
COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance

Implementing Transactions
Jörg Kienzle

Software Engineering Laboratory
School of Computer Science

McGill University

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Overview

 (Kienzle chapters 4-8)
• Transaction Context
• Concurrency Control
• Persistence
• Caching
• Crash Recovery
• Interfaces for the Programmer
• Customization

2

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transaction Library Requirements
• Handle transaction life-cycle

• Starting, aborting, committing
• Monitor nesting relationship

• Monitor accesses to transactional objects
• Apply concurrency control
• Handle object updates, checkpointing and undoing
• Gather recovery information in case of crash failures

• In case of a crash, perform recovery after restart
• Provide elegant interface to the programmer

• Easy to use
• Safe to use

3

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

OPTIMA [K+01]

4

• Object-oriented framework for transactional systems
• Defines architecture, classes, objects and their responsibilities
• Programming language independent
• Customizable and extensible
• Strict | semantic-based concurrency control
• Pessimistic | optimistic concurrency control
• Various recovery and caching strategies
• In-place | deferred update for objects
• Physical | logical logging
• Extensible storage support
• Based on design patterns [GHJV95]

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Optima Architecture

5

Transaction Life-Cycle
Management

Concurrency
Control

Memory
Management

Recovery
Support

Interface

Application Code

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transaction Life-Cycle Management

6

Committed

Aborted

abort

commit

Active
begin

crashFailure

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transaction Context

7

• During the life-time of a transaction, its current state, the
unique transaction identifier, and the set of accessed
transactional objects are stored in the transaction context

• All transactional objects must be notified in case of abort or commit
• The context also keeps track of the parent and child

transactions
• In case of commit, the responsibility of all operation

invocations of a child transaction must be handed over to
the parent transaction

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

0..*

accessedObjects

Transaction Class

8

Transaction

TID myID
Status myStatus

<<enum>>
Status

active
committed
aborted

beginTransaction()
commitTransaction()
abortTransaction()
addTransactionalObject()
addChildTransaction()

TransactionalObject

Subtransaction

parent
1

0..*
children

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Begin Transaction

• Create a new transaction context
• If begin is called from within a transaction, create a

subtransaction
• Initialize the context
• Set the transaction status to active
• Obtain a new transaction identifier
• For nested transactions, setup the parent-child

relationship

9

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Abort Transaction

10

• Set transaction status to aborted
• Inform recovery support of abort
• Record the abortion in the log
• For every accessed transactional object
• Undo the changes made by the transaction (if needed)
• Notify the associated concurrency control of the abort
• For nested transactions
• Remove oneself from the parents child list

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Commit Transaction

11

• Ask the concurrency control of every transactional object to
validate the transaction

• Required for optimistic concurrency control
• If successful and it’s a top-level transaction, then perform 2-phase

commit
• Ask every accessed transactional object to prepare for commit
• Set transaction status to committed
• Record the commit in the log

• For every accessed transactional object
• Notify the associated concurrency control of the commit

• For nested transactions
• Add the accessed objects to the accessed object list of the parent
• Remove oneself from the parents child list

Point of “no return”

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Concurrency Control

12

• Concurrency control must be applied for every transactional
object

• Before and after every operation invocation
• At validation time (for optimistic approaches)
• Upon transaction abort and commit

• The optimal concurrency control strategy is application dependent
• Maybe even object-dependent

• Customization based on the Strategy design pattern
• Abstract ConcurrencyControl class
• The user can choose the appropriate concrete concurrency control for each

object
• The user can extend the hierarchy and implement his own concurrency

control

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Strategy Design Pattern

13

Strategy

interface()

Concrete
Strategy1

interface()

Concrete
StrategyN

interface()

…

1
currentStrategyContext

Contains code that makes
calls to the methods
declared in the Strategy
interface

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Concurrency Control Hierarchy

14

ConcurrencyControl

preOperation()
postOperation()
validate()
commitTransaction()
abortTransaction()

Optimistic
Control

Pessimistic
Control

validate()

Lockbased
Control

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Lock-based Concurrency Control

15

• Conceptually, every operation on a transactional object has an
associated lock

• A transaction wanting to perform an operation on a
transactional object must acquire the corresponding lock first

• If incompatible locks are held by other active transactions, the
invoking thread is blocked

• Blocked requests are served as soon as possible in FIFO order
• The lock-based concurrency control keeps two list

• Granted locks (to active transactions)
• Requested locks (by blocked threads)

• Implementation must be thread-safe

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

PreOperation & PostOperation

16

• PreOperation
• Go through the list of granted locks, checking for conflict

• Remember, locks held by the parent transaction do not conflict. They
can be claimed by the child!

