Software Fault Tolerance
Independent Concurrent Systems

Jorg Kienzle

Software Engineering Laboratory
School of Computer Science
McGill University

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Overview

* Design Diversity (Pullum 2.2)
* N-Version Programming (Pullum 4.2)
e Voting (Pullum 7.1)

e Similarity

e Consistent Comparison Problem

* Exact Majority Voter, Mean Voter, Median Voter,
Consensus Voter, Formal Majority Voter

 N-Copy Programming (Pullum 5.2)

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Design Diversity Idea

* Identical copies (replicates) of software can not
increase reliability 1in the presence of software
design faults
= Design diversity:

Provision of 1dentical services through separate
design and implementations

 Components providing identical functionality
are called versions, variants, alternatives,
modules

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Design Diversity Process

e Establish initial specification
e Functional requirements
e Decision (adjudication) points
e Data per se, and data format to be compared
* Possible to provide diverse specifications
e + different inputs = functional diversity

e Each developer / development organization
implements a variant that provides the required
output

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Design Diversity Goals & Issues

 Make versions as diverse and independent as

possible

e Low probability of common-mode failures:
Variants should fail on disjoint subsets of the input space

e High reliability: At least one variant should be
operational all times

e Lack of diversity 1n variants might lead to
similar errors occurring at the same decision
point

YAl T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

N-Version Programming (1)

e Suggested in 1972 [Elm72], developed by
Avizienis and Chen [CA78]

* N (at least 2) versions run in parallel
e A decision mechanism selects the “best” result

* Design diverse, static technique
(versions are executed regardless of which result
will be finally used)

e N-version programming can be seen as the
concurrent version of recovery blocks

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

N-Version Programming (2)

run Version 1 .. Version n in parallel

i1f Decision Mechanism
(Result 1, .. Result n) return Result

else signal failure exception

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

v

(Distribute Input)

(Execute Variant 1) (Execute Variant 2) oo (Execute Variant N)

(Adjudicate Result)

[unsuccessful]

[successful]

(Return Result) (Signal Failure)

v J
— © O

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

N-Version Programming Discussion

* Runs in a multiprocessor environment

e Small run-time overhead
e Time of the slowest version
* Running the decision algorithm
* Synchronization

e Continuity of service

e Possible to use results of the versions to perform
back-to-back testing

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Voting on an Outcome

* Voters or decision makers compare the results of
two or more versions and decide on the correct
result, 1f one exists
e Two version voters are also called comparators

* Voters tend to be single points of failure
e Highly reliable
e Effective
e Efficient

* Voters face several fundamental problems

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Similarity

e Similar results

(approximately equal, within a specified tolerance)
e Use of floating-point arithmetic
* Diverse algorithms

* Problem for adjudication
e Decision mechanism must be tolerant

e Similar incorrect results that are considered correct
are called similar errors (or 1dentical wrong
answers)

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Similarity Definitions (2)

* Coincident failure: Multiple variants fail on the
same 1nput case [EL83]

» Correlated failures (or dependent failures): The
actual, measured probability of coincident variant
tailures 1s different from what would be expected
by chance occurrence of these failures [LM&9]

e Multiple correct results: Two or more correct
answers exist for an algorithm for the same input
e Example: finding roots of an n-th order equation

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Taxonomy of Variant Results

(Variant Results)

[Outside Tolerance] [Within Tolerance]
v e v

(Dissimilar Results) (Similar Results)

Correct g m Incorrect Correct g M Incorrect

Multiple Correct Multiple Incorrect (Correct Results) (Similar Errors)
Results Results &

/\ /\ . (SHC/ZGSS) [Coincident J

Failure

4 N [
Undetected Success Detected
(Failure in Decision | | (independent) Undetectable % P~ Pehance
S Mechanism) JAN Failure y Failure Correlated
Failure

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Consistent Comparison Problem (1)

* Whenever the specification of a problem
requires to make comparisons, it 1s not possible
to guarantee that variants will make the same

decision [BKL87]

e Use of floating-point arithmetic

e Diverse algorithms (different execution paths)
 May lead to output values that are completely

different!

