
COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Dependable
Requirements Engineering

Jörg Kienzle
School of Computer Science, McGill University

Montreal, Canada

Contributing authors:
Sadaf Mustafiz, Shane Sendall, Aaron Shui, Alexander Romanovsky, Christophe Dony,

Hans Vangheluwe, Ximeng Sun

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Overview
• Use Cases

• Use Case Template
• Actors
• Use Case Granularity
• Use Case Diagrams

• Dependability-Focused Requirements Engineering Process
• Motivation
• Context-Affecting Exceptions
• Safety and Reliability Handlers
• Service-Affecting Exceptions
• Dependability Assessment

• Conclusion & Future Work

2

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Requirements Elicitation (1)

• Discover the requirements of the system to
develop
• User expectations
• Functional requirements
• Non-functional requirements / qualities

• Distribution
• Security
• Safety
• Reliability
• Fault Tolerance
• Availability

3

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

What are Use Cases good for?

• Discover and document the functional
requirements of the desired system
• In a way that all important participants of a project can

understand
• In a way that is clearly related to the motivation for the

system (e.g., business vision)
• In a complete, consistent, and verifiable manner

4

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Cases
• Use Cases capture interactions between the system and

the environment to achieve user goals
• Use cases capture who (actor) does what (interaction) with

the system, with what purpose (goal), without dealing with
system internals.

• A complete set of use cases specifies all the different ways
to use the system, and thus defines all behavior required of
the system, bounding the scope of the system.

• Designed to be understood by non-technical parties

5

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case Comments
• Being a black-box view of the system, use cases are a

good approach for finding the What rather than the How
• A black-box matches users view of the system: things

going in and things coming out
• A use case sums up a set of scenarios:

• Each scenario goes from trigger to completion
• Use cases can help formulate system tests:

• “Is this use case built into the system?”

6

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Actors: What Are They?

• “The actors represent what interacts with the
system.” [Jacobson ‘92]

• An actor represents a role that an external entity
such as a user, a hardware device, or another
system plays in interacting with the system

• A role is defined by a set of characteristic needs,
interests, expectations, behaviors and
responsibilities [Wirfs-Brock ‘94]

7

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Actor Comments

• An actor communicates by sending and
receiving messages to/from the system under
development.

• A use case is not limited to a single actor.
• Sources, i.e. how to discover actors:

• People: Workshops, Meetings, etc.
• Documentation: user manuals and training guides are

often directed at roles representing potential actors
• Domain Model

8

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

How to Find Actors

• Look for external entities that interact with the
system
• Which persons interact with the system (directly or

indirectly)? Don’t forget maintenance staff!
• Will the system need to interact with other systems or

existing legacy systems?
• Are there any other hardware or software devices that

interact with the system?
• Are there any reporting interfaces or system

administrative interfaces?

9

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Actor Categories
• Jacobson (1992) categorized actors into two types:

• Primary Actor
• actor with goal on system (sometimes off-stage)
• obtains value from the system
• Sometimes, primary actors interact with the system through facilitator

actors
• Secondary Actor

• actor with which the system has a goal
• supports “creating value” for other actors

• Facilitator Actor
• actor or device that is used by a primary actor or secondary actor to

communicate with the system

10

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

System Boundary

• The system boundary defines the separation
between the system and its environment
• Clear definition is extremely important

• Movement of the system boundary often has a
large effect on what should be built

• A common area of conflict between stakeholders
arises when they assume different system
boundaries, and hence refer to different systems!

