COMP-667 Software Fault Tolerance

Software Fault Tolerance
Implementing

N-Version Programming

Jorg Kienzle

Software Engineering Laboratory
School of Computer Science
McGill University

YAl B McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Overview

e Design Issues
e Encapsulating Input / Output Parameters

e Extensible Voters
e Exact Majority Voter

e Version Execution

e Exception handling

e Non-pre-emption vs. pre-emption
* Interface for the Programmer
e Discussion

****** | @ McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Desired Properties of Libraries (1)

e General purpose
* Provide everything that 1s not application-specific

e Easy to use for a programmer
e Can a programmer use your library without an excessive amount of
work?
 How invasive 1s your library?

* Does the programmer need to change his existing design significantly
to use your library?

* Does using your library restrict the programmer in any way?

* Easy to use interface

e Minimize required programming effort (algorithmic complexity / code
quantity) to use the library

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Desired Properties of Libraries (2)

e Safe to use

* Do not give the programmer the opportunity to make

mistakes!
 If possible, correct use should be enforced by the compiler

e Otherwise, use exceptions to signal misuse
e Library must behave correctly, even if programmer uses

“advanced” programming constructs such as multi-threading,
exceptions, reflection, proxies, aspect-orientation, ...
e Safe interface

e Rely on generics / type checking
» Signal (checked) exceptions if misuse 1s detected at run-time

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

N-Version Programming

e Application-specific
* Input data
e Output data
e Code of the different versions

* (Generic
e Execution infrastructure

e Threads that execute the versions
e Synchronizing the threads

e Distributing the input
 Collecting the output

e Voting

e Voters

e The generic library needs to handle application-specific input
and output, and needs to call application-specific code!

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Application Data Requirements

e The infrastructure must be able to copy input
parameter values

e The voters must be able to compare results
* Some voters might want to sort results

* Some voters might want to perform calculations
on numerical results

e Ada does not provide reflection, e.g. some
general means of dealing with unknown data

= we’ll use an object hierarchy

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Application Data Hierarchy

e The programmer must implement a ApplicationData
class that encapsulates his data as a Copy
subclass of ApplicationData or i
ComparableData and implement /N
the required operations, or just use
NumericalData. ”ffmp arablepats

AN
NumericalData
NtoFloat

FloatToN

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Voter Requirements

e Voter implementation 1s application independent
= make voters reusable!

 Which voter 1s most appropriate for determining a
correct result is highly application dependent

=> the user should be able to configure the n-version
support with the appropriate voter

=> 1f needed, the user should be able to write his own
voter and use 1t with the infrastructure

* Voters are accessed concurrently!

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Parallel Design Diversity Concept

Voter

SubmitResult
WaitForResult

Vote

ExactMajorityVoter MeanVoter e UserDefinedVoter

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Voter Class Specification (1)

package Voters is

type Voter (Number Of Versions : Positive) is
abstract tagged limited private;
type Any Voter is access all Voter’Class;

procedure Submit Result(Voter : in out Voter;
R : in Application Data; N : Positive; Round : Positive);
procedure Wait For Result(Voter : in out Voter; R : out Application Data)
Decision Failure : exception;
private
... —— Synchronizer defined on the next slide
type Result Array is array (Positive range <>) of ApplicationData;

type Voter (Number Of Versions : Positive) is tagged record
Results : Result Array (1 .. Number Of Versions);
Collected Results : Natural := 0;
Sync : Synchronizer;
end record;
procedure Vote (Voter : in out Voter; Result : out Positive) is abstract;

T McGill

end Voters;

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle 10

14

Voter Class Specification (2)

package Voters is
. —— continued from previous slide
private
protected type Synchronizer is
procedure Submit Result(R : in Application Data;
N : in Positive; Round : in Positive;
Voter : Any Voter);
entry Wait For Result(R : out Application Data;
Voter : Any Voter);
procedure Set Result (N : in Natural);
procedure Signal Failure;
private
Chosen Result : Natural :
Current Round : Natural :=
Failure : Boolean := Fal
end Synchronizer;

. —— contents on previous slide
end Voters;

0;
0;

)
()

