
COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance
Sequential Fault Tolerance Techniques

Jörg Kienzle
Software Engineering Laboratory

School of Computer Science
McGill University

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Overview

• Robust Software (Pullum 2.1)
• Design Diversity

• Recovery Blocks (Pullum 4.1)
• Acceptance Tests (Pullum 7.2)

• Data Diversity
• Retry Blocks (Pullum 5.1)
• Data Re-expression Algorithms (Pullum 2.3)

2

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Robust Software (1)
• Software that can continue to operate correctly despite

the introduction of invalid inputs [IEEE82]
• Invalid inputs are defined in the specification

• Out of range inputs
• Inputs of the wrong type
• Inputs in the wrong format
• Corrupted inputs (detected using error-detecting codes)
• Wrong invocation protocol
• Violation of pre-conditions

3

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Robust Software (2)

• Goal: No degradation of functionality
(that does not depend on the invalid input)

• Detect wrong inputs, then
• Request new input from the source (probably a human

operator)
• Use last acceptable value
• Use a predefined default value

• Signal input error to the outside
• Means: (interface) exceptions

4

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Design Diversity (Reminder)
• Identical copies (replicates) of software cannot increase

reliability in the presence of software design faults
⇒ Design diversity:
Provision of identical services through separate design
and implementations

• Components providing identical functionality are called
versions, variants, alternatives, modules

• Make versions as diverse and independent as possible
• Low probability of common-mode failures:

Variants should fail on disjoint subsets of the input space
• High reliability: At least one variant should be operational all times

5

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Recovery Blocks (1)

• Introduced in 1974 [Hor74], first
implementations by Randell [Ran75]

• Idea: Most program functions can be performed
in more than one way

• Different algorithms and design, with varying
degrees of efficiency in terms of memory
utilization, execution time, reliability, etc…
• Most efficient variant: primary alternate (or try block)
• Less efficient: secondary alternate (or try block)

6

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Recovery Blocks (2)

7

ensure Acceptance Test
by Primary Alternate
else by Alternate 2
else by Alternate 3
…
else by Alternate n
else signal failure exception

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Recovery Block Execution

8

Establish Checkpoint; N = 1

Execute
Alternate N

Evaluate
Acceptance Test

Discard Checkpoint

Restore Checkpoint

Signal Failure

[AT failed and N < max]

[AT failed or watchdog
expired]

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Recovery Blocks (3)

• Based on acceptance test and backward error
recovery

• Dynamic technique
(selection of what output / result is to be used is
made during execution based on the result of the
acceptance test)

• May include a watchdog to support real-time

9

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Recovery Block Discussion (1)

10

• Runs in a sequential environment
• Overhead in fail-free mode:

• Establishing a checkpoint
• Running the acceptance test
• Discard the checkpoint

• Additional overhead for every alternate failure:
• Restoring the checkpoint, executing the alternate, and

running the acceptance test again
• Although unlikely, potential overhead is huge

• Without watchdog not suitable for real-time applications

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Recovery Block Discussion (2)

• Can be applied to small, critical software
modules

• Watchdog version can detect “infinite loops”
• Requires a highly effective acceptance test

• Undetected error can cause severe damage
• Communication with the outside can cause

domino effect

11

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Acceptance Test (1)

• Basic approach to self-checking software
• To check post-conditions of operations

• Must verify that the system behavior is
acceptable based on an assertion on the
anticipated system state
• Returns true or false

• Used in recovery blocks, consensus recovery
block, distributed recovery block, retry block,
atomic actions, coordinated atomic actions

12

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Requirements for Acceptance Tests

13

• Simple
• Keep run-time overhead reasonable

• Effective
• Detect anticipated faults
• Does not incorrectly detect “unfaulty” behavior

• Highly Reliable
• Does not introduce additional design faults

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Acceptance Test Trade-Offs

14

Cursory Test Comprehensive Test

Error Detection Capability Low Exhaustive

Design Complexity Low High

Design Fault Proneness Low High

Development Cost Low High

Execution Time Short Long

Storage Requirements Low High

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Acceptance Test (2)

• Test for what a program should do, or
for what a program should not do?
• Testing for what a program should do may require

computation of the same magnitude than the main
algorithms

• Possibility of dependence between the acceptance test
and the main algorithms

• Testing for a violation of safety conditions is often
simpler

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Testing for Satisfaction of Requirements
• Based on the program specification

• In mathematical operations:
• Test by applying the inverse operation (if it exists)
• Example: square root

• Sorting
• Check that elements are in ascending order
• Check that the result has the same number of elements
• Check for the existence of each element in the original sequence

• Test must be independent in order to be effective
• Most effective when carried out on small segments

of code [Hec79]

16

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Accounting Tests

17

• Can handle larger sections of code than
satisfaction of requirements tests

• Checksum
• Number of records, sum of all fields
• Invariants
• Inventories

• Physically measurable (can be automated)
• Suits data-oriented applications with simple

mathematical operations (banking systems, …)

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Reasonableness Tests

18

• Based on physical constraints
• Timing constraints
• Physical laws

• Temperature, Speed
• Continuous rate of change

• Boundary conditions in application environment
• Sequencing of object states

• Suits process control / real-time applications
• Straightforward and efficient to implement

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Run-time Tests

• Testing for anomalous states in the program
• Divide-by-zero
• Overflow / Underflow
• Undefined operation code
• Write-protection violation

