts) {

this.idToAccountMap.put(account.getId(), account);

}

}

@TransactableMethod(accessKind = AccessKind.UPDATE,

updateStrategy = UpdateStrategy.DEFERRING,

concurrencyControl = ConcurrencyControl.TWOPHASELOCKING, nested = false)

@AbortTransactionOnThrowing(BankingException.class)

protected void transfer(int sourceId, int destinationId, float amount)

throws InsufficientFoundsException, AccountNotAvailableException {

/* this order is unusual but necessary to show

* that operations get "undone" on abort */

Account destinationAccount = getAccountForId(destinationId);

destinationAccount.deposit(amount);

Account sourceAccount = getAccountForId(sourceId);

sourceAccount.withdraw(amount);

}

private Account getAccountForId(int id) throws AccountNotAvailableException {

Account account = idToAccountMap.get(id);

if (account == null) {

throw new AccountNotAvailableException();

}

return account;

}

}

Figure 83: The Bank class of our banking example containing method to
administrate accounts and to transfer money between them.

that the transaction should automatically be aborted whenever
a BankingException is thrown and use this class as a superclass
for all exceptions that we define ourselves.

To demonstrate how our transaction framework ensures the
ACID properties in case of a successful and a failing transfer we
provide a small JUnit testcase in Figure 84. In both cases we
create two accounts, try to transfer money from the first to the
second and use JUnit’s assertion mechanism in order to ensure
that the balance of both accounts complies to our expectations.
In the first case the transfer of 500 monetary units should be
successful because both accounts exist and the overdraft limit
is not exceeded. The second case, however, tries to transfer 900

monetary units from an account with a balance of 100.10 and
a limit of -500 so we expect it to fail. But as we defined in the
transfer method that the amount should be added to the target
account before it gets withdrawn from the source account we
might have caused an inconsistent state if we would not have
used a transaction framework. The recovery mechanism however
makes sure that the deposit operation is “undone” after the

6.2 omtt extension 107

public class BankingTest {

@Test

public void testSuccessfull() {

Collection<Account> accounts = new ArrayList<Account>(2);

Account a1 = new Account(1, 100.10f, -500);

Account a2 = new Account(2, 200.20f, -500);

accounts.add(a1);

accounts.add(a2);

Bank bank = new Bank(accounts);

try {

bank.transfer(1, 2, 500);

assertEquals(-399.90f, a1.getBalance(),0);

assertEquals(700.20f, a2.getBalance(),0);

} catch (BankingException e) {

e.printStackTrace();

}

}

@Test

public void testFail() {

Collection<Account> accounts = new ArrayList<Account>(2);

Account a1 = new Account(1, 100.10f, -500);

Account a2 = new Account(2, 200.20f, -500);

accounts.add(a1);

accounts.add(a2);

Bank bank = new Bank(accounts);

boolean insufficient = false;

try {

bank.transfer(1, 2, 900);

} catch (InsufficientFoundsException e) {

insufficient = true;

} catch (AccountNotAvailableException e) {

e.printStackTrace();

}

assertTrue(insufficient);

assertEquals(100.10f, a1.getBalance(),0);

assertEquals(200.20f, a2.getBalance(),0);

}

}

Figure 84: A JUnit test for our banking example demonstrating a suc-
cessful and a failing transfer that is automatically undone.

withdraw method failed and therefore the balances remain the
same after this unsuccessful transaction.

6.2 omtt extension

Our extension to the AspectOPTIMA case study that adds sup-
port for Open Multithreaded Transaction to the framework needs
to be accessed through annotations and a programmatic interface
as we did not discover a convincing possibility to spawn or join
threads using annotations.

108 using the aspectoptima implementation

6.2.1 OMTT Interface

Analogous to the annotations for conventional transactions that
we described in Section 6.1.1 the OMTT part of AspectOPTIMA
provides the annotations OMTTTransactableClass, OMTTTrans-

actableMethod, OMTTTransactionParticipantClass, AutoOMT-

TransactedClass, and AbortOMTTransactionOnThrowing. The API
consists of a class AspectOPTIMAOMTT in the package ca.mcgill.sel.
aspectoptimaomtt.interfacing that provides static methods
that begin, join, spawn, commit, or abort an Open Multithreaded
Transaction as well as methods that ease the handling of the
involved threads. In order to be able to assign new jobs to
threads that were spawned for another job we created the class
OMTTThread that extends java.lang.Thread.

As we documented all methods of the APIs for conventional
and Open Multithreaded Transactions we omit a detailed ex-
planation in this thesis and refer the interested reader to the
corresponding JavaDoc. An extract of this documentation is
shown in the appendix in Figure 90 and Figure 91.

6.2.2 Travel Agency Example

In order to demonstrate the use of AspectOPTIMA’s Open Multi-
threaded Transaction we created a highly simplified travel agency
scenario that presents a user different travel offers for parts of a
travel route. The idea of such a system is to reserve seats in the
proposed trains or planes for a short time during the booking
process in order to avoid cases in which a seat is not available
anymore when the booking process is completed. Note that the
travel agency system and the banking system that we described
earlier are only very small mock-ups that try to explain the func-
tionality of AspectOPTIMA and therefore they are far from being
fully functional or complete.

The class TravelAgency (shown in Figure 85) provides a method
bookTravel that allows a user to book a travel from a given point
of departure to a given destination on a given date. All code
within this method is wrapped into the run method of an anony-
mous class java.lang.Runnable and passed to the method run of
the facade AspectOPTIMAOMTT in order to be run in a thread that
supports Open Multithreaded Transactions. Within the code itself
we begin a transaction, let a TravelRouter split the route into
several parts and spawn a transaction participant for every route
part. These spawned participants make use of a FlightBroker

in order to find offers for every part of the overall route. Within
the called method findAndAddOffer the corresponding seats are
automatically reserved and will be booked if the transaction is
completed or discarded if the transaction is aborted. The decision

6.2 omtt extension 109

public class TravelAgency {

FlightBroker flightBroker = new FlightBroker();

public void bookTravel(final String departure, final String destination, final Calendar departureDate) {