• If there is a conflict
• Block the invoking thread
• Insert the lock request into the waiting requests list

• If there is no conflict
• Insert the lock into the list of granted locks

• PostOperation
• Do nothing!

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

AbortTransaction

17

• Go through the list of granted locks
• If the lock belongs to the aborting transaction
• If it has been claimed from the parent, pass it back to the parent
• Else delete it
• Go through the list of lock requests and check if

any request can now be granted
• If yes, remove the request from the list, insert the

corresponding lock into the granted locks list, and awake
the suspended thread

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

CommitTransaction

18

• Go through the list of granted locks
• If the lock belongs to the committing transaction

• If the committing transaction is a top-level one
• Delete the lock

• Else (it has either been claimed from the parent transaction, or it is a new
lock acquired by the child transaction)
• Change the owner of the lock (back) to the parent transaction

• Go through the list of lock requests and check if any
request can now be granted
• If yes, remove the request from the list, insert the

corresponding lock into the granted locks list, and awake the
suspended thread

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Semantic-based Concurrency Control

19

• If we have no knowledge of the semantics of an
operation, we must assume that all operations
conflict

• Idea: make it possible for the programmer to
pass semantic information in form of a
commutativity table to the transaction support

• The commutativity information is passed to the
concurrency control upon every operation
invocation

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Operation Information Hierarchy

20

OperationInfo

forwardCommutesWith
 (OperationInfo op)
backwardCommutesWith
 (OperationInfo op)

ReadWrite
Info

UserDefined
Info

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

The ReadWriteInfo Class

21

public class ReadWriteInfo extends OperationInfo {

 private boolean ReadWrite;
 // Read = false, Write = true

 public ReadWriteInfo(boolean rw) {
 ReadWrite = rw;
 }

 public boolean backwardCommutesWith(OperationInfo op) {
 return (this.ReadWrite == false) &&
 (((ReadWriteInfo)op).ReadWrite == false);
 }
 public boolean forwardCommutesWith(OperationInfo op) {
 return
 (this.ReadWrite == true) ||
 ((ReadWriteInfo)op).ReadWrite == false);
 }
}

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Persistence

22

• The state of transactional objects must be stored
on stable storage [LS79] in order to be durable

• The transaction history is stored in a log on
stable storage

• How can we build stable storage?
• Use redundancy
• Techniques depend on failure assumptions

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Classification of Storage [KR02]

23

Storage

read(..)
write(..)

Volatile
Storage

NonVolatile
Storage

open(..)
close(..)
delete()

NonStable
Storage

Stable
Storage

basic data saving
and restoration

operations

housekeeping
operations

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Stable Storage based on Mirroring [CKS01]

24

• Idea
• Keep two copies of the data (A and B), update sequentially
• Write the second copy only if the first write was successful
• Remember the current state in a log

NonVolatileStorage

StableStorage

MirroredStorage

3

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Failure Assumptions

25

• Non-volatile storage: Copy A, B and the log are stored
on non-volatile storage, i.e. their data survives
program termination

• Non-destructive reads: Reading from storage will not
corrupt the data

• Failure isolation: A crash that occurs during a write
operation on a storage unit can only corrupt the
storage unit written to

• Unbuffered writes (or the availability of a flush
operation that forces internal buffers to be emptied)

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Mirrored Read / Write Operation

26

• Write
• Set log to writing A
• Write data to A
• Set log to writing B
• Write data to B
• Set log to idle
• Read
• Read A or B

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Restart after Crash

27

• Perform cleanup based on the following table
State of the Log Suspected Problem Cleanup Action

Idle No Problem None

Writing A A was not successfully
written and might be

corrupted

Copy B to A
Set log to Idle

Writing B B was not successfully
written and might be

corrupted

Copy A to B
Set log to Idle

Corrupted
Neither A nor B is corrupted,

but they might contain
different data

Copy A to B
Set log to Idle

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Identifying Transactional Objects

28

• There must be a unique way to identify a transactional
object that survives program termination

• Based on the identifier, it should be possible to “find” the
associated state on the stable storage

• Idea
• Storage parameter hierarchy with the same structure as the storage

hierarchy
• Every storage parameter must be mappable to a string representation
• Each storage parameter must be capable of creating and initializing

the associated transactional object
• Storage parameters must be serializable

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Storage Parameter Hierarchy

29

StorageParameter

stringToStorageParams(..)
storageParamsToString(..)
Storage create(..)