• Range checks (e.g. Ada)
• Null pointer checks

19

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Design Diversity Cost
• Cost for developing three-variant diversity is about twice that

of single development [H88]
• Cost for requirement specification, test specification and system test

execution are not multiplied
• Not all parts of a system are critical
• Cost for design, coding and version testing is multiplied

• Recovery Blocks
2 alternates: average cost 175%
3 alternates: average cost 237 %

• N-Version Programming
3 versions: average cost 225 %
4 versions: average cost 301 % [L35]

20

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Blocks (1)

• Introduced in 1987 [AK87]
• Idea:

Some algorithms fail on very specific input
values (e.g. 0.0), but will succeed / be very
efficient on related values
• First try with original input
• If attempt fails, re-express input and try again

• Data diverse complement of the recovery block

21

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Blocks (2)

22

ensure Acceptance Test
by Primary Algorithm (Original Input)
else by Primary Algorithm (Re-expr. Input)
else by Primary Algorithm (Re-expr. Input)
…
… [deadline expires]
else by Backup Algorithm (Original Input)
else signal failure exception

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Blocks (3)

• Based on acceptance test and backward error
recovery

• Dynamic technique
(selection of what output / result is to be used is
made during execution based on the result of the
acceptance test)

• May include a watchdog for handling real-time
situations

23

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Execution

24

Establish Checkpoint; N = 1

Execute Primary
Alternate

Evaluate
Acceptance Test

Discard Checkpoint

Re-express Input

Signal Failure

[AT failed and N < max]

[AT failed]

Restore Checkpoint

Execute Backup Alg.

Evaluate Accept. Test

[AT success]
[AT failed and N = max]

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Discussion
• Runs in a sequential environment
• Overhead in fail-free mode:

• Establishing a checkpoint
• Run the acceptance test

• Additional overhead in case of failure:
• For each additional try: Restoring the checkpoint, executing the data re-

expression algorithm, running the primary algorithm again, and running
the acceptance test again

• In case of deadline expiration or failure of all primary runs: Restoring the
checkpoint, execution of the backup algorithm, running the acceptance test

• Although unlikely, potential overhead is huge
• Without watchdog not suitable for real-time applications

25

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Discussion (2)

26

• Can be applied to small, critical software
modules

• Watchdog version can detect “infinite loops”
• Requires a highly effective data re-expression

algorithm and acceptance test
• Undetected error can cause severe damage

• Communication with the outside can cause
domino effect

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Example (1)

27

• Program calculates f(x,y)
• The two inputs x and y are measured by sensors with a

tolerance of ± 0.02
• Original algorithm should not receive x = 0.0 as

an input, or else Divide_By_Zero exception
is thrown

• Input can be close to 0.0, but due to lack of precision in
the floating point data type, values such as 1e-10 are
rounded down to 0.0

• Acceptance test: f(x,y) ≥ 100.0

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Example (2)

28

x

y

“Divide by zero”
Failure Domain

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Example (3)

• Calculate f(0.7e-10, 2.2)

29

1.	

Retry block executive establishes a checkpoint

2.	

Primary algorithm is executed with (0.7e-10, 2.2)
⇒ Divide_By_Zero exception

3.	

The executive catches the exception, sets a flag
indicating the failure of the first run, and restores the
checkpoint

4.	

The executive re-expresses the inputs by calling the
data re-expression algorithm

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

Retry Block Example (4)

30

5.	

The DRA modifies x within x’s limits of accuracy:
R(x) = x + 0.0021

8.	

The executive discards the checkpoint and returns the
results

6.	

The executive calls the primary algorithm with the re-
expressed input. Execution returns 123.45

7.	

The executive submits the result to the acceptance test,
which is passed successfully

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

References (1)
• [IEEE92]

IEEE Standard 729-1982: “IEEE Glossary of Software Engineering Terminology”,
1982.

• [Hor74]
Horning, J. J, et al.: “A Program Strucure for Error Detection and Recovery”, in E.
Gelenbe and C. Kaiser (eds.), Lecture Notes in Computer Science, Vol. 16, pp.
171-187, Springer, 1974.

• [Ran75]
Randell, B.: “System Structure for Software Fault Tolerance”, IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, pp. 220-232, 1975.

• [Hec79]
Hecht, H.: “Fault-Tolerant Software”, IEEE Transactions on Reliability, Vol. R-28, No.
3, pp.227-232, 1979.

• [Avi84]
Aviziensis, A.; Kelly, J. P. J.: “Fault Tolerance by Design Diversity: Concepts and
Experiments”, IEEE Computer, Vol. 17, No. 8, pp. 67-80, 1984.

31

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jörg Kienzle

References (2)

32

• [AK87]
Ammann, P. E.; Knight, J. C.: “Data Diversity: An Approach to Software Fault
Tolerance”, Proceedings of FTCS-17, Pittsburgh, PA, pp. 122-126, 1987.

• [Cri89]
Cristian, F. : “Exception Handling”, in T. Anderson (ed.), Resilient Computing
Systems, Vol. 2, Wiley & Sons, 1987.

• [AK88]
Ammann, P. E.; Knight, J. C.: “Data Diversity: An Approach to Software Fault
Tolerance”, IEEE Transactions on Computers, Vol. 37, pp. 122-126, 1988.

