
COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance
Implementing

Backward Error Recovery

Jörg Kienzle
Software Engineering Laboratory

School of Computer Science
McGill University

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Overview

• Simple Approach for Implementing Recovery
Blocks
• C++ [CS93]
• Designing Libraries
• Checkpoint
• Ada [RW98]
• Recovery Cache
• Ada [RW98]
• Recovery Block Template

2

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Simple Recovery Blocks

• Make a copy of the original object(s) before
running the algorithm that modifies their state
[CS93]

• Two ways of implementing recovery blocks
• In-place update
• Make modifications on the original state, and replace it with a backup

copy upon rollback
• Deferred update
• Make modifications to a copy, and replace the original upon

acceptance

3

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

C++ In-place Update

4

T oldObject = object;
try {
 !alternate(object);
! if (accept(object)) {
!!return;
!}
} catch (..) {
!object = oldObject;
!continue;
}

Requires one initialization /
copy in the fault-free case

Copy!

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

C++ Deferred Update

5

try {
!T newObject = alternate(object);
!if (accept(newObject)) {
 object = newObject;
!!return;
!}
} catch (..) {
!continue;
}

Requires initialization / copy and an
assignment in the fault-free case

Copy!

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Discussion of the Simple Approach

6

• The object’s state is copied entirely
• Solution: redefine the copy operator
• The state is stored in “volatile” memory
• The programmer can make mistakes, since (s)he has to

follow programming conventions
• Create copies manually
• Restore them manually
• Make sure to handle all exceptions
• What if (s)he forgets one?

• Idea
• Design a library and enforce rules whenever possible

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Desired Properties of Libraries (reminder)
• Ease of use of the Library
• Minimize the amount of work a programmer needs to do

by providing everything that is application-independent
• Safe use of the Library
• Verify imposed programming conventions
• Use static checking whenever possible, otherwise throw

exceptions
• To achieve ease of use and safety of use, the

library interface must be designed with great care!

7

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Checkpointing
• A checkpoint saves a complete copy of the (important)

application state
• Implementation Requirements
• Easy to use for a programmer
• What does that mean for checkpointing?
• What is generic? What is application-specific? What needs

to be “configured” by the user?
• Safe to use
• What does that mean for checkpointing?
• What needs to be enforced? What could go wrong?
• Do implementation choices affect the interface?

8

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Ada Implementation
• Recoverable objects are clearly identified
• The application-specific objects that must be checkpointed have to

inherit from the Recoverable class
• Object state is stored in streams
• The storage used for saving the state of objects is customizable
• Fine-grained control over what state needs to be saved
• The programmer can provide marshalling and unmarshalling

operations to save only specific state to the stream
• Group objects that represent the relevant application state

for a particular algorithm
• A recovery point is a set of objects, whose state must be saved at

certain points in time

9

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Library Architecture

10

Establish
Restore
Discard

Recovery_Point
Recoverable

Serialize
Reconstitute

0..*1

Application_Specific

Stream_Factory

1

0..*

Factory and Strategy
design pattern

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Point Specification
type Recovery_Point is tagged limited private;

procedure Establish (This : in out Recovery_Point);

procedure Restore (This : in out Recovery_Point);

procedure Discard (This : in out Recovery_Point);

Level_Violation : exception;

Sharing_Violation : exception;

11

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Specification of Streams
type Stream_Factory is tagged limited private;

type Any_Stream_Factory is access Stream_Factory’Class;

type Any_Stream is
! access Ada.Streams.Root_Stream_Type’Class;

function New_Stream (This : in Stream_Factory)
! return Any_Stream;

type Volatile_Stream_Factory is new Stream_Factory
! with private;

Default_Factory : aliased Volatile_Stream_Factory;

12

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Specification of Recoverable
type Recoverable
 (Recovery_Object : access Recovery_Point’Class;
 Stream_Factory : Any_Stream_Factory := Default_Factory)
 is abstract tagged limited private;

type Any_Recoverable is access all Recoverable’Class;

procedure Serialize
! (Stream : access Ada.Streams.Root_Stream_Type’Class;
! This : in Recoverable) is abstract;

procedure Reconstitute
! (Stream : access Ada.Streams.Root_Stream_Type’Class;
! This : out Recoverable) is abstract;

13

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Example Use

14

type Point is record
! x, Y, Z : Float;
end record;

type Recoverable_Plane is
! new Recoverable with record
! A, B, C: Point;
end record;

procedure Serialize
! (Stream : access Root_Stream_Type;
 This : in Recoverable_Plane) is
begin
! Point’Write (Stream, This.A);
! Point’Write (Stream, This.B);
! Point’Write (Stream, This.C);
end Serialize;

-- similar for Reconstitute

declare
! Prior_State :
!!aliased Recovery_Point;
! Foo : Recoverable_Plane
!!(Prior_State’Access);
! Bar : Recoverable_Plane
!!(Prior_State’Access);
begin
! …
! Establish (Prior_State);
! …
end;

