
COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance

Competitive Concurrency
Jörg Kienzle

Software Engineering Laboratory
School of Computer Science

McGill University

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Overview
 (Kienzle Chapter 2)

• Transactions
• ACID properties
• Concurrency Control
• Recovery Support
• Flat Transactions
• With Savepoints
• Chained Transactions
• Nested Transactions
• Split / Joint Transactions & other models
• Transactions and Exceptions

2

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Competitive Concurrent Systems

• Processes (or threads) running in the system
have been designed separately
• Are not aware of each other
• Do not synchronize explicitly with other processes
• Do not communicate directly with other processes
• Each individual process
• Does not want to be annoyed by other processes
• Does not want to care about data consistency issues
• Does not want to be affected by faults in other processes

3

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

ACID Properties

4

• A transaction groups together a set of operations
on data objects, guaranteeing the ACID
properties
• Atomicity
• Consistency
• Isolation
• Durability

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Account AAccount A

A Transfer Operation

5

Bank 1

Bank 2

Account B

withdraw(20)

deposit(20)

Account B

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

When Things go Wrong (2)

6

Bank 1

Account A Bank 2

Account B

withdraw(20)

deposit(20)
Account A

deposit(20)

To prevent loss of money
Undo Withdraw

or
compensate

“All Or Nothing”
Atomicity

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

When Things go Wrong (3)

7

Bank 1

Account A Bank 2

Account B

withdraw(20)

deposit(20)
Account A

Account B

Durability
of Data Updates

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Account DAccount D

Account CAccount C

Account BAccount B

When People Work Concurrently

8

Bank 1
Account AAccount A

Bank 2

Bank 3

Bank 4

Isolation
“No Interference”

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Consistency

• A transaction produces consistent results only
• Consistency criteria for the Transfer operation:

Sum of balance of the accounts remains unchanged
• Existing transactional systems provide

A, I and D
• Consistency is indirectly ensured if the

transactions perform consistent state changes
• The transaction support does not erroneously corrupt the

state of the system

9

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object CObject C

Object BObject B

Object AObject A
Commit T1

or
Abort T1

Flat Transactions

10

Thread

Begin T1 op1 op3

op2

3 Operations: begin, commit and abort

Transactional Object
(also called resource)

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object CObject C

Object BObject B

Object AObject A
Abort T1

Flat Transactions

11

Thread

Begin T1

op1 op3

op2

Abort ⇒ apply backward error recovery

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Serializability

12

Atomicity + Isolation = Serializability

The results produced by a concurrent execution
of a set of transactions must be equivalent to the

results produced by executing the same set
of transactions sequentially, in some

arbitrary order

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Providing Isolation

13

• Concurrency control must be applied at the level
of every transactional object, e.g. the accesses to
a transactional object from different transactions
must be monitored, making sure they do not
conflict
• Prevent transactions from seeing intermediate, possibly

inconsistent state
• Prevent the domino effect, also called cascading aborts

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Conflicting Operations

14

• Strict concurrency control is used when no
semantic knowledge of the operation is available
• Read / write locking

• If we can’t tell the difference, we must assume
that all operations conflict (e.g. are writers)

Read(y) Write(y)
Read(x) Yes No
Write(x) No No

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Semantic-based Concurrency Control

15

• Some operations do not conflict - they commute
• Example
• Account with Deposit, Withdraw, Balance operations

Deposit Withdraw Balance
Deposit Yes Yes No

Withdraw Yes Yes No
Balance No No Yes

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Commutativity and Update Strategy

16

• Commutativity actually depends on the update
strategy used when modifying transactional objects

• Backward commutativity goes with in-place update
• Op1 commutes with Op2, iff executing Op1 has the same effect

(final object state and return value) as executing Op2, then Op1,
and then undoing Op2

• Not symmetric!
• Forward commutativity goes with deferred update
• Op1 commutes with Op2, iff the return values of executing Op1

are the same as the return values of executing Op2 followed by
Op1

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Pessimistic / Conservative CC

17

• Before allowing a transaction to perform an
operation on a transactional object, it has to get
the permission to do so

• If there is a potential conflict with any other
ongoing (uncommitted) transaction, access is
denied

• Block / abort or notify the calling transaction

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Pessimistic Example: Lock-based CC

