COMP-667 Software Fault Tolerance

Software Fault Tolerance
Sequential Fault Tolerance Techniques

Jorg Kienzle

Software Engineering Laboratory
School of Computer Science
McGill University

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Overview

e Robust Software (Pullum 2.1)

e Design Diversity
e Recovery Blocks (Pullum 4.1)
e Acceptance Tests (Pullum 7.2)
e Data Diversity

e Retry Blocks (Pullum 5.1)
e Data Re-expression Algorithms (Pullum 2.3)

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Robust Software (1)

e Software that can continue to operate correctly despite

the introduction of invalid inputs [

CEES2 |

e Invalid inputs are defined 1n the specification

e Out of range inputs
* Inputs of the wrong type
* Inputs in the wrong format

e Corrupted 1nputs (detected using error-detecting codes)

* Wrong invocation protocol
* Violation of pre-conditions

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

T McGill

Robust Software (2)

* Goal: No degradation of functionality
(that does not depend on the invalid input)

e Detect wrong inputs, then
e Request new input from the source (probably a human

operator)

e Use last acceptable value

e Use a predefined default value
* Signal input error to the outside

 Means: (interface) exceptions

~

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Design Diversity (Reminder)

e Identical copies (replicates) of software cannot increase
reliability in the presence of software design faults
= Design diversity:
Provision of identical services through separate design
and implementations

e Components providing identical functionality are called
versions, variants, alternatives, modules

* Make versions as diverse and independent as possible

e Low probability of common-mode failures:
Variants should fail on disjoint subsets of the input space

» High reliability: At least one variant should be operational all times

D Emmndt

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Recovery Blocks (1)

e Introduced in 1974 [Hor’74], first
implementations by Randell [Ran75]

e Idea: Most program functions can be performed
in more than one way

e Different algorithms and design, with varying
degrees of efficiency in terms of memory

utilization, execution time, reliability, etc...
e Most efficient variant: primary alternate (or try block)
e Less efficient: secondary alternate (or try block)

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Recovery Blocks (2)

ensure Acceptance Test
by Primary Alternate
else by Alternate 2
else by Alternate 3

else by Alternate n
else signal failure exception

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Recovery Block Execution

(Establish Checkpoint; N = 1)

Alternate N
\], C Restore Checkpoint)
A

Evaluate
Acceptance Test

[AT failed and N < max]

: X([Execute J <

..

>[Discard Checkpoint)
[AT failed or watchdog

expired] >Csignal Faﬂure)
y ch T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 8

Recovery Blocks (3)

* Based on acceptance test and backward error
recovery

 Dynamic technique
(selection of what output / result 1s to be used 1s
made during execution based on the result of the
acceptance test)

 May include a watchdog to support real-time

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Recovery Block Discussion (1)

* Runs in a sequential environment

e Overhead 1n fail-free mode:
e Establishing a checkpoint
e Running the acceptance test
e Discard the checkpoint

* Additional overhead for every alternate failure:

* Restoring the checkpoint, executing the alternate, and
running the acceptance test again

* Although unlikely, potential overhead is huge
e Without watchdog not suitable for real-time applications

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Recovery Block Discussion (2)

e Can be applied to small, critical software
modules

 Watchdog version can detect “infinite loops”
* Requires a highly effective acceptance test

e Undetected error can cause severe damage
 Communication with the outside can cause
domino effect

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Acceptance Test (1)

e Basic approach to self-checking software
* To check post-conditions of operations

 Must verify that the system behavior 1s
acceptable based on an assertion on the
anticipated system state
e Returns true or false

e Used in recovery blocks, consensus recovery
block, distributed recovery block, retry block,
atomic actions, coordinated atomic actions

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Requirements for Acceptance Tests

e Simple
* Keep run-time overhead reasonable

e Effective

e Detect anticipated faults
* Does not incorrectly detect “unfaulty” behavior

* Highly Reliable

* Does not introduce additional design faults

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 13

Acceptance Test Trade-Offs

Cursory Test

Comprehensive Test

Error Detection Capability
Design Complexity
Design Fault Proneness
Development Cost
Execution Time

Storage Requirements

Low

High
High
High
Long

High

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

T McGill

Acceptance Test (2)

e Test for what a program should do, or

for what a program should not do?

» Testing for what a program should do may require
computation of the same magnitude than the main
algorithms

 Possibility of dependence between the acceptance test
and the main algorithms

e Testing for a violation of safety conditions 1s often
simpler

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Testing for Satisfaction of Requirements

e Based on the program specification
e In mathematical operations:
e Test by applying the inverse operation (if it exists)
e Example: square root
e Sorting
* Check that elements are in ascending order

e Check that the result has the same number of elements
» Check for the existence of each element in the original sequence

e Test must be independent 1n order to be effective

* Most effective when carried out on small segments
of code [Hec79]

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Accounting Tests

* Can handle larger sections of code than
satisfaction of requirements tests
o Checksum

e Number of records, sum of all fields
e [nvariants

* Inventories
e Physically measurable (can be automated)

e Suits data-oriented applications with simple
mathematical operations (banking systems, ...)