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Implementation Concerns

15

• Enforce safety rules
• Make sure that a recoverable object is associated to one and

only one recovery point
• Set up bidirectional association at declaration time
• Make sure that recovery points are not “shared” among threads
• Remember task id of first task that associates recoverable objects with the

recovery point
• Forbid associating a new object to a recovery point that is

already in use
• Make sure all memory is reclaimed when recovery point goes

out of scope

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Checkpoint Implementation Overview

16

Recoverable Recoverable

Application-specific
fields added by
means of subclassing

Application-specific
fields added by
means of subclassing

CheckpointEntry

PriorStates
Next
CheckpointedObject

CheckpointEntry

PriorStates
Next
CheckpointedObject

RecoveryPoint

CurrentLevel
Owner
Objects

StackOfStreams Stream
Stream
Stream

...

...

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Point Implementation

17

subtype Recovery_Level is Natural;
Empty : constant Recovery_Level := 0;

type Checkpoint_Entry;
type List is access Checkpoint_Entry;

type Recovery_Point is new
!!Ada.Finalization.Limited_Controlled with record
!Current_Level : Recovery_Level := Empty;
!Owner : Ada.Task_Identification.Task_Id;
!Objects : List;
end record;

procedure Finalize (This : in out Recovery_Point);

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

CheckpointEntry Implementation

18

package Stack_of_Streams is
!new Unbounded_Stacks (Stream_Reference);

type Checkpoint_Entry is limited record
!PriorStates : Stack_of_Streams.Stack;
!Next : List;
!CheckpointedObject : Any_Recoverable;
end record;

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recoverable Implementation

19

type Recoverable
!(Recovery_Object : access Recovery_Point’Class;
 Stream_Factory : Any_Stream_Factory := Default_Factory)
 is abstract new Ada.Finalization.Limited_Controlled
 with null record;

procedure Initialize (This: in out Recoverable);
procedure Finalize (This: in out Recoverable);

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Safe Registration
• Initialize procedure of the recoverable object
• Verify that the recovery point is empty, i.e. CurrentLevel = 0
• Looks at the Owner field of the associated recovery point and sets

the id to the one of the current task, or raises
Sharing_Violation if it already has a different owner

• Creates a new checkpoint entry for the object, points the
CheckpointedObject field to the current recoverable object,
and inserts the checkpoint entry into the Objects list of the
recovery point

Recovery_Point Recoverable
0..*

1

Taken care of by
Discriminant

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Establish

• Increment the current recovery level
(if there are associated recoverable objects)

• For each checkpoint entry
• A new stream instance is obtained by calling
New_Stream of the stream factory associated with the
recoverable object
• The state of the object is stored in the stream by calling
Serialize
• The stream is pushed onto the PriorStates stack

21

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Restore and Discard

22

• Restore
• If the current recovery level equals empty, then raise
Level_Violation

• For each checkpoint entry
• Restore the most recently saved state using the top stream in the
PriorStates stack and the Reconstitute procedure

• Discard
• No effect if the current recovery level equals empty, else

decrement the level
• For each checkpoint entry
• Pop the most recently saved state from the PriorStates stack and

deallocate the associated memory

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Reclaiming Storage

23

(not a problem in garbage collected languages)

• Finalize of recoverable objects removes the
corresponding checkpoint entry from the Objects
list of the associated recovery point, and also frees
any remaining prior states in the stack of streams
• Very important if checkpoints and procedure nesting are not

coordinated properly
• Finalize of recovery point goes though the entire

data structure and reclaims all leftover storage

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Performance Enhancement
• Previous checkpointing implementation saves and

restores the state of all objects associated with the
recovery point, even if they are not modified!

• Idea: Incremental checkpointing
• Only objects whose values have been modified are

checkpointed
• A Recovery Cache saves only the original state of

objects that have changed after the latest recovery
point
• If nothing changes, nothing needs to be saved!

24

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Cache Example (1)

25

X := 10;
Y := 20;
Establish(RP);
X := 30;
Establish(RP);
Y := 40;
X := 50;

{X,10}

Recovery Cache Stack

{Y,20}

Level 1

Level 2{Y,20}
{X,30}

Discard(RP);

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

{Y,20}
{X,30}

Recovery Cache Example (1)

26

X := 10;
Y := 20;
Establish(RP);
X := 30;
Establish(RP);
Y := 40;
X := 50;

{X,10}

Recovery Cache Stack

Level 1

Level 2

Discard(RP);

{X,10}
{Y,20}

Restore(RP);
All information needed to
restore level 1 is available!

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Implementation Issues (1)
• Specification remains the same, except for
Recoverable, which is not limited anymore in order
to allow assignment

• In Ada, when an assignment statement A := B is
executed
• Finalize is invoked on A
• Bitwise copy of all fields from B to A
• Adjust is invoked on A
• Problems
• Assignment copies the entire object
• Finalize also called upon object destruction

27

When do we have to
save the previous state?