YAl T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

- Consistent Comparison Problem (2)

v v v

(FPA function A) (FPA function A) (FPA function A)
A(X) A(X) Ax)
false
true
(FPA function B) (FPA function B) (FPA function C)
B(A(x)) f B(A(x))
false
true
(FPA function D) (FPA function E)
éD(B(A(X))) E(B(A(x))) éC(A(X))

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Consistent Comparison Problem (3)

* Specifications do not (and probably cannot)
describe required results down to the bit level for
every computation and every input

e Without communication between the variants,
there 1s no solution to the consistent comparison

problem [BKL87]

e Approximate comparison / rounding does not help
e Exact arithmetic impractical

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Consistent Comparison Problem (4)

e N-version systems have a non-zero probability
of being unable to reach consensus

= introduce additional faults!

* Not always a problem, e.g. 1n systems with no

history (e.g. simple control systems)
e Transient phenomenon (single-cycle failure)

* Avoidance using confident signals (send an additional
confidence value to the adjudicator)

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Consistent Comparison Problem (5)

e Systems with state
e Failure to reach consensus may depend on differences in internal
state
e Systems with convergent states

e State information revised over time
» State will eventually become consistent again

e Example:
Avionics, height above ground determines flight mode

e Again, confident signals may help
e Systems with non-convergent states

e Inconsistency may persist forever
e Only solution: revert to a backup system

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Developing a Voter

 Make 1t as simple as possible (but not simpler :)
e Complex voters are error-prone

* Write reusable (technique independent) decision
makers

 Write fault-tolerant decision makers

 Distributed voting (requires consensus algorithms)

* When testing your system, test the voter as well!

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

When 1s 1t a Good Time to Vote?

e Coarse Granularity

e Comparisons are performed infrequently or at the level of
complex data types

* Reduces overhead
 Increases the amount of possible diversity among variants,
which might make decision more difficult
e Fine Granularity

e Comparisons are performed frequently or at the basic data
level

e High overhead

* Decreases the possibility for diversity

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Exact Majority Voter [Avi85]

e Select the value of the majority of variants

e M-out-of-N voter
e N often =3
e M = [(n+1)/2]

Results of (A,A,B) (AA,9)
esults o
variants | (A8 | (A BA) (A, J,A) | (A,B,C) | (Other)
(B,AA) | (D,A,A)
Voter . . |
Result A A Exception = Exception = Exception

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Mean Voter

* Select the mean or weighted average of the results provided by the
variants

e (Can only be used on numeric output values

e (Can use weights based on the trustworthiness of variants (obtained
from confidence signals, or updated based on previous results, etc.)

Results of (A, A, B) (A, A, D) (A,B,C)
variants | (A, A,A) (A,B,A) (A, D, A) (C,B,A) (Other)
(A<B<C) (B,A,A) (T, A,A) (A,C,B)
Mean(A,A,B) Mean(A,B,C)
lzlé)stsft A Mean(w;A,w,B, | Exception Mean(w;A,w,B, Exception
w3C) w3C)

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Voter Discussion (1)

e Exact majority voter
e Works well for discrete (integer or binary) results

* Assumes one correct output for each function

Is defeated by MCR
Is defeated by FPA variations
e Can’t handle approximate DRAs

e Does not have to wait for all versions, only until a majority can be established

e Mean voter

* Good when the probability of correctness decreases with increasing distance
from the 1deal result [GS90]

e [s vulnerable to MCR
e Handles FPA variations well
* Works well with approximate DRAs

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Consensus Voter [V93]

* Generalization of the majority voter

e Find the biggest set (#elements = 2) of matching

results

e If N =3, then the consensus voter is equivalent to the exact
majority voter

Results of | (A, B, B, (A, A, B, |
variants B, C) (A,B,B.C,D) C.C (A,B,C,D,E) | (with &)
,C)
Vot B B AorC
Reossft - (unique (tie Exception Exception
(may.) agreement) agreement)

T McGill

Median Voter

* Select the median of the results provided by the variants
e Can only be used on “ordered” values

e Assumption: no incorrect result lies between two
correct results

A,B,C
Results of (A, A, B) (A, A, D) (C ; A>
variants (A.AA) (ABA) A2.a) OB o
(A<B<C) (B.A,A) (D.A.A) (A, C,B)
Voter . |
Result A A Exception B Exception

T McGill

Voter Discussion (2)

* Median voter
e Not defeated by MCR
e Outperforms exact majority and mean voters [BS90]
e Handles FPA variations well
* Works well with approximate DRAs

* All previous schemes have problems when a

version produces no results

 Idea: use dynamic voters, e.g. only take into account the
results of versions that are available after a given time

e The reason why no result might be available include crash failures, or
ommision, or timing failures of one or multiple variants

