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Overview

• Robust Software (Pullum 2.1)
• Design Diversity

• Recovery Blocks (Pullum 4.1)
• Acceptance Tests (Pullum 7.2)

• Data Diversity
• Retry Blocks (Pullum 5.1)
• Data Re-expression Algorithms (Pullum 2.3)
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Robust Software (1)
• Software that can continue to operate correctly despite 

the introduction of invalid inputs [IEEE82]
• Invalid inputs are defined in the specification

• Out of range inputs
• Inputs of the wrong type
• Inputs in the wrong format
• Corrupted inputs (detected using error-detecting codes)
• Wrong invocation protocol
• Violation of pre-conditions
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Robust Software (2)

• Goal: No degradation of functionality
(that does not depend on the invalid input)

• Detect wrong inputs, then
• Request new input from the source (probably a human 

operator)
• Use last acceptable value
• Use a predefined default value

• Signal input error to the outside
• Means: (interface) exceptions
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Design Diversity (Reminder)
• Identical copies (replicates) of software cannot increase 

reliability in the presence of software design faults
⇒ Design diversity:
Provision of identical services through separate design 
and implementations

• Components providing identical functionality are called 
versions, variants, alternatives, modules

• Make versions as diverse and independent as possible
• Low probability of common-mode failures:

Variants should fail on disjoint subsets of the input space
• High reliability: At least one variant should be operational all times
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Recovery Blocks (1)

• Introduced in 1974 [Hor74], first 
implementations by Randell [Ran75]

• Idea: Most program functions can be performed 
in more than one way

• Different algorithms and design, with varying 
degrees of efficiency in terms of memory 
utilization, execution time, reliability, etc… 
• Most efficient variant: primary alternate (or try block)
• Less efficient: secondary alternate (or try block)
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Recovery Blocks (2)
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ensure Acceptance Test
by Primary Alternate
else by Alternate 2
else by Alternate 3
…
else by Alternate n
else signal failure exception
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Recovery Block Execution
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Establish Checkpoint; N = 1

Execute 
Alternate N

Evaluate 
Acceptance Test

Discard Checkpoint

Restore Checkpoint

Signal Failure

[AT failed and N < max]

[AT failed or watchdog
expired]
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Recovery Blocks (3)

• Based on acceptance test and backward error 
recovery

• Dynamic technique
(selection of what output / result is to be used is 
made during execution based on the result of the 
acceptance test)

• May include a watchdog to support real-time
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Recovery Block Discussion (1)

10

• Runs in a sequential environment
• Overhead in fail-free mode:

• Establishing a checkpoint
• Running the acceptance test
• Discard the checkpoint

• Additional overhead for every alternate failure:
• Restoring the checkpoint, executing the alternate, and 

running the acceptance test again
• Although unlikely, potential overhead is huge

• Without watchdog not suitable for real-time applications
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Recovery Block Discussion (2)

• Can be applied to small, critical software 
modules

• Watchdog version can detect “infinite loops”
• Requires a highly effective acceptance test

• Undetected error can cause severe damage
• Communication with the outside can cause 

domino effect
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Acceptance Test (1)

• Basic approach to self-checking software
• To check post-conditions of operations

• Must verify that the system behavior is 
acceptable based on an assertion on the 
anticipated system state
• Returns true or false

• Used in recovery blocks, consensus recovery 
block, distributed recovery block, retry block, 
atomic actions, coordinated atomic actions
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Requirements for Acceptance Tests
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• Simple 
• Keep run-time overhead reasonable

• Effective 
• Detect anticipated faults
• Does not incorrectly detect “unfaulty” behavior

• Highly Reliable 
• Does not introduce additional design faults
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Acceptance Test Trade-Offs
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Cursory Test Comprehensive Test

Error Detection Capability Low Exhaustive

Design Complexity Low High

Design Fault Proneness Low High

Development Cost Low High

Execution Time Short Long

Storage Requirements Low High
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Acceptance Test (2)

• Test for what a program should do, or
for what a program should not do?
• Testing for what a program should do may require 

computation of the same magnitude than the main 
algorithms

• Possibility of dependence between the acceptance test 
and the main algorithms 

• Testing for a violation of safety conditions is often 
simpler
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Testing for Satisfaction of Requirements
• Based on the program specification

• In mathematical operations:
• Test by applying the inverse operation (if it exists)
• Example: square root

• Sorting
• Check that elements are in ascending order
• Check that the result has the same number of elements
• Check for the existence of each element in the original sequence