18

• Before accessing a transactional object, the calling
transaction must acquire the associated lock
• If the (to be acquired) lock conflicts with any other lock held

by other transactions in progress, the calling thread is blocked
• Otherwise, the lock is granted, and the thread can execute the

operation
• 2-phase locking [EGLT76] ensures serializability
• A transaction is not allowed to acquire new locks, once a lock

has been released
⇒ locks are gradually acquired during execution and released
only upon transaction abort or commit

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Deadlocks

19

• Pessimistic blocking concurrency control might lead to
deadlocks because of circular dependencies

• T1 has acquired A and waits for B
• T2 has acquired B and waits for A

• Deadlock prevention: Transactional objects must always be
acquired in the same order to avoid deadlocks

• Not realistic
• Detected deadlocks can be broken by aborting one of the

transactions
• Maintaining wait-for graphs and (periodically) performing cycle

detection
• Time-out

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

8090

Account BAccount B

Breakable Deadlock

20

Bank 1
Account AAccount A

Bank 2

transfer(A,B,10) transfer(B,A,20)

100 100

void transfer(Account source, Account dest, int amount) {
source.withdraw(amount);
dest.deposit(amount);

}

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

110 8090

Account BAccount B

Breakable Deadlock

21

Bank 1
Account AAccount A

Bank 2

T1: transfer(A,B,10) T2: transfer(B,A,20)

100110

Account B

Commit T1

Abort T2

Restart T2

90

Account B

Commit T2

Account A

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Deadlock-free Timestamp Ordering [BG81]

22

• Associate a (logical) time-stamp with each transaction
• This implicitly specifies the serialization order in case of conflict

beforehand
• Process conflicting operations based on the time-stamps

of the invoking transactions at the object level
• If a transaction A attempts to execute an operation on a transactional

object that conflicts with an operation executed by transaction B
• If timestamp(A) > timestamp(B), block A
• If timestamp(A) < timestamp(B), abort A

• We can’t abort B because B has acquired the rights already
• Deadlock free (transactions never wait for “newer” ones)

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Multi-version Locking

23

• Idea
• We don’t want to block late read-only transactions
• Keep a history of committed states together with the “time range” in

which they were valid
• Update (write, or read/write) transactions work on the main

copy and have to acquire locks as usual
• Upon commit, a (logical) timestamp is assigned to the update

transaction, and a new committed state is created, annotated with the
timestamp

• Read-only transactions get a timestamp at creation time
• Whenever they read values, they are directed to the committed state

corresponding to their timestamp

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Optimistic / Aggressive CC

24

• Transactions are allowed to perform conflicting
operations on transactional objects

• Upon commit, validation ensures serializability
• Backward validation
• Check that previously committed transactions have not

invalidated the results of the current transaction
• Forward validation
• Ensure that a committing transaction does not conflict

with transactions still in progress

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Backward Validation

25

• Remember for every operation of a transactional
object
• Last(op), the time-stamp indicating when the most

recently committed transaction has called the operation
• First(t,op), the first time transaction t has invoked the

operation
• Validate transaction t iff

∀transactionalObject(∀calledOp(∀{op’ | conflict(calledOp,op’)}:
Last(op’) < First(t, calledOp)))

• Assumption: deferred update

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Forward Validation

26

• Different schemes
• If there are conflicts with other active transactions, abort

the committing one
⇒ might lead to wasted aborts
• Broadcast commit [MN82]
• Abort transactions in progress that have executed conflicting

operations

• Ideal scheme depends on the application
• Semantics of operations, frequency of use of

transactional objects, etc…

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Providing Atomicity and Durability

27

• Atomicity and durability of transactions must be
ensured at all times

• Transaction abort
• Undo the changes made on behalf of the transaction

• At any time, a machine involved in the transaction
might crash

• Make sure that the changes of committed transactions have
been stored in a safe place

• Transactions that were not committed at the time of crash
are successfully aborted

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Recovery Support

28

• Store a transaction trace (or transaction history)
in a log on stable storage
• Transaction status
• Accessed objects
• Performed operations
• Checkpoints
• Upon restart of the crashed node
• Consult the log and perform necessary cleanup operations

