
COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance
Independent Concurrent Systems

Jörg Kienzle
Software Engineering Laboratory

School of Computer Science
McGill University

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Overview

• Design Diversity (Pullum 2.2)
• N-Version Programming (Pullum 4.2)
• Voting (Pullum 7.1)
• Similarity
• Consistent Comparison Problem
• Exact Majority Voter, Mean Voter, Median Voter,

Consensus Voter, Formal Majority Voter
• N-Copy Programming (Pullum 5.2)

2

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Design Diversity Idea

• Identical copies (replicates) of software can not
increase reliability in the presence of software
design faults
⇒ Design diversity:
Provision of identical services through separate
design and implementations

• Components providing identical functionality
are called versions, variants, alternatives,
modules

3

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Design Diversity Process

4

• Establish initial specification
• Functional requirements
• Decision (adjudication) points
• Data per se, and data format to be compared

• Possible to provide diverse specifications
• + different inputs ⇒ functional diversity
• Each developer / development organization

implements a variant that provides the required
output

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Design Diversity Goals & Issues

5

• Make versions as diverse and independent as
possible
• Low probability of common-mode failures:

Variants should fail on disjoint subsets of the input space
• High reliability: At least one variant should be

operational all times
• Lack of diversity in variants might lead to

similar errors occurring at the same decision
point

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Version Programming (1)
• Suggested in 1972 [Elm72], developed by

Avizienis and Chen [CA78]
• N (at least 2) versions run in parallel
• A decision mechanism selects the “best” result
• Design diverse, static technique

(versions are executed regardless of which result
will be finally used)

• N-version programming can be seen as the
concurrent version of recovery blocks

6

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Version Programming (2)

7

run Version 1 .. Version n in parallel
if Decision Mechanism
 (Result 1, .. Result n) return Result
else signal failure exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Parallel Design Diversity Concept

8

Distribute Input

Execute Variant 1 Execute Variant 2 Execute Variant N...

Adjudicate Result

Signal FailureReturn Result

[unsuccessful]

[successful]

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Version Programming Discussion

• Runs in a multiprocessor environment
• Small run-time overhead
• Time of the slowest version
• Running the decision algorithm
• Synchronization
• Continuity of service
• Possible to use results of the versions to perform

back-to-back testing

9

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Voting on an Outcome

10

• Voters or decision makers compare the results of
two or more versions and decide on the correct
result, if one exists
• Two version voters are also called comparators
• Voters tend to be single points of failure
• Highly reliable
• Effective
• Efficient
• Voters face several fundamental problems

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Similarity
• Similar results

(approximately equal, within a specified tolerance)
• Use of floating-point arithmetic
• Diverse algorithms
• Problem for adjudication
• Decision mechanism must be tolerant
• Similar incorrect results that are considered correct

are called similar errors (or identical wrong
answers)

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Similarity Definitions (2)
• Coincident failure: Multiple variants fail on the

same input case [EL85]
• Correlated failures (or dependent failures): The

actual, measured probability of coincident variant
failures is different from what would be expected
by chance occurrence of these failures [LM89]

• Multiple correct results: Two or more correct
answers exist for an algorithm for the same input
• Example: finding roots of an n-th order equation

12

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Taxonomy of Variant Results

13

Dissimilar Results Similar Results

Multiple Incorrect
Results

Multiple Correct
Results

Correct Results Similar Errors

Coincident
Failure

Correlated
Failure

Variant Results

Undetected Success
(Failure in Decision

Mechanism)

Detected
(independent)

Failure

Success

Undetectable
Failure

[Outside Tolerance] [Within Tolerance]

Correct Correct IncorrectIncorrect

p > pchance

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Consistent Comparison Problem (1)

14

• Whenever the specification of a problem
requires to make comparisons, it is not possible
to guarantee that variants will make the same
decision [BKL87]
• Use of floating-point arithmetic
• Diverse algorithms (different execution paths)
• May lead to output values that are completely

different!

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Consistent Comparison Problem (2)

15

FPA function A FPA function A

>C1 >C1 >C1

FPA function A

FPA function B FPA function B FPA function C

true true
false

A(x) A(x) A(x)

B(A(x)) B(A(x))

C(A(x))

>C2 >C2

true
false

FPA function D FPA function E

D(B(A(x))) E(B(A(x)))

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Consistent Comparison Problem (3)

• Specifications do not (and probably cannot)
describe required results down to the bit level for
every computation and every input

• Without communication between the variants,
there is no solution to the consistent comparison
problem [BKL87]
• Approximate comparison / rounding does not help
• Exact arithmetic impractical

16

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Consistent Comparison Problem (4)

• N-version systems have a non-zero probability
of being unable to reach consensus
⇒ introduce additional faults!