[
4

T McGill

11

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Voter Class Implementation (1)

package body Voters is

procedure Submit Result(Voter : in out Voter;
R : in Application Data;
N : in Positive;
Round : in Positive;) is
begin
Voter.Sync.Submit Result (R, N, Round, Voter);
end Submit Result;

procedure Wait For Result (Voter : in out Voter;
R : out Application Data) is begin
Voter.Sync.Wait For Result (R, Voter);
end Wait For Result;

end Voters;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle 12

Voter Class Implementation (2)

package body Voters is
protected body Synchronizer is
procedure Submit Result (R : in Application Data; N : Positive;
Round : Positive; Voter : Any Voter) is
begin
if Round = Current Round then
Copy (R, Voter.Results(N));
Collected Results := Collected Results + 1;
Voter.Vote;
end if;
end Submit Result;

entry Wait For Result (R : out Application Data; Voter : Any Voter)
when Chosen Result > 0 or Failure is

begin
if Failure then Failure := False; raise Decision Failure;
else Copy(Voter.Results(Chosen Result), R); Chosen Result := 0;
end if;

end Wait For Result;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle 13

Voter Class Implementation (3)

procedure Set Result (N : Natural) is

begin
Chosen Result := N;
Current Round := Current Round + 1;

end Set Result;

procedure Signal Failure is
begin

Failure = True;
end Signal Failure;

end Synchronizer;
end Voters;

& McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle 14

Dynamic Majority Voter Specification

package Voters.Majority Voters is
type Majority Voter (Number Of Versions : Positive) is
new Voter with private;

private

type Majority Voter (Number Of Versions : Positive) is

new Voter with record

EqualCount : array (1 .. Number Of Versions) of Positive;
end record;

procedure Vote (Voter : in out Majority Voter;
Result : out Positive);

end Voters.Majority Voters;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle 15

Dynamic Majority Voter Implementation

procedure Vote (Voter : in out Majority Voter;
Result : out Positive) is
Majority : Natural = Voter.Number Of Versions / 2;
begin
if Voter.Number Of Versions mod 2 = 1 then
Majority := Majority + 1; end if;
if Voter.Collected Results >= Majority then

Voter.EqualCount := (others => 0);
for I in 1 .. Voter.Number Of Versions - 1 loop
for J in I + 1 .. Voter.Number Of Versions loop
if Equal (Voter.Results(I), Voter.Results(J)) then
Voter.EqualCount(I) := Voter.EqualCount(I) + 1;

if Voter.EqualCount(I) >= Majority then
Voter.Sync.Set Result (I); return;
end if;
Voter.EqualCount(J) := Voter.EqualCount(J) + 1;
end if;
end loop; end loop;
if Voter.Collected Results
Voter.Sync.Signal Failure;

end if;

en:ns]oi: : @ MC Gill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Voter.Number Of Versions then

N-Version Implementation

e Abstraction of a version

type Version is access procedure
(Input : in ApplicationData;
Result : out ApplicationData);
type Versions is array (Natural range <>) of Version;

* Each version 1s executed by a task. For efficiency
reasons, one task 1s created for each version, and kept
alive for successive runs.

task type Version Executor

(Version Number : Natural;
My Control : access Version Controller;

My Voter : access Voter) is
entry Start (I : in Application Data; R : in Positive);

T McGill

end Version Executor;

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Exception Handling

* Should exceptions be treated as valid results, or should
an unhandled exception be treated as a version failure?

ApplicationData

It user-defined exceptions are — We decided to encapsulate

to be supported, exceptions "= exceptions in the

should be treated as valid N ApplicationData hierarchy
results

ComparableData ExceptionalOutcome

II< 2”7

JA\

NumericalData

FloatToN @ MC Gi 1 1

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

N-Version Specification

generic
Number Of Versions : Positive;
Algorithms : Versions (1 .. Number Of Versions);

Voter : Voters.Voter;
package N Version Support is
type N Version is limited private;
procedure Execute (N : in out N Version;
Input : in Application Data;
Output : out Application Data);
Decision Failure : exception renames Voters.Decision Failure;
private

type N Version is new Ada.Finalization.Limited Controlled
with record

Version Executors : array (1 .. Number Of Versions)
of Version Executor;
Control : aliased Version Controller;
Voter : aliased Voter;
end record;
procedure Initialize (N : in out N Version);
procedure Finalize (N : in out N Version);

T McGill

N-Version Implementation (1)

package body N Version Support is

procedure Initialize (N : in out N Version) is

begin
for I in N.Version Executors loop
N.Version Executors (I) := new Version Executor