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Providing Consistency

29

• Consistency of data is application dependent
• There’s no way the transaction support can provide

consistency
• Idea:
• Assume a consistent initial state
• The programmer must write a transaction in such a way

that it preserves consistency, i.e. moves the system from
one consistent state to some other consistent state
• Atomicity and isolation prevent inconsistencies from

being visible from the outside

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Other Transaction Models

30

• Problems with flat transactions
• If an error is detected, flat transactions offer only two

options
• Perform manual forward error recovery (e.g. applying compensating

actions, etc.)
• Abort the transaction as a whole
• For “long-running” transactions, giving up all results is

undesirable

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object CObject C

Object BObject B

Object AObject A
Commit T1

Flat Transactions with Savepoints (1)

31

Thread

Begin T1

(Savepoint 1) op1 op4

op2

Additional operations: save work and rollback work
Rollback to any savepoint is possible at any time

op3

Savepoint 2 Savepoint 2

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Flat Transactions with Savepoints (2)

32

• Additional operation Save_Work
• Saves the state of all modified transactional objects
• Hands back a handle to the application program
• Additional operation Rollback_Work(Handle)
• Reestablish the state of the designated savepoint
• Begin_Transaction also establishes the first

savepoint
• Aborting and rolling back to savepoint 1 are not

the same operation!

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Chained Transactions (1)

33

• In flat transactions, you still loose all work in case
of a crash failure

• Chained transactions make a compromise between
the flexibility of rollback and the amount of work
lost after a crash

• Additional operation Chain_Transaction
• Commit what has been done so far
• Immediately start a new transaction with the same objects

• Isolation property continues to hold

• Atomic “commit and begin”

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object AObject A
Commit T2

Chained Transactions (2)

34

Thread

Begin T1
op1

T2 inherits access rights of T1

op2

Chain Transaction T1, T2

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Nested Transactions (1)

35

• Nested transactions [Mos81] provide
functionality of transactions with savepoints, and
allow recursive dynamic structuring of execution

• Transactions form a tree hierarchy
• Top-level transactions
• Child- or subtransactions / nested transactions
• Leaf transactions are flat transactions

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Nested Transactions (2)

36

• Starting nested transactions
• Starting a new transaction from within a transaction

creates a subtransaction
• Concurrency control
• Accesses to transactional objects from inside a nested

transaction are isolated with respect to the parent
transaction, the sibling transactions, and other
transactions
• Access rights of the parent transaction can be “claimed”

by the child

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Nested Transactions (3)

37

• Ending nested transactions
• A parent can only commit if all of its subtransactions have ended
• The commit of a subtransaction makes its results visible only to

the parent transaction (e.g. the parent transaction “inherits” the
access rights of all transactional objects acquired by the child)

• Aborting a nested transaction results in aborting all containing
subtransactions

• Properties of non top-level transactions
• Atomic with respect to the parent, consistency preserving with

respect to the local function they implement, isolated from
siblings and other external transactions, not durable

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Account BAccount BAccount AAccount A

Nested Transactions (4)

38

Thread

Begin T1
withdraw deposit

Begin T1.1

Commit T1.1 Begin T1.2

Commit T1.2

Commit T1

Is call to getBalance here possible?

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Concurrent Nested Transactions

39

• Up to this point, all models used a single thread
to execute operations on transactional objects

• Sibling transactions are isolated from each other
• If there is no semantic dependency, they can execute in

parallel to enhance performance
• Additional threads are needed
• Transactions themselves are still sequential!

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Account BAccount B

Account AAccount A

Nested Concurrent Transactions

40

Thread

Begin T1

withdraw

Cobegin T1.1
and T1.2

(forks a thread)

Commit T1.1

Commit T1.2

Commit T1deposit

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Split / Joint Transactions [PKH88]

41

• Split transactions
• At any time, a transaction can split, forking a new thread and

a new split-off transaction
• At split-time, responsibility and access rights for already

executed operations can be passed to the split-off transaction
• Depending on conflicts, the split may be serial or

independent
• Joint transactions
• Instead of committing or aborting, a transaction can join

another transaction, handing over all its operations and
access rights

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object CObject C

Object BObject B

Object AObject A

Commit T1
(op1,op3,op4)

Splitting a Transaction (1)

42

Thread

Begin T1
op1 op4

op2

op3

Split Transaction
(T1,T2,B.op2,independent

op5 Commit T2
(op2,op5)Thread forks

and T2 starts

Object B

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object CObject C

Object BObject B

Object AObject A

Abort T1
(op1,op3,op4)