Runnable bookTravelRunnable = new Runnable() {

public void run() {

try {

AspectOPTIMAOMTT.beginTransactionInCurrentThread("DEFERRING", "TWOPHASELOCKING" ,true);

final List<Offer> offerList = new ArrayList<Offer>();

int routePartCount = 0;

Future<Integer> splitRouteFuture =

new FutureTask<Integer>(

new Callable<Integer>() {

public Integer call() {

List<Route> routeList = TravelRouter.getRouteList(departure, destination, departureDate);

int localRoutePartCount = routeList.size();

for (final Route r : routeList) {

Runnable findRoutePartRunnable = new Runnable() {

public void run() {

if (r.vehicleType.isPlane()) {

flightBroker.findAndAddOffer(offerList, r);

}

}

};

AspectOPTIMAOMTT.spawnAndRunTransactionParticipantFromCurrentThread(findRoutePartRunnable);

}

return localRoutePartCount;

}

}

);

AspectOPTIMAOMTT.spawnAndRunTransactionParticipantFromCurrentThread((Runnable) splitRouteFuture);

routePartCount = splitRouteFuture.get();

while (offerList.size() < routePartCount) {

/* wait until all offers are found */

Thread.sleep(1000);

}

System.out.println("We found the following travel offers for you.");

for (Offer offer : offerList) {

System.out.println(offer);

}

System.out.println("Do you want to confirm these offers and book your travel? \n" +

"Enter \"yes\" to book. \"no\" to cancel, and \"help\" to get assistance from a representative.");

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

String input = in.readLine();

if (input.toUpperCase().equals("YES")) {

AspectOPTIMAOMTT.commitTransactionOfCurrentAndSpawnedThreads();

}

else if (input.toUpperCase().equals("HELP")) {

OMTTThread assistanceThread = getAssistanceThread();

AspectOPTIMAOMTT.joinCurrentTransactionWithExistingThread(assistanceThread);

}

else {

AspectOPTIMAOMTT.abortTransactionOfCurrentThread();

}

} catch (Exception e) {

e.printStackTrace();

}

}

};

AspectOPTIMAOMTT.run(bookTravelRunnable);

}

...

}

Figure 85: The class TravelAgency containing a method that allows a
user to find and book offers for a travel.

110 using the aspectoptima implementation

public class TravelAgencyTest {

@Test

public void testSuccessfull() {

TravelAgency travelAgency = new TravelAgency();

int remainingSeats = travelAgency.flightBroker.remainingSeats;

travelAgency.bookTravel("Montreal", "Paris", Calendar.getInstance());

int newRemainingSeats = travelAgency.flightBroker.remainingSeats;

assertEquals(remainingSeats, newRemainingSeats + 1);

}

@Test

public void testFail() {

TravelAgency travelAgency = new TravelAgency();

int remainingSeats = travelAgency.flightBroker.remainingSeats;

travelAgency.bookTravel("Montreal", "Paris", Calendar.getInstance());

int newRemainingSeats = travelAgency.flightBroker.remainingSeats;

assertEquals(remainingSeats, newRemainingSeats);

}

}

Figure 86: A JUnit test for our travel agency example demonstrating
a successful and a failing request whose seat reservation is
automatically undone.

to accept or decline an offer is made by the user after all offers
are presented to him. If he confirmed the offers the transaction
is commited, if he rejected the offers the transaction is aborted,
and if he asks for help a thread that is associated to a customer
support representative will join his transaction.

We tested our travel agency example using a JUnit test case
that we present in Figure 86. It contains successful booking re-
quest in which the number of remaining seats declines and a
failed request in which the number of remaining seats stays un-
changed. Note that the decision to accept or reject the offer is
made by the user and is not encoded in our interactive test cases.

7
R E L AT E D W O R K

Aspect-Oriented Modeling in general and Reusable Aspect Mod-
els in particular are still considered recent approaches and the
transition from the modeling phase to the implementation phase
attracts comparatively little interest. Moreover the AOM com-
munity focuses mainly on model-weaving techniques that result
in common models that can be implemented in languages that
do not support aspect-orientation. These circumstances probably
contribute to the fact that we are not aware of more than one
publication that examined in detail how constructs of an Aspect-
Oriented Modeling approach can be mapped to constructs of an
aspect-oriented programming language.

7.1 mapping theme/uml to aspectj

In 2002 Clarke and Walker [6] presented a detailed mapping
from one of the most know Aspect-Oriented Modeling techniques
Theme/UML [2] to AspectJ. Theme/UML is an asymmetric and
more complex AOM approach than RAM, but it shares some
common points with RAM and thus lead to a similar mapping.
The main difference, however, is that the code for Theme/UML
is less flexible when seen from a user perspective as AspectJ’s
recent support for Annotations could not be used yet.

Analogous to our mapping, pattern classes are implemented
with interfaces and non-template operations become methods
that are introduced in these interfaces. If a template operation
has no supplementary behavior it is mapped to abstract methods
in contrast to our mapping. Template operations with additional
behavior are mapped to abstract pointcuts. That means that tem-
plate methods without supplementary behavior need to be bound
by implementing the corresponding abstract method with a dele-
gating call. This is more verbose than marking existing methods
with annotations but it allows solutions that adapt to incom-
patible signatures. Abstract pointcuts that result from template
operations with supplementary behavior put no restrictions on
arguments, but they require the definition of concrete pointcuts
for bound methods. This means that aspects that are modeled
with Theme/UML using such operations and that are imple-
mented according to this mapping cannot be used in pure Java

projects. For the reuse of systems that are modeled with RAM
and implemented according to our mapping this is not the case
as Annotations are pure Java.

111

112 related work

The decisions behind the mapping for Theme/UML result
in code that imposes stronger restrictions on reusing projects
than code that is obtained with our mapping. Nevertheless, the
mapped code for Theme/UML may be more concise and read-
able than our mapped code. Efforts that improve the readibilty
and reuse of our code like the definition of a Domain-Specific-
Language are discussed in Chapter 8.