(I, N.Control’Access, N.Voter'’Access);
end loop;
end Initialize;

procedure Finalize (N : in out N Version) is
begin

for I in N.Version Executors loop

Abort (N.Version Executors (I));

end loop;
end Finalize;
. —— continued on next slide

end N Version Support;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

N-Version Implementation (2)

package body N Version Support is
. —— previous slide
procedure Execute (N : in out N Version;
Input in Application Data;
Round in Positive;
Output : out Application Data) is

begin
for I in N.Version Executors loop
N.Version Executors(I).Start (Input, Round);
end loop;
N.Voter.Wait For Result (Output);
end Execute;
end N Version Support;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Non-Preemptive Version Execution

e Each version runs to completion, and then
submits 1t’s result to the voter

 Advantages
e Simple to implement
e The state of the versions remains consistent

e Disadvantages

e Wasted time (sometimes a decision can be made without
waiting for all results)

e “Endless looping” versions will lead to failure

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Preemptive Version Execution

e Still running versions are interrupted / notified as soon
as a correct result has been determined

 Advantages
* No wasted time
e Can handle “endless looping” versions

e Disadvantages
* Needs special language or OS support
e Often results in high run-time overhead in fail-free mode
e Consistency problems
e Hard to prove correctness

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Preemptive Version Controller

protected type Version Controller is
entry Wait Abort;
procedure Signal Abort;
private
Abort Signaled : Boolean := False;
end Action Controller;

protected body Version Controller is
entry Wait Abort when Abort Signaled is

begin
if Wait Abort’Count = 0 then
Abort Signaled := False;
end if;

end Wait Abort;

procedure Signal Abort is
begin

Abort Signaled := True;
end Signal Abort;

end Version Controller;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Version Executor

task body Version Executor (Version Number : Natural,
My Control : access Version Controller;
My Voter : access Voter) is
Input, Result : Application Data; Round : Positive;
begin
loop
accept Start (I : in Application Data; R : in Positive) do
Copy (I, Input); Round := R;
end Start;
select
My Control.Wait Abort;
then abort
begin
Algorithms(Version Number) (Input, Result);
Submit Result (My Voter, Result, Round, Version Number);
exception
when E: others =>
Submit Result (My Voter, new Exceptional Outcome
(Exception Identity (E)), Round, Version Number);
end;
 — end select;

\ J/—end loop; | .
end Version Executor; @ MC Glll

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Voter Synchronizer with Exceptions

package body Voters is
protected body Synchronizer is
procedure Submit Result (...) is
begin
-- same as before
end Submit Result;

entry Wait For Result (R : out Application Data; Voter : Any Voter)
when Chosen Result > 0 or Failure is
begin
if Failure then Failure := False; raise Decision Failure;
else Copy(Voter.Results(Chosen Result), R); Chosen Result := 0;
if R in Exceptional Outcome’Class then
Raise Exception(R.Exception Identity);
end if;
end if;
end Wait For Result;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle 26

User-Defined N-Version Unit

with N Version Support;

type Element List is new Application Data with ..

procedure Bubble Sort (Input : in Element List;
Result : out Element List);

procedure Shaker Sort ..;

procedure Quick Sort ..;

Sorting Algorithms : Versions :=

(Bubble Sort’Access, Shaker Sort’Access, Quick Sort’Access);

package My N Version is new N Version Support
(3, Sorting Algorithms, Majority Voter);

declare
Reliable Sort : My N Version.N Version;
Input : Element List := new Element List (..);
Result : Element List;

begin

—- build input
Reliable Sort.Execute(Input, Result);
end;

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Discussion (1)

e Ease of use

+ All application independent code 1s provided by the
infrastructure, e.g. the programmer only has to implement
the code for each version

+ The infrastructure provides all well-known voters, and
allows the programmer to implement a custom voter, 1f
necessary

+ Can be used as 1s 1n a recursive context

- The programmer has to encapsulate input parameters
and results in subclasses of ApplicationData

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

Discussion (2)

e Safety of use
e Initialization of the n-version support is done automatically at
Instantiation time

e Thread creation / destruction / synchronization is handled
exclusively by the infrastructure

e The infrastructure deals with user-defined and unhandled exceptions

* The interface enforces coherence, e.g. the number of versions N
always corresponds to the number of implemented procedures

* The interface enforces correct voting, €.g. every version votes
exactly once

* Thread-safe
 Failure to determine a result is signalled to the outside

T McGill

COMP-667 - Implementing N-Version Programming, © 2012 Jorg Kienzle