• Not always a problem, e.g. in systems with no
history (e.g. simple control systems)
• Transient phenomenon (single-cycle failure)
• Avoidance using confident signals (send an additional

confidence value to the adjudicator)

17

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Consistent Comparison Problem (5)
• Systems with state
• Failure to reach consensus may depend on differences in internal

state
• Systems with convergent states
• State information revised over time
• State will eventually become consistent again

• Example:
Avionics, height above ground determines flight mode

• Again, confident signals may help
• Systems with non-convergent states
• Inconsistency may persist forever
• Only solution: revert to a backup system

18

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Developing a Voter

• Make it as simple as possible (but not simpler :)
• Complex voters are error-prone
• Write reusable (technique independent) decision

makers
• Write fault-tolerant decision makers
• Distributed voting (requires consensus algorithms)
• When testing your system, test the voter as well!

19

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

When is it a Good Time to Vote?
• Coarse Granularity
• Comparisons are performed infrequently or at the level of

complex data types
• Reduces overhead
• Increases the amount of possible diversity among variants,

which might make decision more difficult
• Fine Granularity
• Comparisons are performed frequently or at the basic data

level
• High overhead
• Decreases the possibility for diversity

20

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Exact Majority Voter [Avi85]

• Select the value of the majority of variants
• M-out-of-N voter
• N often = 3
• M = ⎡(n+1)/2⎤

21

Results of
variants (A, A, A)

(A, A, B)
(A, B, A)
(B, A, A)

(A, A, ∅)
(A, ∅, A)
(∅, A, A)

(A, B, C) (Other)

Voter
Result A A Exception Exception Exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Mean Voter
• Select the mean or weighted average of the results provided by the

variants
• Can only be used on numeric output values
• Can use weights based on the trustworthiness of variants (obtained

from confidence signals, or updated based on previous results, etc.)

22

Results of
variants

(A<B<C)
(A, A, A)

(A, A, B)
(A, B, A)
(B, A, A)

(A, A, ∅)
(A, ∅, A)
(∅, A, A)

(A, B, C)
(C, B, A)
(A, C, B)

…

(Other)

Voter
Result A

Mean(A,A,B)
Mean(w1A,w2B,

w3C)
Exception

Mean(A,B,C)
Mean(w1A,w2B,

w3C)
Exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Voter Discussion (1)
• Exact majority voter
• Works well for discrete (integer or binary) results
• Assumes one correct output for each function
• Is defeated by MCR
• Is defeated by FPA variations
• Can’t handle approximate DRAs
• Does not have to wait for all versions, only until a majority can be established
• Mean voter
• Good when the probability of correctness decreases with increasing distance

from the ideal result [GS90]
• Is vulnerable to MCR
• Handles FPA variations well
• Works well with approximate DRAs

23

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Consensus Voter [V93]
• Generalization of the majority voter
• Find the biggest set (#elements ≥ 2) of matching

results
• If N = 3, then the consensus voter is equivalent to the exact

majority voter

24

Results of
variants

(A, B, B,
B, C) (A, B, B,C, D)

(A, A, B,
C, C)

(A, B, C, D, E) (with ∅)

Voter
Result

B
(maj.)

B
(unique

agreement)

A or C
(tie

agreement)
Exception Exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Median Voter
• Select the median of the results provided by the variants
• Can only be used on “ordered” values
• Assumption: no incorrect result lies between two

correct results

25

Results of
variants

(A<B<C)
(A, A, A)

(A, A, B)
(A, B, A)
(B, A, A)

(A, A, ∅)
(A, ∅, A)
(∅, A, A)

(A, B, C)
(C, B, A)
(A, C, B)

…

(Other)

Voter
Result A A Exception B Exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Voter Discussion (2)
• Median voter
• Not defeated by MCR
• Outperforms exact majority and mean voters [BS90]
• Handles FPA variations well
• Works well with approximate DRAs
• All previous schemes have problems when a

version produces no results
• Idea: use dynamic voters, e.g. only take into account the

results of versions that are available after a given time
• The reason why no result might be available include crash failures, or

ommision, or timing failures of one or multiple variants

26

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Dynamic Majority Voter

• Select the value of the majority of variants that
have produced a result

27

Results of
variants (A, A, A)