Volatile
Parameter

NonVolatile
Parameter

NVStorage open()

NonStable
Parameter

Stable
Parameter

Factory
methods

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Caching

30

• Sometimes it is not possible to keep the state of
all transactional objects in memory

• Idea
• Use a cache
• Different cache policies
• Load objects on demand
• Prefetch objects by “guessing” object that are likely to be

accessed in the future
• Optimal strategy is application dependent

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Cache Replacement Policies

31

• Least-Recently-Used
• Monitor accesses of transactional objects
• Select the least recently used one for replacement
• In transactional systems, not just any object can

be replaced, it depends on the recovery strategy
• No-Steal: Objects modified by a transaction in progress

can not be replaced
• Force: Objects modified by a transaction are forced to

stable storage on transaction commit

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Cache Manager Hierarchy

32

CacheManager

create(StorageParams, …)
restore(StorageParams, …)
applyReplacementPolicy()
invalidateState()

UserDefined
CacheMgr

LRUCache
Manager

used for
recovery

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Memory Objects

33

• Instances of the class MemoryObject handle
loading and saving the state of transactional objects

• Pinned objects can not be propagated to storage

MemoryObject

load(StorageParameter p)
save(StorageParameter p)
pin()
unpin()
...

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Consequences of using a Cache

34

• Transparent for the user
• Complicates things for recovery
• At any given time, the current state of a transactional object is

determined first by the state in the cache, and, if it’s not in
memory, by the state stored in stable storage

• The contents of the cache are lost when the system crashes,
therefore

• The storage might not contain updates of committed transactions
• The storage might contain updates of uncommitted transactions

(that will abort due to the crash)
Undo

Redo

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Log

35

• Sequential file stored on stable storage
• Contains data needed for crash recovery
• Transaction status information
• Transactional object creation information
• Transactional object deletion information
• Operation undo information
• Operation redo information
• The log is updated when
• A transaction commits or aborts
• A transactional object is created or destroyed
• An operation modifying the state of a transactional object is invoked

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Logging Techniques

36

• Physical logging
• Store before- or after-checkpoints of the state of

transactional objects
• Works only with strict concurrency control
• Logical logging
• Log operation invocation together with all parameters
• In order to support undo, every operation must have an

associated inverse operation that undoes its effects

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Logging Technique Hierarchy

37

LoggingTechnique

undo()
redo()

Physical
Logging

Logical
Logging

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Log Information Hierarchy

38

LogInformation
TID t

Transaction
Information
Status s

ObjectInformation
StorageParameters o

DeletionInfoCreationInfo
PhysicalLogging l

UndoInfo
LoggingTechnique l

RedoInfo
LoggingTechnique l

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Caching and Recovery

39

• Trade-off between flexible caching and amount of
work to be done when preforming recovery after a
crash

• Undo/Redo allows Steal / NoForce policies
• Undo/NoRedo makes sure that all changes are written

to stable storage before transaction commit (Steal
combined with Force policy)

• NoUndo/Redo keeps after-images or intention lists of
operations in order to redo committed changes after a
crash (NoSteal combined with NoForce)

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Cache Manager Hierarchy

40

RecoveryManager

beginTransaction()
abortTransaction()
commitTransaction()
preOperation()
postOperation()
propagateObject()
recover()
recoverObject()

UndoRecovery RedoRecovery

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Recovery Manager Operations

41

• begin, abort and commit called when the
transaction state changes

• pre- and postOperation called before and after
every operation invocation on a transactional object

• propagate is called by the cache manager before it
replaces a transactional object’s state

• recover is called upon restart in case of a crash failure
• Tags potential inconsistent objects by calling invalidateState

of the associated memory object
• recoverObject is called when an inconsistent

transactional object is accessed after a crash failure

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Recovery Rules [BCF97]

42

• Undo Recovery Rule (or Write Ahead Logging):
• All information necessary for undoing the changes made

to the state of an object during execution of one of its
operations must be written to the log before the object’s
state is propagated to its associated storage unit.

• Redo Recovery Rule (or Commit Rule):
• All information necessary for redoing the changes made

to the states of all objects modified during a transaction
must be written to the log before the transaction commits.