11

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

System Boundary Example

12

Customer

DeliveryFactory

Order Taker

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case Description
• Use cases are primarily textual descriptions
• Use case steps are written in an easy-to-understand

structured narrative using the vocabulary of the
application domain

• A use case description includes
• How the use case starts and ends
• The context of the use case
• The actors that interact with the system
• All the circumstances in which the primary actor’s goal is reached

and not reached
• What information is exchanged

13

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Structured Use Case Template
• Use Case Name
• Scope
• Level
• Intention in Context
• Multiplicity
• Primary Actor

• Secondary Actors
• Main Success Scenario

• Sequence of Interaction Steps
• Extensions & Exceptions

• Additional / Alternative Interaction Steps

14

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Interaction Steps
• An interaction step either

1.Refers to a lower level use case
2.Describes a base interaction step between the system and the environment

• A base interaction step must always contain the word System and
(at least) an actor and
• Describes an input interaction, when an actor sends an input event to the system, or
• Describes an output interaction, when the system sends an output event to an actor

3.Describes an optional system processing step or communication
happening in the environment that is included for clarity.

• Interaction steps are numbered to reflect their sequencing
• The “.” notation, i.e. “3.1”, denotes sequential “sub”steps
• Letters, i.e. “3a”, denotes alternatives to a step
• The “||” symbol denotes parallelism

15

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Single-Cabin Elevator Example
Use Case: TakeElevator
Scope: Elevator Control System
Primary Actor: User
Intention: The intention of the
User is to take the elevator
to go to a destination floor.

Level: User Goal
Main Success Scenario:
! 1. User Call[s]Elevator
! 2. User Ride[s]Elevator
Extensions:
! 1a. Cabin is already at
User’s floor…

! 1b. User is already inside…

• Main success vs. extensions
• Hierarchy

16

Use Case: CallElevator
Primary Actor: User
Intention: User wants to call...
Level: Subfunction
Main Success Scenario:
! 1. User pushes button,
indicating to System in which
direction she wants to go.
2. System acknowledges User’s
request.

3. System schedules
ElevatorArrival for the floor
the User is currently on.

Extensions:
! 2a. The same request already
exists. System ignores the
request…

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Elevator Arrival Example
Use Case: ElevatorArrival
Intention: System wants to move the elevator to the User’s
destination floor.

Level: Subfunction
Main Success Scenario:
1. System asks Motor to start moving in the direction of the
destination floor.

2. Floor Sensor informs System that elevator is approaching
destination floor.

3. System requests Motor to stop.
4. System requests Door to open.

17

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Granularity of Use Cases
• Summary Level

• are large grain use cases that encompass multiple lower-level, user goal use cases; they
provide the context (lifecycle) for those lower-level use cases

• they can act as a table of contents for user goal level use cases
• User Goal Level

• are usually done by one person, in one place, at one time; the (primary) actor can
normally go away happy as soon as this goal is completed

• achieve a single, discrete, complete, meaningful, and well-defined task of interest to an
actor

• Subfunction Level
• provide “execution support” for user-goal level use cases; they are low-level and need

to be justified, either for reasons of reuse or necessary detail
• The “Interaction Step” at one level of abstraction forms the “Why”

for the next level down

18

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case Hierarchy

19

Summary Level

User-Goal LevelUser-Goal Level User-Goal Level

Subfunction LevelSubfunction Level Subfunction Level

Subsubfunction Level

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Summary Level Example
Use Case: Manage Funds By Bank Account
Scope: Bank Accounts and Transactions System
Level: Summary
Intention in Context: The intention of the Client is to manage his/her funds by way of a bank
account. Clients do not interact with the System directly; instead all interactions go through
either: a Teller, a Web Client, or an ATM, which one depends also on the service.
Multiplicity: Many Clients may be performing transactions and queries at any one time. Each
Client performs its transactions sequentially.
Primary Actor: Client
Main Success Scenario:
1. Client opens an account.
2. Client identifies with the system.
Step 3 can be repeated according to the intent of the Client
3. Client performs task on account:
	

 deposit money, withdraw money, transfer money, get balance.
4. Client closes his/her account.
Extensions:
3a. System fails to identify the client; use case continues at step 2.