(A, A, B)
(A, B, A)
(B, A, A)

(A, A, ∅)
(A, ∅, A)

(∅, A, ∅) ?
(A, B, C) (A, B, ∅)

Voter
Result A A A Exception Exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Comparison Tolerances
• To handle FPA variations, comparison tolerances

can be added
• Works well with the exact majority or consensus voter
⇒ formal majority or formal consensus voter
(sometimes also called tolerance voter or inexact voter)
• Define ε, i.e. the maximum distance allowed between two

correct output values for the same input value
• Calculate all “distances”
• | A - B | = δ1
• | A - C | = δ2
• | B - C | = δ3

28

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Tuning ε
• If ∀i: δi ≤ ε, then there exists an agreement event, otherwise

there exists a conflict event
• When a majority of variants produce an acceptable result, then

there is a no failure event, otherwise, there is a failure event
• Good situations
• No failure occurs with agreement
• Failure occurs with conflict
• Bad situations
• No failure occurs with conflict: false alarm ⇒ the tolerance ε is probably

too small
• Failure occurs with agreement: undetected failure ⇒ the tolerance ε is

probably too big

29

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Formal Majority Voter
• Select the value of the majority of variants using a

tolerance of ε
• Select one output x, then construct the feasibility set

FS including all results that are within the tolerance ε
• If FS contains at least a majority of results, then randomly

select one of them

30

xA B

ε ε
Result: A or x or B

ε ε

xA B
Result: A or x

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Which Voters are Best?
• If safety is the primary concern
• Exact majority voter, formal majority voter, dynamic majority voter
• Rather raise an exception and present no output instead of trying to

guess the correct one
• If an answer is better than no answer, i.e. reliability is the

primary concern
• Median voter, mean voter, weighted average voters
• Always reach a decision (unless they fail themselves)
• There are many more voters tailored to specific

application areas, sometimes also combining ideas taken
from acceptance tests

31

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Data Diversity
• Problem with Design Diversity
• Different alternates need to be developed ⇒ Higher

development cost
• Idea of Data Diversity
• Execute the same software / algorithm with related input,

then use a decision algorithm [AK87]
• Based on (application dependent) data re-

expression algorithms (DRA)
• The DRA should be simple (fast, and fault-free)
• Complement for design diverse techniques

32

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Data Diversity Definitions (1)
• Input space / output space of a program:

A hyperspace of many dimensions, defined by the
specification

• Failure Domain [Cri89]:
Set of input points that cause program failure

• Failure Region:
“Geometry” / distribution of points in the failure
domain
• Observation: failure regions tend to be associated with

transitions in the output space

33

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Data Diversity Definitions (2)

34

Input Space Output Space

x

P(x)

Identical Output
(up to numerical error)

I = {y | P(x) identical to P(y)}

Valid (Acceptable)
Output

V = {y | P(y) acceptable
instead of P(x)}

F = {y | P(y) not
acceptable instead

of P(x) or P(y) fails}

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Data Re-Expression

• Exact data re-expression algorithms
• Data re-expression in the set I
• Transparent outside of the program
• May unfortunately often preserve the aspect that causes

the failure
• Approximate data re-expression algorithms
• Data re-expression in the set V
• Better chance of escaping the failure region [AK88]

35

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Exact DRA Examples

36

• Program takes a set of points in a 2D space as an
input. Only the relative position of the points is
relevant
• DRA: Translate the coordinate system or rotate the

coordinates around an arbitrary point
• Sorting
• DRA: Random permutation of the input
• Expressions *

a b

+ c

*

ab

+c⇔

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Approximate DRA Examples

• Introduce low-level “noise” to sensor values
• Sensors have limited accuracy
• Perturbing real-world quantities within specific bounds

should therefore not affect output

37

DRA:
Add Small

Random Noise

x

y

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Copy Programming (1)

• N (at least 2) versions of the same algorithm run
in parallel with slightly different input obtained
from the original input and a data re-expression
algorithm (DRA)
• Developed by Ammann and Knight [AK88]
• A decision mechanism selects the “best” result
• Data diverse, static technique

38

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Copy Programming (2)

39

run DRA 1 .. DRA n in parallel
run Copy 1 (Result of DRA 1) …
 Copy n (Result of DRA n) in parallel
if Decision Mechanism
 (Result 1, .. Result n) return Result
else signal failure exception

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Copy Programming Execution

40

Distribute Input

Execute Algorithm Execute Algorithm Execute Algorithm...