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Undo/NoRedo Example Code (1)

43

• PreOperation
• Pin the transactional object
• If physical logging is used
• If this is the first operation modifying the state of this object invoked

during this transaction
• Save before-image in memory

• If logical logging is used
• Save undo information for this operation in memory

• PostOperation
• Unpin the transactional object

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Undo/NoRedo Example Code (2)

44

• PropagateObject
• Write all undo information for this object from memory to

stable storage
• AbortTransaction
• For all modified objects

• Undo the changes to the object in memory by applying the gathered undo
information in memory

• Optional: If object was previously propagated, propagate the (old) state of
the object to the associated storage unit and discard undo information for
this transaction

• Send abort notification to the concurrency control of the object
• Log transaction abort

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Undo/NoRedo Example Code (3)

45

• CommitTransaction
• If we are in a top-level transaction
• For all accessed objects

• If the object is dirty (i.e. has been modified)
• Propagate the objects state to the associated storage unit

• Log transaction commit (point of no return)
• For all accessed objects

• Send commit notification to the concurrency control of the object
• Delete undo information for this transaction from memory and, if necessary, from

stable storage

• Else
• Pass undo information of the object to parent transaction

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transaction Support Interfaces

• Allow a programmer to clearly mark transaction
boundaries

• Monitor exceptions crossing the transaction
boundary

• Pass control to the framework whenever an
operation on a transactional object is invoked

• The elegance of the interface is highly
programming language dependent

46

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transaction Identification

• If the programming language does not allow
associating data with threads, then transaction
identifiers must be made explicit
• Starting a transaction hands back a TID
• The TID must be passed as a parameter to all calls that

involve the transaction support
• Aborting / committing the transaction
• Invoking operations on transactional objects
• Error-prone
• Allows working in two transactions simultaneously

47

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Procedural Interface

• void beginTransaction();
 or: tid beginTransaction();

• void abortTransaction();
or: abortTransaction(tid t);

• void commitTransaction();
or: commitTransaction(tid t);

 Flexible
 Error-prone

 Relies on programmer to catch exceptions!

48

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

public class TransactionContext {
 static ThreadLocal myContext =

 new InheritableThreadLocal();
 static public void setTransaction(Transaction t) {
! myContext.set(t);
! }
 static public Transaction getTransaction() {
! return (Transaction) myContext.get();
 }
 private TransactionContext() {
 }
}

Associating Threads with Transactions

49

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Using the Procedural Interface

void transfer (Account source,
Account dest, int amount) {
ProceduralInterface.beginTransaction();
try {

source.withdraw(amount);
dest.deposit(amount);
ProceduralInterface.commitTransaction();

} catch (notEnoughFundsException e) {
ProceduralInterface.abortTransaction();

}
}

50

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Object-Based Interface

package Object_Based_Transaction_Interface is
! type Transaction is limited private;
! procedure Commit_Transaction (T : in out Transaction);
private
! type Transaction is new
! ! Ada.Finalization.Limited_Controlled with record
! ! Committed : Boolean := False;
! end record;
! procedure Initialize (T : in out Transaction);
! procedure Finalize (T : in out Transaction);
end Object_Based_Transaction_Interface;

51

Constructor and destructor begin rsp.
commit/abort the transaction

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Using the Object-Based Interface

declare
 T : Transaction;
begin
 -- perform work on behalf of the transaction
 -- by calling operations on objects
 Commit_Transaction (T);
exception
 when ... ⇒
 -- handle internal exceptions
 Commit_Transaction (T);
 when ... ⇒
 -- raise an external exception
end;

52

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

public abstract aspect TransactionalMethod {

 abstract public pointcut Method();

 void around() : Method () {
ProceduralInterface.beginTransaction();
boolean aborted = false;
try {

proceed();
} catch (TransactionException e) {

ProceduralInterface.abortTransaction();
aborted = true; throw e;

} finally {
 if (!aborted) {
 ProceduralInterface.commitTransaction();
 }
}

}
}

Aspect-Oriented Interface (1)

53

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

class AccountManager {
public void transfer (Account source, Account
dest, int amount) {…}

}

aspect MakeAccountMgrMethodsTransactional
extends TransactionalMethod {

public pointcut Method () :
call (public * AccountManager.*(..));

}

AspectJ code making all methods of instances of
the AccountManager class execute within

a transaction

Aspect-Oriented Interface (2)

54

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transactional Objects
• Operations called by the application programmer

• Application-defined operations
• Creation, restoration and deletion operations

• Operations called by the transaction framework
• Loading and saving the state to the associated storage
• Provide semantic information for concurrency control and recovery

(read/write, commutativity table)
• If logical logging is used, inverse operations must be designated for

every operation, as well as means to load and save operation
invocations

55

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Transactional Wrapper

56

ApplicationObject

methods(..)