20

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

User-Goal Use Case Example
Use Case: Deposit Money
Scope: Bank Accounts and Transactions System
Level: User Goal
Intention in Context: The intention of the Client is to deposit money on an account.
Clients do not interact with the System directly; instead, for this use case, a Client
interacts via a Teller.
Multiplicity: Many Clients may be performing deposits at any one time.
Primary Actor: Client
Main Success Scenario:
Client requests Teller to deposit money on an account, providing sum of money.
1. Teller requests System to perform a deposit, providing deposit transaction details.
2. System validates the deposit, credits account with the requested amount, records
details of the transaction.
3. System informs Teller that deposit was successful.
Extensions:
2a. System ascertains that it was given incorrect information:
 2a.1 System informs Teller about error; use case continues at step 2.

21

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Cases in UML
• UML provides a graphical representation for use

cases called the use case diagram.
• It allows one to graphically depict:

• actors,
• use cases,
• associations,
• dependencies,
• generalizations,
• packages,
• and the system boundary.

22

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Example Use Case Diagram

23

Elevator Control System

Take

Elevator

Call

Elevator

Ride

Elevator

Elevator

Arrival

<
<
in

cl
ud

e>
> <

<
include>

>

<
<
in

cl
u
d
e
>
>

<
<
include>

>

User

Door

Motor

Exterior

FloorButton

Interior

FloorButton

Floor

Sensor

2..*

0..*

2..*

2..*

1

1

Actor Multiplicity
Actor

System and
System Boundary Use Case

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case Model

• A Use Case Model consists of:
• (at least one) use case diagram and
• use case descriptions for each “ellipse”

24

Open Account

Use Case: Open Account
Scope: Bank System
Level: User Goal
Intention in Context: The
intention of the Client is to...

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

<<include>> Relationship
• An <<include>> relationship means that the base

use case explicitly incorporates the behavior of
another use case at a location specified in the base.

25

Use Case: Place Order
...
Main Success Scenario:
1. Customer supplies
customer data to System
2. …

Place Order

Supply
Customer Data

<<include>> Hyperlink

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

• Explicitly incorporating a “super use case” results
in incorporating any child use case

Generalization/ Specialization

26

Place Order

<<include>>

Supply
Customer Data Order Product Arrange Payment

Pay Cash Use Credit Card

<<
inc

lud
e>

> <<include>>

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

• An <<extend>> relationship means that the extending
use case adds new interaction steps to the base use case
at locations specified in the extending use case.

<<extend>> Relationship

27

Place Order Request Catalog
<<extend>>

Use Case: Place Order
...
Main Success Scenario:
1. ...
Step 2 can be repeated.
2. Customer orders a
product.
3. Customer arranges
payment.

Use Case: Request Catalog
extends Place Order
...
Main Success Scenario:
2.1 Customer informs
System that he would like to
receive a catalog with the
order.

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Motivation for Dependablity-Focused RE
• The major cause of common faults are flawed

specifications [Bishop 95]
• Incompleteness
• Ambiguity

• Non-identified exceptional situations can lead to
• Lack of functionality
• Unreliable system behavior
• Unexpected system behavior

• Operation faults

• Idea: extend use case-based requirements elicitation to discover
dependability requirements and specify how to deal with
exceptional situations

28

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

More Motivation
• Faults / omissions made at the

requirements stage are
expensive to fix later

• Stated requirements might be
implemented, but the system is not
one that the customer wants

• Need to determine and
establish the precise
expectations of the
customer!