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Reasonableness Tests

e Based on physical constraints
e Timing constraints

* Physical laws
e Temperature, Speed
e Continuous rate of change

e Boundary conditions in application environment
e Sequencing of object states

e Suits process control / real-time applications
e Straightforward and efficient to implement

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Run-time Tests

e Testing for anomalous states in the program
* Divide-by-zero
e Overflow / Underflow
e Undefined operation code
e Write-protection violation

 Range checks (e.g. Ada)
e Null pointer checks

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 19

Design Diversity Cost

e Cost for developing three-variant diversity 1s about twice that
of single development [H88]

» Cost for requirement specification, test specification and system test
execution are not multiplied

* Not all parts of a system are critical

e Cost for design, coding and version testing is multiplied
* Recovery Blocks

2 alternates: average cost 175%

3 alternates: average cost 237 %

e N-Version Programming
3 versions: average cost 225 %
4 versions: average cost 301 % [L35]

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Retry Blocks (1)

e Introduced 1in 1987 [AKS7]

e [dea:
Some algorithms fail on very specific input
values (e.g. 0.0), but will succeed / be very
efficient on related values
 First try with original input
e [T attempt fails, re-express input and try again

e Data diverse complement of the recovery block

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Retry Blocks (2)

ensure Acceptance Test

by Primary Algorithm (Original Input)

else by Primary Algorithm (Re-expr. Input)
else by Primary Algorithm (Re-expr. Input)

[deadline expires]
else by Backup Algorithm (Original Input)
else signal failure exception

****** | @ McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 22

Retry Blocks (3)

* Based on acceptance test and backward error
recovery

 Dynamic technique
(selection of what output / result 1s to be used 1s

made during execution based on the result of the
acceptance test)

 May include a watchdog for handling real-time
situations

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Retry Block Execution

(Establish Checkpoint; N = 1)

Alternate

= X([Execute Primary](

(Re-express Input)

Evaluate :
Acceptance Test C Restore Checkpoint) 5

[AT failed and N = max] [AT failed and N < max]

i l \/ [AT success]

—>(Execute Backup Alg.) -—)[Discard Checkpoint)

(Evaluate Accept. Test)—

[AT failed] >(Signal Failure)_>©
i T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 24

Retry Block Discussion

* Runs in a sequential environment

e (Overhead in fail-free mode:

e Establishing a checkpoint

e Run the acceptance test

Additional overhead in case of failure:

» For each additional try: Restoring the checkpoint, executing the data re-
expression algorithm, running the primary algorithm again, and running
the acceptance test again

* In case of deadline expiration or failure of all primary runs: Restoring the
checkpoint, execution of the backup algorithm, running the acceptance test

Although unlikely, potential overhead is huge
e Without watchdog not suitable for real-time applications

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Retry Block Discussion (2)

e Can be applied to small, critical software
modules

 Watchdog version can detect “infinite loops”

 Requires a highly effective data re-expression
algorithm and acceptance test
* Undetected error can cause severe damage

e Communication with the outside can cause
domino effect

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Retry Block Example (1)

e Program calculates f(x.,y)

* The two 1nputs x and y are measured by sensors with a
tolerance of £ 0.02

e Original algorithm should not receive x = 0.0 as
an input, or else Divide By Zero exception
1s thrown

 Input can be close to 0.0, but due to lack of precision in
the floating point data type, values such as le-10 are
rounded down to 0.0

e Acceptance test: f(x,y) = 100.0

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

Retry Block Example (2)

y
“Divide by zero”
Failure Domain
—tttt +——tt—t—t—+—t+—+—+—++++

& McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 28

Retry Block Example (3)

e Calculate 1(0.7e-10, 2.2)

1. Retry block executive establishes a checkpoint
2. Primary algorithm is executed with (0.7¢-10,2.2)
= Divide_By_Zero exception

3. The executive catches the exception, sets a flag
indicating the failure of the first run, and restores the
checkpoint

4. The executive re-expresses the inputs by calling the
data re-expression algorithm

B/ — B McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 29

Retry Block Example (4)

5. The DRA modifies x within x’s limits of accuracy:
R(x) =x +0.0021

6. The executive calls the primary algorithm with the re-
expressed input. Execution returns 123 .45

7. The executive submits the result to the acceptance test,
which 1s passed successfully

8. The executive discards the checkpoint and returns the
results

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 30

References (1)

e [IEEE92]
IEEE Standard 729-1982: “IEEE Glossary of Software Engineering Terminology™,
1982.

e [Hor74]

Horning, J. J, et al.: “A Program Strucure for Error Detection and Recovery”, in E.
Gelenbe and C. Kaiser (eds.), Lecture Notes in Computer Science, Vol. 16, pp.
171-187, Springer, 1974.

e [Ran75]
Randell, B.: “System Structure for Software Fault Tolerance”, IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, pp. 220-232, 1975.

e [Hec79]
Hecht, H.: “Fault-Tolerant Software”, IEEE Transactions on Reliability, Vol. R-28, No.
3, pp.227-232, 1979.

e [Avi84]
Aviziensis, A.; Kelly, J. P. J.: “Fault Tolerance by Design Diversity: Concepts and

Experiments”, IEEE Computer, Vol. 17, No. 8, pp. 67-80, 1984.
PR :
w McGill
31

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle

References (2)

e [AKS7]
Ammann, P. E.; Knight, J. C.: “Data Diversity: An Approach to Software Fault

Tolerance”, Proceedings of FTCS-17, Pittsburgh, PA, pp. 122-126, 1987.

e [Cri89]
Cristian, F. : “Exception Handling”, in T. Anderson (ed.), Resilient Computing
Systems, Vol. 2, Wiley & Sons, 1987.

 [AKSS§]
Ammann, P. E.; Knight, J. C.: “Data Diversity: An Approach to Software Fault

Tolerance”, IEEE Transactions on Computers, Vol. 37, pp. 122-126, 1988.

T McGill

COMP-667 - Sequential Fault Tolerance Techniques, © 2012 Jorg Kienzle 32