The mapping for Theme/UML also appeared in the book
Aspect-Oriented Analysis and Design by Clarke and Baniassad [5].
A first implementation and an extension that targets CaesarJ
are discussed in an unpublished work by Jackson et al. [12]. The
mapping to CaesarJ, however, is very similar to the mapping
to AspectJ and it has to address various problems that arise
from properties of CaesarJ but it gave us no further insights on
general questions that need to be addressed when a mapping to
an aspect-oriented programming language is developed.

7.2 other work on all-aspectual mappings

What impact the decision on an implementation strategy for
Aspect-Oriented Modeling approaches has on maintenance has
been analysed by Hovsepyan et al. [11]. One of the results of
this work is the insight that the use of approaches that target
aspect-oriented languages “results in smaller, less complex and
more modular implementation”.

Some other work is concerned with the generation of aspect-
oriented code but focuses on other concerns. Groher et al. [7]
for example describe an experimental aspect-oriented extension
to the Unified Modeling Language and give an outlook on
the generation of AspectJ code. It is unfortunate that their work
is lacking a detailed description of the mapping from model
artifacts to code elements.

An interesting domain-specific approach for agent-based sys-
tems is described by Kulesza and colleagues [21]. They use a
Domain-Specific Language (DSL) that is based on xml schemas
in order to describe aspects of agents and they mention a code
generator for their DSL. Although this work looks very promis-
ing it is lacking generality in comparison to the general-purpose
approach of RAM and provides no insights into the concrete
mapping from the DSL to aspect-oriented code.

Beier and Kern [3] describe a general approach that generates
code from UML models that were augmented with aspect infor-
mation. Their idea to use code templates in order to generate
code for these aspects is an interesting approach for user de-
fined structures, but it involves more human interaction than a
mapping from a fixed set of modeling constructs to code.

7.3 other work on aspect-orientation 113

7.3 other work on aspect-orientation

Our mapping makes use of various Aspect-Oriented Program-
ming techniques and patterns that have been described previ-
ously. One example is the introduction container pattern that
was presented by Hanenberg and Costanza [9]. Other researchers
inspired our mapping and the principles behind it or backed up
our decisions with empirical studies like Hoffman and Eugster
that showed that explicit interfaces facilitate reuse [10].

Related Aspect-Oriented Modeling approaches had an impact
on the way we made use of RAM’s features while we were
modeling the AspectOPTIMA case study. Eight of these AOM
approaches are evaluated in depth by Schauerhuber et al. [24]
together with a conceptual reference model for Aspect-Oriented
Modeling in general.

8
C O N C L U S I O N S & F U T U R E W O R K

8.1 conclusions

This thesis presented a mapping from constructs of Reusable

Aspect Models to AspectJ code. We applied our mapping to an
extended and updated version of the AspectOPTIMA case study
and completed the obtained code manually in order to create a
working implementation.

One of our main goals during the development of the mapping
was to preserve as much information that is contained in the
model during the generation of code. In order to evaluate our
performance we marked every line of code that was modified
or added after the application of the mapping. In Figure 87 and
Figure 88 we show how many lines of code (LOC) were necessary
to complete the implementation of each aspect. The vertical axes
show the LOC whereas the horizontal axes list each aspect of
the basic AspectOPTIMA framework or its Open Multithreaded
Transactions extension. It is remarkable that in both projects most
aspects needed no further refinements but some technical aspects
like Lockable or SpawnSupporting had to be completed with code
that was around 15% to 34% percent of the size of the mapped
code. Conflict resolution aspects needed no refinements at all
so that we excluded them from our figures. The aspect Copyable,
however, consists of 36 mapped and 160 manual lines of code that

Figure 87: Diagram showing the mapped and manual lines of code
(LOC) for every aspect of the AspectOPTIMA case study.
The amount of mapped LOC without changes is shown in
blue, manually edited or added LOC are shown in orange.

115

116 conclusions & future work

Figure 88: Diagram showing the mapped and manual lines of code
(LOC) for every aspect of the OMTT extension for the Aspect-
OPTIMA case study. The amount of mapped LOC without
changes is shown in blue, manually edited or added LOC
are shown in orange.

probably result from the fact that recursive copies of interlinked
objects and their fields can neither be implemented in a few lines
nor modeled in a visual modeling language.

All together we measured that 84% of the code for the aspects
that model conventional transactions and 96% of the code for
Open Multithreaded Transactions was obtained by a rigorous
application of the general mapping. That means that only 16% of
the final code for conventional transactions and 4% of the final
code for OMTTs were manually edited or added after the code
generation. But, we have to mention that we updated parts of
the model in order to achieve a more complete mapping and
that we had to implement interfacing functionality that was
not modeled with 415 LOC for conventional transactions and
455 LOC for Open Multithreaded Transactions. Because of this
unmodeled interfacing code it is hard to estimate how much
manual code will be necessary when our mapping is applied
to other models. Nevertheless, the magnitude of the measured
numbers gives us hope that a code generator for RAM could lead
to significant improvements in efficiency compared to manual
implementations.

8.2 future work

To use the full potential of our mapping future work should
address the development of a code generator for RAM. Together
with improved visualization tools a code generator could make
it more attractive for other researchers and developers to use
Reusable Aspect Models in their projects.

8.2 future work 117

Another future project could include state views into our map-
ping in order to provide additional runtime checks that make
resulting software systems more robust. As these checks would
require a mechanism for exception handling, it could be more
efficient to address the question, whether a general support for
exceptions should be developed for RAM, at the same time. A
solution that would allow modelers to define how exceptions can
be issued and handled could be of great value for developers of
fault tolerant systems. We sketched a possible strategy for state
view mapping in Section 5.2.2.

In order to make another feature of Reusable Aspect Models

available on the implementation level our mapping could be
modified in order to support automatic information hiding. As
the solution strategy that we described in Section 5.6.3 would lead
to more complex code we believe that such an information hiding
support should be an optional feature of a future code generator.
A more elegant solution that automatically hides reused public
methods without obfuscating the code could, however, be applied
by default.