Splitting a Transaction (2)

43

Thread

Begin T1
op1 op4

op2

op3

Split Transaction
(T1,T2,B.op2,serial

op5 Commit T2 not possible!
T2 must be aborted

Object B

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Object BObject BObject B

Object CObject CObject AObject A
Commit T1

(op1, op2, op3,
op4, op5)

Joining a Transaction

44

Thread 1

Begin T1
op1 op4

op2

op3

op5
Thread 2

Join Transaction (T1)
(hand over access rights)

Begin T2

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Other Models

45

• Recoverable Communicating Actions [VRS86]
• Transactions can communicate results to other transactions
• Sender aborts ⇒ Receiver aborts
• Receiver can commit iff Sender commits
• SAGAS [GMS87]
• A saga is a set of related transactions with a specified execution

order
• Every component transaction has an associated compensating

transaction
• ACID properties guaranteed at the transaction level
• SAGAS execute entirely or not at all

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Transactions and Software Fault Tolerance

46

• Transactions introduced 35 years ago
• Origin in databases [GR93]
• Handle concurrent updates of data
• Provide tolerance of hardware failures
• Software fault tolerance
• Provide support for backward error recovery
• Isolation property prevents the domino effect
• Transaction boundaries coincide with consistent state
• Powerful if combined with structured exception handling

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

Transactions and Exceptions

47

• A & I properties allow transactions to confine
erroneous state

• Exceptions signal abnormal situations or potential
erroneous state

• Idea
• Make transactions exception handling contexts
• Add an acceptance test before transaction commit
• Write self-checking transactional objects [KRS01]

• Treat unhandled exceptions crossing the transaction border as abort
votes

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

References (1)

48

• [EGLT76]
Eswaran, K. P.; Gray, J.; Lorie, R. A.; Traiger, I. L.: “The Notion of Consistency and Predicate
Locks in a Database System”, Communications of the ACM 19(11), November 1976, pp. 624 –
633.

• [BG81]
Bernstein, P. A.; Goodman, N.: “Concurrency Control in Distributed Database Systems”, ACM
Computing Surveys 13(2), June 1981, pp. 185 – 221.

• [GR93]
Gray, J.; Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, San Mateo, California, 1993.

• [KR81]
Kung, H. T.; Robinson, J. T.: “On Optimistic Methods for Concurrency Control”, ACM
Transactions on Database Systems 6(2), June 1981, pp. 213 – 226.

• [MN82]
Menascé, D. A.; Nakanishi, T.: “Optimistic Versus Pessimistic Concurrency Control
Mechanisms in Database Management Systems”, Information Systems 7(1), 1982, pp. 13 – 27.

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

References (2)

49

• [Mos81]
Moss, J. E. B.: Nested Transactions, An Approach to Reliable Computing. Ph.D.
Thesis, MIT, Cambridge, April 1981.

• [PKH88]
Pu, C.; Kaiser, G. E.; Hutchinson, N. C.: “Split-Transactions for Open-Ended
Activities”, in 14th International Conference on Very Large Data Bases, pp. 26 –
37, Los Angeles, California, 1988, Morgan Kaufmann.

• [VRS86]
Vinter, S.; Ramamritham, K.; Stemple, D.: “Recoverable Actions in Gutenberg”, in
Proceedings of the 6th International Conference on Distributed Computing
Systems, pp. 242 – 249, Los Angeles, Ca., USA, May 1986, IEEE Computer
Society Press.

• [GMS87]
Garcia-Molina, H.; Salem, K.: “SAGAS”, in Proceedings of the SIGMod 1987
Annual Conference, pp. 249 – 259, San Francisco, Ca, May 1987, ACM Press.

COMP-667 - Competitive Concurrency, © 2012 Jörg Kienzle

References (3)

50

• [KRS01]
Kienzle, J.; Romanovsky, A.; Strohmeier, A.: “Open Multithreaded Transactions: Keeping
Threads and Exceptions under Control”, in Proceedings of the 6th International Worshop on
Object-Oriented Real-Time Dependable Systems, Universita di Roma La Sapienza, Roma,
Italy, January 8th - 10th, 2001, pages 197 – 205, IEEE Computer Society Press, Los
Alamitos, California, USA, 2001.