TransactionalObject

methods(..)
create(NonVolatileParameter)
restore(NonVolatileParameter)
delete()
abortTransaction()
commitTransaction()

Perform the necessary
calls to the framework,

then call original method

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Interaction with OPTIMA

1. Concurrency Control Prologue
Call preOperation of the concurrency control

2. Recovery Prologue
Call preOperation of the recovery manager

3. Method Execution
4. Recovery Epilogue

Call postOperation of the recovery manager
5. Concurrency Control Epilogue

Call postOperation of the concurrency control

57

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Ada Transactional Objects

• The transactional object wrapper has to be
written by the application programmer

• Could be automated using a preprocessor
(except for semantic information on
operations)

TransactionalObject ApplicationObject

StableStorage

ConcurrencyControl

MemoryObject
0..1

58

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Aspect-Oriented Interface (1)
aspect TransactionalObject
 pertarget(Method) {

 pointcut Method() :
 call(public * Account.*(..));

 private final RecoveryManager
 myRecoveryManager = …;

 private final ConcurrencyControl
 myConcurrencyControl = new …;

 // more stuff to be added here
}

59

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Aspect-Oriented Interface (2)
aspect TransactionalObject
 pertarget(Method) {

 pointcut Method(Object o) : call
 (public * Account.*(..)) && target(o);

 // code from previous slide
 around() : Method(Object o) {
 Transaction t =
 TransactionContext.getTransaction();
 if (t != null) {
 myConcurrencyControl.preOperation(o,t);
 myRecoveryManager.preOperation(o,t);
 }
 proceed();
 if (t != null) {
 myRecoveryManager.postOperation(o,t);
 myConcurrencyControl.postOperation(o,t);
 }

}

60

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Customization
• Transactions are used in different application domains with

different requirements
• Customize

• Caching
• Recovery Strategy
• Storage used for Persistence
• Concurrency Control

• Without customization, worst-case assumptions must be
made, which might lead to poor performance

61

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

OPTIMA Customization

• At startup
• Cache manager
• Recovery manager
• Stable storage used for storing the log
• Per object
• Storage used to store the object’s state
• Concurrency control (?)
• Per method
• Semantic information

62

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Specifying Semantic Information

• Programmer writes
public class GetBalanceInfo extends OperationInfo {

public boolean backwardCommutesWith (OperationInfo op)
{ return (op instanceof GetBalanceInfo);

}
}

• The framework defines
public interface CustomizedMethods {

public OperationInfo getOperation
 (String name, JoinPoint jp)
 throws MethodCustomizationException;

}

63

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

Applying Customization
public aspect AccountMethodAspect {
 declare parents:
 Account implements CustomizedMethods;
 public OperationInfo
 Account.getOperation
 (String name, Joinpoint jp) throws
 MethodCustomizationException {

 if (name.equals(“getBalance”)) {
 return new GetBalanceInfo();
 } else if { …
 }
 }
}

64

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

References (1)

65

• [K+01]
Kienzle, J.; Jiménez-Peris, R.; Romanovsky, A.; Patiño-Martinez, M.: “Transaction
Support for Ada”, in Reliable Software Technologies - Ada-Europe’2001, Leuven,
Belgium, May 14-18, 2001, pp. 290 – 304, Lecture Notes in Computer Science
2043, Springer Verlag, 2001.

• [GHJV95]
Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Addison Wesley,
Reading, MA, USA, 1995.

• [LS79]
Lampson, B. W.; Sturgis, H. E.: “Crash Recovery in a Distributed Data Storage
System”. Technical report, XEROX Research, Palo Alto, June 1979.

• [KR02]
Kienzle, J.; Romanovsky, A.: “A Framework Based on Design Patterns for
Providing Persistence in Object-Oriented Programming Languages”, IEE Software
Engineering Journal 149(3), pp. 77 - 85, June 2002.

COMP-667 - Implementing Transactions, © 2009 Jörg Kienzle

References (2)

66

• [CKS01]
Caron, X.; Kienzle, J.; Strohmeier, A.: “Object-Oriented Stable
Storage based on Mirroring”. In Reliable Software Technologies -
Ada-Europe’2001, Leuven, Belgium, May 14-18, 2001, pp. 278 –
289, Lecture Notes in Computer Science 2043, Springer Verlag, 2001.

• [BCF97]
Besancenot, J.; Cart, M.; Ferrié, J.; Guerraoui, R.; Pucheral, P.;
Traverson, B.: Les Systèmes Transactionnels: Concepts, Normes et
Produits. Editions Hermes, Paris, France, 1997.