Even if we described a mapping that is restricted to AspectJ
we believe that it could provide valuable insights to target other
aspect-oriented programming languages. It would even be possi-
ble to develop a Domain-Specific Language (DSL) that hides tech-
nical details while providing a textual transcription of Reusable

Aspect Models. Such a DSL could serve as an intermediate rep-
resentation from which various implementations for different
aspect-oriented languages could be generated. The mapping to
such an intermediate language could also be more concise and
elegant as the question whether the obtained code is easy to read
and maintain would be separated from the question how a certain
feature or circumstance can be mapped to executable code. The
technical details would be left to the translation process from the
DSL to an existing aspect-oriented programming language and
therefore the mapping could ignore these details and focus on a
compact and readable representation.

Finally our mapping requires thorough testing on various
projects in order to obtain a basis for a robust code generator
that is of real benefit for possible users. Even if all these possible
projects and improvements represent a lot of work we believe
that our mapping could be a first step towards solutions that
could be of worth to the Aspect-Oriented Modeling community.

A
A P P E N D I X

public static boolean abortTransaction()

Aborts the transaction that is associated to the currently active thread.
Returns: true if the current transaction was successfully aborted, false in case of
any error

public static boolean beginChildTransaction()

Begins a nested transaction as a child of the transaction that is associated to
the currently active thread using the configuration parameters of the parent
transaction.
Returns: true if the corresponding transaction was successfully started, false in
case of any error

public static boolean beginTransaction(java.lang.String

updateStrategy, java.lang.String concurrencyControl, boolean

nested)

Begins a transaction using the passed update strategy and concurrency control
mechanism. Allows for nested transactions if the parameter nested is true.
Parameters: updateStrategy - "CHECKPOINTING" or "DEFERRING" concurren-
cyControl - "TWOPHASELOCKING" or "OPTIMISTICVALIDATION" nested -
whether nested child transactions should be allowed or not
Returns: true if the corresponding transaction was successfully started, false in
case of any error

public static boolean commitTransaction()

Commits the transaction that is associated to the currently active thread.
Returns: true if the current transaction was successfully committed, false in case
of any error

Figure 89: Extract from the JavaDoc of the class AspectOPTIMA provid-
ing a functional interface for single-threaded transactions.

119

120 appendix

public static boolean abortTransactionOfCurrentThread()

Aborts the transaction that is associated to the currently active thread.
Returns: true if the current transaction was successfully aborted, false in case of
any error

public static boolean abortTransactionOfForeignThread(OMTTThread

t)

Aborts the transaction of the passed thread t.
Returns: true if the transaction was successfully aborted, false in case of any
error
...
public static OMTTThread beginAndRunTransactionInNewThread(java.lang.

Runnable r, java.lang.String updateStrategy, java.lang.String

concurrencyControl, boolean nested, int minParticipantCount, int

maxParticipantCount)

Begins an OpenMultithreadedTransaction in a new thread using the passed
update strategy and concurrency control mechanism and sets the minimal
and maximal number of participants to the provided values. Runs the passed
Runnable immediately afterwards in the newly created thread. This returned
new OMTTThread provides methods for enqueueing new jobs. Allows for
nested transactions if the parameter nested is true. Note that the return value
can simply be ignored if the new thread should never execute anything else
than the passed Runnable.
Parameters: updateStrategy - "CHECKPOINTING" or "DEFERRING" concurren-
cyControl - "TWOPHASELOCKING" or "OPTIMISTICVALIDATION" nested -
whether nested child transactions should be allowed or not
Returns: the new OMTTThread (extends Thread) in which the transaction was
started if it was started successfully, null in case of any error
...
public static boolean beginTransactionInCurrentThread(java.lang.

String updateStrategy, java.lang.String concurrencyControl,

boolean nested, int minParticipantCount, int maxParticipantCount)

Begins an OpenMultithreadedTransaction using the passed update strategy and
concurrency control mechanism and sets the minimal and maximal number
of participants to the provided values. Allows for nested transactions if the
parameter nested is true.
Parameters: updateStrategy - "CHECKPOINTING" or "DEFERRING" concurren-
cyControl - "TWOPHASELOCKING" or "OPTIMISTICVALIDATION" nested -
whether nested child transactions should be allowed or not
Returns: true if the corresponding transaction was successfully started, false in
case of any error
...
public static boolean commitTransactionOfCurrentAndSpawnedThreads()

Commits the OpenMultithreadedTransaction that is associated to the currently
active thread.
Returns: true if the current transaction was successfully committed, false in case
of any error

public static boolean commitTransactionOfCurrentThread()

Commits the OpenMultithreadedTransaction that is associated to the currently
active thread.
Returns: true if the current transaction was successfully committed, false in
case of any error
...
public static boolean joinAndRunTransactionWithExistingThread(java.

lang.Runnable r, OMTTThread threadToJoin, OMTTThread joiningT)

Lets the thread that is passed as joiningThread join the OpenMultithreaded-
Transaction of the thread that was passed as threadToJoin. Runs the passed
Runnable immediately afterwards in the joining thread.
Parameters: threadToJoin - the thread that is associated to the OpenMultithread-
edTransaction that should be joined joiningT - the thread that should join the
OpenMultithreadedTransaction of threadToJoin
Returns: true if the corresponding transaction was successfully joined, false in
case of any error

Figure 90: Extract (1/2) from the JavaDoc of the class AspectOPTI-
MAOMTT interface for Open Multithreaded Transactions.

appendix 121

public static boolean joinTransactionWithCurrentThread(OMTTThread

threadToJoin)

Lets the currently executing thread join the OpenMultithreadedTransaction of
the thread that was passed as an argument.
Parameters: threadToJoin - the thread that is associated to the OpenMultithread-
edTransaction that should be joined
Returns: true if the corresponding transaction was successfully joined, false in
case of any error

public static boolean joinTransactionWithExistingThread(OMTTThread

threadToJoin, OMTTThread joiningThread)

Lets the thread that is passed as joiningThread join the OpenMultithreaded-
Transaction of the thread that was passed as threadToJoin.
Parameters: threadToJoin - the thread that is associated to the OpenMultithread-
edTransaction that should be joined joiningThread - the thread that should join
the OpenMultithreadedTransaction of threadToJoin
Returns: true if the corresponding transaction was successfully joined, false in
case of any error

public static <T> void mapKeyToThread(T key, OMTTThread thread)

Maps the passed key object to the passed thread for futher reference.

public static <T> OMTTThread getThread(T key)