• Test must be independent in order to be effective
• Most effective when carried out on small segments 

of code [Hec79]
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Accounting Tests
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• Can handle larger sections of code than 
satisfaction of requirements tests

• Checksum
• Number of records, sum of all fields
• Invariants
• Inventories

• Physically measurable (can be automated)
• Suits data-oriented applications with simple 

mathematical operations (banking systems, …)
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Reasonableness Tests
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• Based on physical constraints
• Timing constraints
• Physical laws

• Temperature, Speed
• Continuous rate of change

• Boundary conditions in application environment
• Sequencing of object states

• Suits process control  / real-time applications
• Straightforward and efficient to implement
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Run-time Tests

• Testing for anomalous states in the program
• Divide-by-zero
• Overflow / Underflow
• Undefined operation code
• Write-protection violation

• Range checks (e.g. Ada)
• Null pointer checks
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Design Diversity Cost
• Cost for developing three-variant diversity is about twice that 

of single development [H88]
• Cost for requirement specification, test specification and system test 

execution are not multiplied
• Not all parts of a system are critical
• Cost for design, coding and version testing is multiplied

• Recovery Blocks
2 alternates: average cost 175%
3 alternates: average cost 237 %

• N-Version Programming
3 versions: average cost 225 %
4 versions: average cost 301 % [L35]
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Retry Blocks (1)

• Introduced in 1987 [AK87]
• Idea:

Some algorithms fail on very specific input 
values (e.g. 0.0), but will succeed / be very 
efficient on related values
• First try with original input
• If attempt fails, re-express input and try again

• Data diverse complement of the recovery block 
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Retry Blocks (2)

22

ensure Acceptance Test
by Primary Algorithm (Original Input)
else by Primary Algorithm (Re-expr. Input)
else by Primary Algorithm (Re-expr. Input)
…
… [deadline expires]
else by Backup Algorithm (Original Input)
else signal failure exception
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Retry Blocks (3)

• Based on acceptance test and backward error 
recovery

• Dynamic technique
(selection of what output / result is to be used is 
made during execution based on the result of the 
acceptance test)

• May include a watchdog for handling real-time 
situations
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Retry Block Execution
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Establish Checkpoint; N = 1

Execute Primary 
Alternate

Evaluate 
Acceptance Test

Discard Checkpoint

Re-express Input

Signal Failure

[AT failed and N < max]

[AT failed]

Restore Checkpoint

Execute Backup Alg.

Evaluate Accept. Test

[AT success]
[AT failed and N = max]
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Retry Block Discussion
• Runs in a sequential environment
• Overhead in fail-free mode:

• Establishing a checkpoint
• Run the acceptance test

• Additional overhead in case of failure:
• For each additional try: Restoring the checkpoint, executing the data re-

expression algorithm, running the primary algorithm again, and running 
the acceptance test again

• In case of deadline expiration or failure of all primary runs: Restoring the 
checkpoint, execution of the backup algorithm, running the acceptance test

• Although unlikely, potential overhead is huge
• Without watchdog not suitable for real-time applications
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Retry Block Discussion (2)
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• Can be applied to small, critical software 
modules

• Watchdog version can detect “infinite loops”
• Requires a highly effective data re-expression 

algorithm and acceptance test
• Undetected error can cause severe damage

• Communication with the outside can cause 
domino effect
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Retry Block Example (1)
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• Program calculates f(x,y) 
• The two inputs x and y are measured by sensors with a 

tolerance of ± 0.02
• Original algorithm should not receive x = 0.0 as 

an input, or else Divide_By_Zero exception 
is thrown

• Input can be close to 0.0, but due to lack of precision in 
the floating point data type, values such as 1e-10 are 
rounded down to 0.0

• Acceptance test: f(x,y) ≥ 100.0
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Retry Block Example (2)
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x

y

“Divide by zero”
Failure Domain
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Retry Block Example (3)

• Calculate f(0.7e-10, 2.2)

29

1.	

Retry block executive establishes a checkpoint

2.	

Primary algorithm is executed with (0.7e-10, 2.2)
⇒ Divide_By_Zero exception

3.	

The executive catches the exception, sets a flag 
indicating the failure of the first run, and restores the 
checkpoint

4.	

The executive re-expresses the inputs by calling the 
data re-expression algorithm
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Retry Block Example (4)
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5.	

The DRA modifies x within x’s limits of accuracy: 
R(x) = x + 0.0021

8.	

The executive discards the checkpoint and returns the 
results

6.	

The executive calls the primary algorithm with the re-
expressed input. Execution returns 123.45

7.	

The executive submits the result to the acceptance test,
which is passed successfully
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