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Implementation Issues (2)

• Assignment copies the entire object
• CacheEntry reference will be overwritten!
• Solution: Finalize copies the reference into a
TempEntry field of the recovery point, Adjust puts it
back in place

• Finalize also called upon destruction
• Solution: Finalize creates the new prior state, but

stores a reference to it in a TempState field of the
recovery point, Adjust then inserts it into the stack

28

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Cache Impl. Overview

29

RecoveryPoint

CurrentLevel
Owner
TempState
TempEntry
Objects
Heads

State

...CacheEntry

PriorStates
Next
KnownValid
MaxLevel
Object

Recoverable

MyEntry
+
Application-
specific
fields

Stream
Next

State

Stream
Next

State

Stream
Next

State

CacheEntry

PriorStates
Next
KnownValid
MaxLevel
Object

Recoverable

MyEntry
+
Application-
specific
fields

Stream
Next State

Stream
Next

State

CacheEntry

PriorStates
Next
KnownValid
MaxLevel
Object

Recoverable

MyEntry
+
Application-
specific
fields

Stream
Next

State

Stream
Next

State

Stream
Next

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Establish and Restore

• Establish
• Increment the current recovery level

(if there are associated recoverable objects)
• Create a new (empty) recovery region by pushing a new

“head” on the stack
• Restore
• Follow the top-most region pointer to all cache entries,

and restore the value of the associated recoverable
objects by calling reconstitute, using the most
recent Stream as a parameter

30

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Discard

• If there is only one level, discard it
• Else merge the level with the previous one
• Insert each entry of the most recent level into the

previous if the previous level does not contain the object
already
• Follow the previous head pointer, and, for each cache entry that is also

part of the current level, i.e. MaxLevel = currentLevel,
deallocate the most recent stream, and decrement MaxLevel

31

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Implementing Recovery Blocks

32

ensure Acceptance Test
by Primary Alternate
else by Alternate 2
else by Alternate 3
…
else by Alternate n
else signal failure exception

(reminder)

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Block Specification

• Generic procedure ensures safe use
• Works with checkpoint or recovery cache

33

type Alternate is access procedure;
type Alternates is array (Natural range <>) of Alternate;
type Acceptance_Test is access function return Boolean;

procedure Recovery_Block
!(Alternatives : in Alternates;
! Acceptable : in Acceptance_Test;
! Prior_State : in out Recovery_Point’Class);

RB_Failure, Sharing_Violation : exception;

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Blocks Implementation

34

procedure Recovery_Block
! (Alternatives : in Alternates;
! Acceptable : in Acceptance_Test;
! Prior_State : in out Recovery_Point’Class) is
begin
! Establish (Prior_State);
! for A in Alternatives’Range loop
!! begin
 Alternatives(A);
!! if Acceptable then exit;
 exception
 when others => null;
 end;
!! if A = Alternatives’Last then
 Discard(Prior_State);
 raise RB_Failure;
!! else Restore (Prior_State);
!! end if;
! end loop;
! Discard (Prior_State);
end Recovery_Block;

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Blocks Use

35

declare
 RP : aliased Recovery_Point;
 Data : Recoverable_Plane (RP’Access);

 function Is_Horizontal return Boolean is …;

 procedure First_Try is …;
 procedure Second_Try is …;
 procedure Third_Try is …;

 My_Alternates : Alternates :=
! (First_Try’Access,
! Second_Try’Access,
! Third_Try’Access);
begin
!Recovery_Block
!!(My_Alternates, Is_Horizontal’Access, RP);
end;

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

Recovery Block Discussion
• Ease of use

• Programmer has to identify recoverable state
• Both standard checkpointing and recovery cache can be used
• No support for user-defined exceptions
• The permanent association between a recoverable object and a recovery point could

be made dynamic
• Allows flexible, execution-dependent partitioning of recoverable state, e.g. defining subsets of recovery

points for recursive recovery blocks

• Safety
• Multithreaded use prohibited
• Failure exception signals recovery block failure to the outside

• Implementation
• The implementation of the recovery cache is slightly complicated due to Ada’s way

of doing Finalize and Adjust
• A mapping between objects and cache entries based on a hash table might be more efficient

36

COMP-667 - Implementing Backward Error Recovery, © 2012 Jörg Kienzle

References

37

• [CS93]
Calsavara, C. M. F. R; Stroud, R. J.: “Forward and
Backward Error Recovery in C++”, University of Newcastle
upon Tyne, Technical Report No. 417, 1993.

• [RW98]
Rogers, P.; Wellings, A. J.: “State Restoration in Ada 95: A
Portable Approach to Supporting Software Fault Tolerance”,
University of York, Technical Report No. 298, 1998