Adjudicate Result

Signal FailureReturn Result

[unsuccessful]

[successful]

Execute DRA 1 Execute DRA 2 Execute DRA N...

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

N-Copy Programming Discussion

• Runs in a multiprocessor environment
• Small run-time overhead
• Running the (slowest) data re-expression algorithm
• Running the decision algorithm
• Synchronization
• Continuity of service

41

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Design Diversity: Experimental Results

• The major cause of common faults are flawed
specifications (incompleteness / ambiguity)
• Using diverse specifications raises the problem of

proving equivalence
• Programmers tend to make similar mistakes
• Coincident failures are less likely if different

development processes are used for each variant
• Fewer faults in strongly typed languages

42

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

Questions

• What must be part of a specification for a system
that is to be designed using design diverse fault
tolerance techniques?

• What is the consistent comparison problem?
• What are confident signals?

43

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

References (1)

44

• [Avi85]
Avizienis, A.: “The N-version Approach to Fault-Tolerant Software”, IEEE Transactions on
Software Engineering, Vol. SE-11, No. 12, pp. 1491-1501, 1985.

• [Elm72]
Elmendorf, W. R.: “Fault Tolerant Programming”, Proceedings of FTCS-2, Newton, MA, pp.
79 - 83, 1972.

• [CA78]
Chen, L. and Avizienis, A.: “N-Version Programming: A Fault Tolerance Approach to
Reliability of Software Operation”, Proceedings of FTCS-8, Toulouse, France, pp. 3- 9, 1978.

• [LA90]
Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”, in Dependable
Computing and Fault-Tolerant Systems, Springer Verlag, 2nd ed., 1990.

• [EL85]
Eckhardt, D. E.; Lee, L. D.: “A Theoretical Basis for the Analysis of Multiversion Software
Subject to Coincident Errors”, IEEE Transactions on Software Engineering, Vol. SE-11, No.
12, pp. 1511-1517, 1985.

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

References (1)

45

• [LM89]
Littlewood, B.; Miller, D. R.: “Conceptual Modeling of Coincident Failures in
Multiversion Software”, IEEE Transactions on Software Engineering, Vol. 15, No. 12, pp.
1596-1614, 1980.

• [BKL87]
Brilliant, S.; Knight, J. C.; Leveson, N. G.: “The Consistent Comparison Problem in N-
Version Software”, ACM SIGSOFT Software Engineering Notes, Vol 12, No. 1, pp. 29-34,
1987.

• [BS90]
Blough, D. N. and Sullivan, G. F.: “A Comparison of Voting Strategies for Fault-Tolerant
Distributed Systems”, Proceedings of the 9th Symposion on Reliable Distributed Systems,
Huntsville, AL, USA, pages 136 - 145, 1990.

• [GS90]
Di Giandomenico, F.; Stringini, L.: “Adjudicators for Diverse-Redundant Components”,
Proceedings of the 9th Symposion on Reliable Distributed Systems, Huntsville, AL, USA,
pages 114 - 123, 1990.

COMP-667 - Independent Concurrent Systems, © 2012 Jörg Kienzle

References (1)

46

• [V93]
Vouk, M. A. et al.: “An Empirical Evaluation of Consensus Voting and Consensus
Recovery Block Reliability in the Presence of Failure Correlation”, Journal of Computer
and Software Engineering, Vol. 1, No. 4, pages 367 - 388, 1993.

• [Bis95]
Bishop, P.: “Software Fault Tolerance by Design Diversity”, in M. R. Lyu (ed.), Software
Fault Tolerance, John Wiley & Sons, pp. 211-229, 1995.

• [AK88]
Ammann, P. E.; Knight, J. C.: “Data Diversity: An Approach to Software Fault Tolerance”,
IEEE Transactions on Computers, Vol. 37, No. 4, pp. 418 - 425, 1988.

• [H88]
 G. Hagelin, “ERICSSON Safety Systems for Railway Control”, in Software diversity in
computerized control systems (U. Voges, Ed.), 2, pp.11-21, Springer-Verlag, 1988.

• [L90]
Laprie, J. C. et al.: “Definition and Analysis of Hardware- and Software Fault-Tolerant
Architectures”, IEEE Computer, Vol 23, No. 7, pp. 1502 - 1510, 1990.