Returns the thread that is mapped to the passed key.

public static boolean run(java.lang.Runnable runnable)

Runs the passed runnable in a new OMTTThread. This method is the entry
point to the OMTT framework and every code that uses OMTT features must
have been passed to his method in a runnable or it must have been executed by
the framework itself through spawned threads.
Parameters: runnable -
Returns: true if the code was successfully run in a new OMTTThread, false in
case of any error

public static void setMinParticipantCountInCurrentThread(int min)

Sets the minimal number of participants that is required to begin a transaction
to the passed value for the transaction of the current participant.
...
public static OMTTThread spawnAndRunTransactionParticipantFrom

CurrentThread(java.lang.Runnable r)

Spawns a participant of an OpenMultithreadedTransaction using the transaction
that is associated to the currently executing thread. Runs the passed Runnable
in the newly spawned thread.
Returns: the new OMTTThread (extends Thread) that is associated to the
spawned participant if it was started successfully, null in case of any error

...
public static OMTTThread spawnRunAndReturnTransactionParticipant

FromExistingThread(java.lang.Runnable r, OMTTThread spawningT)

Spawns a participant of an OpenMultithreadedTransaction using the transaction
that is associated to the thread that was passed as an argument. Runs the passed
Runnable in the newly spawned thread.
Returns: the new OMTTThread (extends Thread) that is associated to the
spawned participant if it was started successfully, null in case of any error

public static OMTTThread spawnTransactionParticipantFromCurrentThread()

Spawns a participant of an OpenMultithreadedTransaction using the transaction
that is associated to the currently executing thread.
Returns: the new OMTTThread (extends Thread) that is associated to the
spawned participant if it was started successfully, null in case of any error

Figure 91: Extract (2/2) from the JavaDoc of the class AspectOPTI-
MAOMTT interface for Open Multithreaded Transactions.

122 appendix

Interfaces:
java.util.Collection→ java.util.HashSet
java.util.List→ java.util.ArrayList
java.util.Map→ java.util.HashMap
java.util.Set→ java.util.HashSet

Classes:
java.lang.reflect.Method
java.lang.Thread
java.util.ArrayList
java.util.concurrent.Semaphore
java.util.HashMap
java.util.HashSet
java.util.LinkedList
java.util.Stack

Figure 92: List of Java library classes and interfaces that are automati-
cally reused if a complete class with the same name contains
only methods with signatures that are specified in the Java

class or interface.

L I S T O F F I G U R E S

Figure 1 An Example of two nested Open Multi-
threaded Transactions involving four exist-
ing and two newly spawned threads (from
Kienzle [15]). 10

Figure 2 A feature diagram of the AspectOPTIMA
framework showing all aspects of common
single-threaded transactions. 12

Figure 3 The AccessClassified aspect enables the re-
trieval of the access kind for each method
that is given as a parameter. 12

Figure 4 The Traceable aspect provides the function-
ality to create traces of method invocations
on objects. 13

Figure 5 The Context aspect adds and administrates
an association between participants and
contexts. 15

Figure 6 The Tracing aspect uses the Traceable and
Context aspects to automatically create traces
and it provides access to them. 17

Figure 7 The Copyable aspect makes it possible to
clone objects and to replace their state. . . . 18

Figure 8 The Deferrable aspect provides facilities to
defer operations by using Copyable in order
to create and maintain different versions of
an object. 19

Figure 9 The Deferring aspect reuses Deferrable and
Tracing in order to automatically defer op-
erations based on the access history. 20

Figure 10 The Checkpointable aspect makes use of Copy-
able in order to store and retrieve snapshots
of the state of objects. 21

Figure 11 The Checkpointing aspect automatically main-
tains snapshots of objects based on the ac-
cess history provided by Tracing. 23

Figure 12 The OutcomeAware aspect associates con-
texts to outcomes and allows the participant
to vote on the outcome. 24

Figure 13 The Recovering aspect automatically recov-
ers the state of objects if they complete with
a negative Outcome and supports two dif-
ferent update strategies. 25

123

124 List of Figures

Figure 14 The Nested aspect allows for a nested hierar-
chy of contexts and maintains it automatically. 27

Figure 15 The Lockable aspect provides facilities to ac-
quire and release locks based on access kinds. 28

Figure 16 The TwoPhaseLocking aspect automatically
acquires and releases locks based on the
access history provided by Tracing. 30

Figure 17 The Transaction aspect combines the func-
tionality of all other aspects to provide the
possibility of beginning, committing and
aborting transactions. 32

Figure 18 The conflict resolution aspect for Nested /
Tracing recursively includes all tracing in-
formation of child contexts into queries. . . 33

Figure 19 The conflict resolution aspect for Check-
pointing / Nested keeps checkpoints of ob-
jects that were not accessed by the parent
context instead of discarding them. 34

Figure 20 The conflict resolution aspect for Deferrable
/ Nested makes sure that versions of par-
ent contexts are used as origin when new
versions are created. 35

Figure 21 The conflict resolution aspect for Nested /
TwoPhaseLocking makes sure that only the
root context that has no parental context
releases acquired locks. 36

Figure 22 A feature diagram of AspectOPTIMA show-
ing all aspects that were added for Open
Multithreaded Transactions or that are di-
rectly reused. 38

Figure 23 A feature diagram of AspectOPTIMA show-
ing all aspects for Open Multithreaded Trans-
actions and common single-threaded trans-
actions. 39

Figure 24 The Shared aspect automatically acquires
and releases locks based on the access kind
immediately before and after a participant
accesses a shared object. 40

Figure 25 The Collaborative aspect permits multiple
participants in one context and makes it
possible to join existing contexts. 41

Figure 26 The Blockable aspect associates a context to a
semaphore and allows participants to wait
until they acquire it. 42

Figure 27 The Pausable aspect provides the functional-
ity to pause a context and all its participants. 43

List of Figures 125

Figure 28 The Terminatable aspect allows the immedi-
ate termination of a context by making all
participants leave it. 44

Figure 29 The OutcomeVotable aspect gives participants
of a context the possibility to vote on an out-
come and to determine an overall outcome
from these votes. 46