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Dynamic Majority Voter

e Select the value of the majority of variants that
have produced a result

Results of (A,A,B) (A, A, D)
esults o
variants (A,A’A) (A,B’A> (A’ @’A) (A,B,C) (A’ B, @)
(B,A,A) (D,A,D)7?
Voter . |
Result A A A Exception Exception

T McGill

Comparison Tolerances

* To handle FPA variations, comparison tolerances
can be added

* Works well with the exact majority or consensus voter
=> formal majority or formal consensus voter

(sometimes also called tolerance voter or inexact voter)

e Define €, 1.e. the maximum distance allowed between two
correct output values for the same input value

e Calculate all “distances”

e |A-Bl=01
e |A-Cl=02
e |B-CIl=03

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Tuniné €

o If Vi: Oi < €, then there exists an agreement event, otherwise
there exists a conflict event

 When a majority of variants produce an acceptable result, then
there 1s a no failure event, otherwise, there 1s a failure event

e (Good situations

e No failure occurs with agreement
* Failure occurs with conflict

e Bad situations
e No failure occurs with conflict: false alarm = the tolerance € is probably
too small

e Failure occurs with agreement: undetected failure = the tolerance € is
probably too big

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Formal Majority Voter

e Select the value of the majority of variants using a
tolerance of €

* Select one output x, then construct the feasibility set

FS including all results that are within the tolerance €

e If FS contains at least a majority of results, then randomly
select one of them

A X B
—o——o - Result: Aorx or B
& &
A X B
N —— Result: A or X
& &

T McGill

Which Voters are Best?

o If safety 1s the primary concern
e Exact majority voter, formal majority voter, dynamic majority voter

e Rather raise an exception and present no output instead of trying to
guess the correct one

e If an answer 1s better than no answer, 1.e. reliability 1s the
primary concern
 Median voter, mean voter, weighted average voters
e Always reach a decision (unless they fail themselves)

 There are many more voters tailored to specific
application areas, sometimes also combining ideas taken
from acceptance tests

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Data Diversity

* Problem with Design Diversity

e Different alternates need to be developed = Higher
development cost

e Idea of Data Diversity

e Execute the same software / algorithm with related input,
then use a decision algorithm [AKS87]

* Based on (application dependent) data re-
expression algorithms (DRA)

 The DRA should be simple (fast, and fault-free)
 Complement for design diverse techniques

YAl T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Data Diversity Definitions (1)

e Input space / output space of a program:
A hyperspace of many dimensions, defined by the
specification

e Failure Domain [Cri189]:
Set of input points that cause program failure

e Failure Region:
“Geometry”’ / distribution of points in the failure

domain

e Observation: failure regions tend to be associated with
transitions in the output space

YAl T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Data Diversity Definitions (2)

Input Space Output Space
V = {y | P(y) acceptable
instead of P(x)} ™
Valid (Acceptable)
F={y|P(y) not —— Output
acceptable instead
of P(x) or P(y) fails} P(x)
Identical Output

(up to numerical error)

T McGill

Data Re-Expression

e Exact data re-expression algorithms
e Data re-expression in the set I
* Transparent outside of the program
 May unfortunately often preserve the aspect that causes
the failure
* Approximate data re-expression algorithms
e Data re-expression in the set V
e Better chance of escaping the failure region [AKS88]

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Exact DRA Examples

* Program takes a set of points in a 2D space as an
input. Only the relative position of the points 1s

relevant

* DRA: Translate the coordinate system or rotate the
coordinates around an arbitrary point

e Sorting
* DRA: Random permutation of the input
* Expressions () ()
() @ e @ (&
OO) @ %

McGiall

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Approximate DRA Examples

e Introduce low-level “noise” to sensor values
e Sensors have limited accuracy

e Perturbing real-world quantities within specific bounds
should therefore not affect output

(o) DRA.:

(o) Add Small
Random Noise

T McGill

N-Copy Programming (1)

e N (at least 2) versions of the same algorithm run
in parallel with slightly different input obtained
from the original input and a data re-expression
algorithm (DRA)

* Developed by Ammann and Knight [AK88]
e A decision mechanism selects the “best” result

e Data diverse, static technique

YAl T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

N-Copy Programming (2)

run DRA 1 .. DRA n in parallel
run Copy 1 (Result of DRA 1)
Copy n (Result of DRA n) in parallel
if Decision Mechanism
(Result 1, .. Result n) return Result
else signal failure exception

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

N-Copy Programming Execution

v

(Distribute Input)