Figure 30 The OutcomeVoting aspect automatically votes
on an outcome using a default vote if a par-
ticipant leaves without voting. 47

Figure 31 The ExitSynchronizing aspect blocks leaving
participants until the last participant left. . . 49

Figure 32 The EntrySynchronizing aspect blocks enter-
ing participants until a number of mini-
mally required participants is reached. . . . 51

Figure 33 The Closable aspect allows explicit and im-
plicit closure of contexts by specifying a
maximal number of participants. 52

Figure 34 The SpawnSupporting aspect allows the cre-
ation of new participants that are automati-
cally joining their creator’s context. 53

Figure 35 The OpenMultithreadedTransaction aspect com-
bines the functionality of all other aspects
and exposes their methods. 54

Figure 36 The conflict resolution aspect for Collabo-
rative / Nested allows participants to join a
context if the current context is an ancestor
of the context that should be joined. 55

Figure 37 The conflict resolution aspect for ExitSyn-
chronizing / SpawnSupporting excludes spawned
participants from exit synchronization as
they automatically terminate upon leaving. . 57

Figure 38 The conflict resolution aspect for Closable /
SpawnSupporting determines if the maximal
number of allowed participants is reached
without counting spawned participants. . . . 57

Figure 39 Structural view of the Deferrable aspect show-
ing the unobtrusive reuse of Java’s class Map. 61

Figure 40 Mapped code for the structural view of the
complete class Deferrable (see Figure 39)
showing interface methods, the type hierar-
chy modification, fields, and default imple-
mentations for methods without message
views. 62

126 List of Figures

Figure 41 Java annotation for the mandatory instanti-
ation parameter Deferrable (see Figure 39)
restricted to classes with a Target(ElementType.TYPE)

annotation. 63

Figure 42 Mapped code for attributes and relations of
the ClosableContext class (see Figure 33)
showing default and manual initialization
of resulting fields. 64

Figure 43 Extract of the structural view of the Collab-
orative aspect showing an association with
multiplicity > 1 and corresponding modifi-
cation and retrieval methods. 66

Figure 44 Mapped code for the structural view of the
complete class CollaborativeContext (see
Figure 43) showing the implementation of
an association with multiplicity 0..∗ and the
corresponding modification and retrieval
methods. 67

Figure 45 The Trace class taken from the Traceable model
contains fields and a constructor that initial-
izes them. 68

Figure 46 Intertype declaration of a constructor of the
class Trace (see Figure 45) that initializes
fields with given parameters. 68

Figure 47 The class AccessClassified from the aspect of
the same name showing the use of methods
as parameterized mandatory instantiation
parameters. 69

Figure 48 Java annotation for the mandatory instanti-
ation parameter method in the class AccessClassified
(see Figure 47) showing the use of annota-
tion elements for parameters. 69

Figure 49 The message view deferMethod from the De-
ferring aspect advising a mandatory instan-
tiation parameter. 74

Figure 50 Extract of the mapped code for the message
view deferMethod (see Figure 49) showing
the annotation based advice signature and
parameterized proceed statements. 75

Figure 51 Template message view addChildrensResults
of the Nested aspect showing a non-recursive
proceed block and a recursive call for the
method parameter m. 76

Figure 52 Mapped code for the template addChildren-
sResults (see Figure 51) involving a generic
type parameter T as return type. 76

List of Figures 127

Figure 53 The message view createTrace from the Trace-
able aspect showing the creation of new vari-
ables and the use of constructors. 78

Figure 54 Implementation of the message view create-
Trace (see Figure 53) creating a new variable
and calling a constructor. 79

Figure 55 The message view contextCompleted for the
Checkpointing variant of the Recovering as-
pect containing an option and an alterna-
tion combination fragment. 80

Figure 56 Implementation of the Recovering variant
of the message view contextCompleted (see
Figure 55) showing the mapping of option
and alternation combination fragments to
if- and else-statements. 81

Figure 57 The message view performUpdate of the De-
ferring aspect containing a loop combina-
tion fragment that iterates over a collection
using the keyword within. 81

Figure 58 Code for the method performUpdate of the
Deferring aspect (see Figure 57) demonstrat-
ing the use of for-each loops to implement
loop combination fragments involving within. 82

Figure 59 Message view for the method wasAccessed
in the Nested / Tracing conflict resolution
aspect comprising a loop combination frag-
ment with a compound condition. 83

Figure 60 Code for the wasAccessed method in the
Nested / Tracing conflict resolution aspect
(see Figure 59) using an iterator to imple-
ment a loop with a compound condition. . . 83

Figure 61 The conflict resolution aspect Closable / Spawn-
Supporting shows the use of methods of
both merged classes on a target of type
ClosableContext. 85

Figure 62 Code for the conflict resolution aspect Clos-
able / SpawnSupporting (see Figure 61) show-
ing the interference criteria guaranteeing
target variable of type SpawnSupportingContext
and an inline typecast for getMaxPartici-
pantCount. 86

Figure 63 The definition and use of a new method
copyAndMapNewVersion in the conflict reso-
lution aspect Deferrable / Nested. 87

128 List of Figures

Figure 64 Code for the copyAndMapNewVersion method
of the conflict resolution aspect Deferrable /
Nested (see Figure 63) showing privileged
access to the association field contextToVer-
sionMap. 88

Figure 65 The message view getTraces from the Nested
/ Tracing conflict resolution aspect binding
the template addChildrensResults. 88

Figure 66 Mapped code for the method getTraces (see
Figure 65) extending the abstract aspect for
addChildrensResults. 88

Figure 67 Structural view of the Recovering aspect with
an alternative for reused aspects and corre-
sponding binding and instantiation directives. 90

Figure 68 Enumeration for the UpdateStrategy alterna-
tive of the Recovering aspect (see Figure 67)
preserving the original literal names in the
toString method. 90

Figure 69 Annotation for the class Transactable of the
Transaction aspect (see Figure 17) showing
parameters for an inherited and newly de-
fined alternative. 91

Figure 70 Annotation for the Transaction aspect’s Trans-
actionParticipant class (see Figure 17) con-
taining parameters for two alternatives and
an optional reuse. 91

Figure 71 Extract from the AnnotationInheritance

aspect that forwards configuration infor-
mation for Transactable objects (see Fig-
ure 17) to the Recoverable annotation. . . . 92

Figure 72 ConfigurationEnforcement aspect contain-
ing weaver error declarations for configura-
tions that are forbidden due to alternatives
or composition rules. 93

Figure 73 Mapped code for the direct reuse of Lockable
in TwoPhaseLocking (see Figure 15 and 16)
with unchanged entity names. 95

Figure 74 Structural view of the Shared aspect contain-
ing an instantiation directive that changes
the names of an association and two meth-
ods of the reused Lockable aspect. 95

Figure 75 Mapped code for the reuse of Lockable in
Shared (see Figure 74) with a renamed at-
tribute and two renamed methods. 95

List of Figures 129

Figure 76 The model for the Blockable aspect contain-
ing the association semaphore and the meth-
ods getSemaphore, releaseSemaphore, and wait-
ForSemaphore that are renamed in reusing
aspects. 96

Figure 77 Helper class BlockableContextMessages con-
taining the method releaseSemaphore of
BlockableContext that is detailed in a mes-
sage view (see Figure 76) and a helper method
for the getter method getSemaphore. 97

Figure 78 Structural view of the ExitSynchronizing as-
pect containing an binding directive that
changes the names of an association and
three methods of the reused Blockable aspect. 98

Figure 79 Helper class containing the binding from
names of associations, attributes, and meth-
ods of the Blockable aspect to their equiv-
alents in the ExitSynchronizing aspect (see
Figure 78). 98

Figure 80 Code for ExitSynchronizing’s reuse of Block-
able (see Figure 78) showing the introduc-
tion of a field, a duplicated getter method
and a reflective method for the message
view releaseExitSemaphore. 98

Figure 81 Workaround for the overridden methods
addParticipant and removeParticipants en-
suring that the specialized implementation
of these methods is called where needed. . . 100

Figure 82 The banking example’s Account class con-
taining fields, getters and setters, and meth-
ods to withdraw or deposit money. 105

Figure 83 The Bank class of our banking example con-
taining method to administrate accounts
and to transfer money between them. 106

Figure 84 A JUnit test for our banking example demon-
strating a successful and a failing transfer
that is automatically undone. 107

Figure 85 The class TravelAgency containing a method
that allows a user to find and book offers
for a travel. 109

Figure 86 A JUnit test for our travel agency example
demonstrating a successful and a failing
request whose seat reservation is automati-
cally undone. 110

130 List of Figures

Figure 87 Diagram showing the mapped and manual
lines of code (LOC) for every aspect of the
AspectOPTIMA case study. The amount of
mapped LOC without changes is shown in
blue, manually edited or added LOC are
shown in orange. 115

Figure 88 Diagram showing the mapped and manual
lines of code (LOC) for every aspect of the
OMTT extension for the Aspect-OPTIMA
case study. The amount of mapped LOC
without changes is shown in blue, manually
edited or added LOC are shown in orange. . 116

Figure 89 Extract from the JavaDoc of the class Aspec-
tOPTIMA providing a functional interface
for single-threaded transactions. 119

Figure 90 Extract (1/2) from the JavaDoc of the class
AspectOPTIMAOMTT interface for Open Mul-
tithreaded Transactions. 120

Figure 91 Extract (2/2) from the JavaDoc of the class
AspectOPTIMAOMTT interface for Open Mul-
tithreaded Transactions. 121

Figure 92 List of Java library classes and interfaces
that are automatically reused if a complete
class with the same name contains only
methods with signatures that are specified
in the Java class or interface. 122

B I B L I O G R A P H Y

[1] Wisam Al Abed and Jörg Kienzle. Information hiding and
aspect-oriented modeling. In Proc. of the 14th Int. Workshop
on Aspect-Oriented Modeling, Denver, CO, USA, 2009.

[2] Elisa Baniassad and Siobhan Clarke. Theme: An approach
for aspect-oriented analysis and design. In ICSE ’04: Proc.
of the 26th International Conference on Software Engineering,
pages 158–167, Washington, DC, USA, 2004. IEEE Computer
Society.

[3] Georg Beier and Markus Kern. Aspects in uml models from
a code generation perspective. 2002.

[4] Gv̈en Bölükbası. Aspectual decomposition of transac-
tions. Master’s thesis, McGill University, Montréal, Québec,
Canada, 2007.

[5] Siobhàn Clarke and Elisa Baniassad. Aspect-Oriented Analysis
and Design. Addison-Wesley Professional, 2005.

[6] Siobhán Clarke and Robert J. Walker. Towards a standard
design language for aosd. In AOSD ’02: Proceedings of the
1st international conference on Aspect-oriented software develop-
ment, pages 113–119, New York, NY, USA, 2002. ACM.

[7] Iris Groher and Stefan Schulze. Generating aspect code from
uml models. In Workshop on Aspect-Oriented Modeling with
UML @ AOSD, 2003.

[8] Theo Haerder and Andreas Reuter. Principles of transaction-
oriented database recovery. ACM Comput. Surv., 15(4):287–
317, 1983.

[9] Stefan Hanenberg and Pascal Costanza. Connecting aspects
in aspectj: Strategies vs. patterns. In First AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software,
Enschede, The Netherlands, 2002.

[10] Kevin Hoffman and Patrick Eugster. Towards reusable com-
ponents with aspects: an empirical study on modularity and
obliviousness. In ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering, pages 91–100, New
York, NY, USA, 2008. ACM.

[11] Aram Hovsepyan, Riccardo Scandariato, Stefan Van Baelen,
Yolande Berbers, and Wouter Joosen. From aspect-oriented

131

132 bibliography

models to aspect-oriented code?: the maintenance perspec-
tive. In AOSD ’10: Proceedings of the 9th International Con-
ference on Aspect-Oriented Software Development, pages 85–96,
New York, NY, USA, 2010. ACM.