T— T T

(Execute DRA 1) (Execute DRA 2) (Execute DRA N)

(Execute Algorithm) (Execute Algorithm) ... (Execute Algorithm)

%

(Adjudicate Result)

[unsuccessful]

[successful]

(Returrl Result) (Signal ‘Iliailure)
© o = McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

N-Copy Programming Discussion

* Runs in a multiprocessor environment

 Small run-time overhead
* Running the (slowest) data re-expression algorithm
* Running the decision algorithm
* Synchronization

e Continuity of service

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Design Diversity: Experimental Results

* The major cause of common faults are flawed

specifications (incompleteness / ambiguity)

e Using diverse specifications raises the problem of
proving equivalence

* Programmers tend to make similar mistakes

* Coincident failures are less likely 1f different
development processes are used for each variant

e Fewer faults 1n strongly typed languages

"% McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

Questions

 What must be part of a specification for a system
that 1s to be designed using design diverse fault
tolerance techniques?

 What is the consistent comparison problem?
 What are confident signals?

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

References (1)

[Avi85]

Avizienis, A.: “The N-version Approach to Fault-Tolerant Software”, IEEE Transactions on
Software Engineering, Vol. SE-11, No. 12, pp. 1491-1501, 1985.

[EIm72]

Elmendorf, W. R.: “Fault Tolerant Programming”, Proceedings of FTCS-2, Newton, MA, pp.
79 - 83,1972.

[CAT8]

Chen, L. and Avizienis, A.: “N-Version Programming: A Fault Tolerance Approach to
Reliability of Software Operation”, Proceedings of FTCS-8, Toulouse, France, pp. 3- 9, 1978.
[LA90]

Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”, in Dependable
Computing and Fault-Tolerant Systems, Springer Verlag, 2nd ed., 1990.

[EL85]

Eckhardt, D. E.; Lee, L. D.: “A Theoretical Basis for the Analysis of Multiversion Software
Subject to Coincident Errors”, IEEE Transactions on Software Engineering, Vol. SE-11, No.
12, pp. 1511-1517, 1985.

T McGil

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle 44

References (1)

[LM89]

Littlewood, B.; Miller, D. R.: “Conceptual Modeling of Coincident Failures in
Multiversion Software”, IEEE Transactions on Software Engineering, Vol. 15, No. 12, pp.
1596-1614, 1980.

[BKL87]

Brilliant, S.; Knight, J. C.; Leveson, N. G.: “The Consistent Comparison Problem in N-
Version Software”, ACM SIGSOFT Software Engineering Notes, Vol 12, No. 1, pp. 29-34,
1987.

[BS90]
Blough, D. N. and Sullivan, G. F.: “A Comparison of Voting Strategies for Fault-Tolerant

Distributed Systems”, Proceedings of the 9th Symposion on Reliable Distributed Systems,
Huntsville, AL, USA, pages 136 - 145, 1990.

[GS90]

Di Giandomenico, F.; Stringini, L.: “Adjudicators for Diverse-Redundant Components”,
Proceedings of the 9th Symposion on Reliable Distributed Systems, Huntsville, AL, USA,
pages 114 - 123, 1990.

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

References (1)

[VI3]

Vouk, M. A. et al.: “An Empirical Evaluation of Consensus Voting and Consensus
Recovery Block Reliability in the Presence of Failure Correlation”, Journal of Computer
and Software Engineering, Vol. 1, No. 4, pages 367 - 388, 1993.

[Bis95]

Bishop, P.: “Software Fault Tolerance by Design Diversity”, in M. R. Lyu (ed.), Software
Fault Tolerance, John Wiley & Sons, pp. 211-229, 1995.

[AKS8S]

Ammann, P. E.; Knight, J. C.: “Data Diversity: An Approach to Software Fault Tolerance”,
IEEE Transactions on Computers, Vol. 37, No. 4, pp. 418 - 425, 1988.

[H88]

G. Hagelin, “ERICSSON Safety Systems for Railway Control”, in Software diversity in
computerized control systems (U. Voges, Ed.), 2, pp.11-21, Springer-Verlag, 1988.

[L90]

Laprie, J. C. et al.: “Definition and Analysis of Hardware- and Software Fault-Tolerant
Architectures”, IEEE Computer, Vol 23, No. 7, pp. 1502 - 1510, 1990.

T McGill

COMP-667 - Independent Concurrent Systems, © 2012 Jorg Kienzle