[12] Andrew Jackson, Niall Casey, and Siobhán Clarke. Map-
ping design to implementation. AOSD-Europe-TCD-D111

www.aosd-europe.net.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean marc Loingtier, and John Irwin.
Aspect-oriented programming. In ECOOP, volume 1241,
pages 220–242, 1997.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
aspectj. In ECOOP 2001 â Object-Oriented Programming, Lec-
ture Notes in Computer Science, pages 327–354, Berlin /
Heidelberg, Germany, 2001. Springer.

[15] Jörg Kienzle. Open Multithreaded Transactions: A Transaction
Model for Concurrent Object-Oriented Programming. PhD the-
sis, Ecole Polytechnique FÃ©dÃ©rale de Lausanne, 2001.

[16] Jörg Kienzle, Alfred Strohmeier, and Alexander Romanovsky.
Open multithreaded transactions: Keeping threads and ex-
ceptions under control. Object-Oriented Real-Time Dependable
Systems, IEEE International Workshop on, 0:197, 2001.

[17] Jörg Kienzle, Jeff Gray, Dominik Stein, Walter Cazzola, Omar
Aldawud, and Tzilla Elrad. 11th International Workshop on
Aspect-Oriented Modeling. Springer, Berlin / Heidelberg, Ger-
many, 2008.

[18] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-
oriented multi-view modeling. In AOSD ’09: Proc. of the
8th ACM international conference on Aspect-oriented software
development, pages 87–98, New York, NY, USA, 2009. ACM.

[19] Jörg Kienzle, Ekwa Duala-Ekoko, and Samuel Gélineau. As-
pectOptima: A Case Study on Aspect Dependencies and Interac-
tions, pages 187–234. Springer, Berlin / Heidelberg, Ger-
many, 2009.

[20] Jacques Klein and Jörg Kienzle. Reusable aspect models.
In Proc. of the 11th Int. Workshop on Aspect-Oriented Modeling,
Nashville, TN, USA, 2007.

[21] Uira Kulesza, Alessandro Garcia, and Carlos Lucena. Gen-
erating aspect-oriented agent architectures. In Workshop on
Early Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design, 2004.

http://www.aosd-europe.net

bibliography 133

[22] Ramnivas Laddad. AspectJ in Action: Enterprise AOP with
Spring Applications. Manning Publications Co., Greenwich,
CT, USA, 2009.

[23] Gunter Mussbacher. Aspect-Oriented User Requirements No-
tation: Aspects in Goal and Scenario Models, pages 305–316.
Springer, Berlin / Heidelberg, Germany, 2008.

[24] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Rets-
chitzegger, M. Wimmer, and G. Kappel. A survey on aspect-
oriented modeling approaches. 2007.

D E C L A R AT I O N

I hereby declare that this thesis and all results presented in it are
my original work and have not been submitted in any form to
another university or educational instution for any award. Where
information was derived from the published or unpublished
work of others this has been acknowledged.

Karlsruhe, Germany, September 2010

Max E. Kramer

	Dedication
	Zusammenfassung
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Background
	2.1 Aspect-Oriented Modeling
	2.2 Aspect-Oriented Programming
	2.2.1 Motivation
	2.2.2 Basic Concepts

	2.3 Reusable Aspect Models
	2.3.1 Overview
	2.3.2 Features

	2.4 AspectJ
	2.5 AspectOPTIMA
	2.6 Open Multithreaded Transactions
	2.6.1 Motivation
	2.6.2 Features

	3 AspectOPTIMA: A Transaction Framework
	3.1 Aspects
	3.1.1 AccessClassified
	3.1.2 Traceable
	3.1.3 Context
	3.1.4 Tracing
	3.1.5 Copyable
	3.1.6 Deferrable
	3.1.7 Deferring
	3.1.8 Checkpointable
	3.1.9 Checkpointing
	3.1.10 OutcomeAware
	3.1.11 Recovering
	3.1.12 Nested
	3.1.13 Lockable
	3.1.14 TwoPhaseLocking
	3.1.15 Transaction

	3.2 Conflict Resolutions
	3.2.1 Nested / Tracing
	3.2.2 Checkpointing / Nested
	3.2.3 Deferrable / Nested
	3.2.4 Nested / TwoPhaseLocking

	4 Open Multithreaded Transactions for AspectOPTIMA
	4.1 Aspects
	4.1.1 Shared
	4.1.2 Collaborative
	4.1.3 Blockable
	4.1.4 Pausable
	4.1.5 Terminatable
	4.1.6 OutcomeVotable
	4.1.7 OutcomeVoting
	4.1.8 ExitSynchronizing
	4.1.9 EntrySynchronizing
	4.1.10 Closable
	4.1.11 SpawnSupporting
	4.1.12 OpenMultithreadedTransaction

	4.2 Conflict Resolutions
	4.2.1 Collaborative / Nested
	4.2.2 ExitSynchronizing / SpawnSupporting
	4.2.3 Closable / SpawnSupporting

	5 Mapping Reusable Aspect Models to AspectJ
	5.1 Principles & Overall Structure
	5.1.1 Principles
	5.1.2 Overall Structure

	5.2 Ordinary Aspects
	5.2.1 Structural View
	5.2.2 State View
	5.2.3 Message View

	5.3 Conflict Resolution Aspects
	5.3.1 Structural View
	5.3.2 Message View

	5.4 Configuring Product Lines
	5.5 Multiple Reuse of Aspects with Different Binding
	5.5.1 Duplication Approach
	5.5.2 Reflection Approach

	5.6 Limitations & Bugs
	5.6.1 Overriding Methods
	5.6.2 Restrictions on Object Names
	5.6.3 Automatic Information Hiding
	5.6.4 Removing Functionality or Structure
	5.6.5 Deviations from Common Patterns

	6 Using the AspectOPTIMA implementation
	6.1 AspectOPTIMA
	6.1.1 Annotation Interface
	6.1.2 Method Interface
	6.1.3 Banking Example

	6.2 OMTT Extension
	6.2.1 OMTT Interface
	6.2.2 Travel Agency Example

	7 Related Work
	7.1 Mapping Theme/UML to AspectJ
	7.2 Other Work on All-Aspectual Mappings
	7.3 Other Work on Aspect-Orientation

	8 Conclusions & Future Work
	8.1 Conclusions
	8.2 Future Work

	A Appendix
	List of Figures

	Bibliography
	Declaration