29

Requirements
Design
Coding

Unit Test
Acceptance Test

Maintenance

1
5
10
20
50
200

Relative Cost to Repair a Defect
at Different Lifecycle Phases [Davis 93]

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 8
Specifying
Detection

Mechanisms

Task 9
Specifying

Handler Use Cases

Task 10
Defining Degraded

Modes

Process Overview

30

Task 4
Elicit Dependability

Expectations,
discover exc. modes

Task 1
Discovering

Actors, Goals,
Modes

Task 2
Discovery of

Context-Affecting
Exceptions

Task 3
Elicit Handlers for
Context-Affecting

Exceptions

Task 6
Service-Related
Exceptions and
Their Effects

Task 7
Assessing Safety
and Reliability

Task 12
Summarizing

Exception Table

Task 11
Summarizing

Use Cases
and Handlers

Task 5
Designing

Interactions

Elicitation and Discovery

Definition and Specification

Dependability Analysis

Dependability-Based Refinements

Requirements Summary

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 1: Discovering Actors, Goals and Modes

1.1 Brainstorm services/goals and outcomes
1.2 Brainstorm actors
1.3 Classify services/goals and actors
1.4 Decompose services into subgoals
1.5 Brainstorm operation modes

• An operation mode is defined by the set of services that
the system offers when operating in that mode
• Example: cell-phone with child-safe mode

31

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 2: Discovering Context-Affecting Exceptions

2.1 Brainstorm context-affecting exceptions
2.2 Define new exceptional detection actors

• Context-Affecting Exceptions
• Exceptional situation arising in the environment that affect the

context in which the system operates
• Temporary situation or permanent situation

• Cannot be detected by the system
• Exceptional actors signal the situation to the system

• System safety threatened
• User goals change

• Example
• Fire outbreak in an elevator, signalled by a smoke detector

32

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Discovering Context-Affecting Exceptions
• Discovered in a top-down manner
• System Level

• What situation prevents the system from being operational?
• Operational needs: power source, accessibility, connectivity

• What situation prevents the system from providing safe service? In these situations,
should the system provide some other service?
• Emergencies, safety concerns, malicious behavior

• User-goal Level / Subfunction-level Goal
• What situations / conditions / changes in the environment prevent the system from

satisfying a primary actor’s goal (or subgoal)? In such situations, can the system
partially fulfill the service?

• What situations take priority over the primary actor’s goal?
• What situations / conditions / changes in the environment could make the primary

actor change his goal? In such situations, how can the primary actor inform the
system of the goal change?

33

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Results of Task 2

• For each discovered context-affecting exception
• Define a name
• Elaborate a short description describing the situation
• Identify new system services, i.e. exceptional goals

• These services are triggered by the occurrence of the exception
• Exceptional actors

• Exceptional primary actors detect the occurrence of the exception and
signal it to the system

• Exceptional secondary actors are actors needed by the system to
handle the exception

34

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 3: Eliciting Handlers for CA Exceptions

3.1 Discover and classify exceptional services
3.2 Decompose exceptional services into subgoals
3.3 Discover new exceptional secondary actors

• For each context-affecting exception, a handler use case outline is
defined that describes the exceptional service that is provided by the
system, (i.e. how the system is supposed to react in that situation)

• Handlers are classified as safety or reliability handlers
• Linked to the context in which they are

• Example
• Fire outbreak in an elevator, signalled by a smoke detector

• Safety handler directs elevator cabin down to the ground floor

35

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 4: Eliciting Dependability Expectations

4.1 Eliciting dependability expectations for each service
4.2 Document provided reliability and safety of mandatory
secondary actors
4.3 Discover exceptional modes of operation

• For each goal / service that the system provides, expected safety and
reliability is specified

• Reliability specified with “chance of success”, e.g. 99.97%
• Safety specified with “chance of safety violation”, e.g. 0.0002%

• Depending on the application, different safety levels can be defined, e.g. DO-178B
• This is where discussions on “acceptable risk” should take place among

stakeholders

36

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Exceptional Modes

• Dependable systems should not offer services they can
not provide in a reliable and safe way

➡ When an exceptional situation is encountered, reliability
and safety of future service provision should be
evaluated

➡ If system cannot guarantee dependable service
provision, a mode switch is necessary

37

Operation Mode = Set of Offered Services
 (with defined minimal reliability and safety)

(Emergency Modes, Degraded Modes, etc..)

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 5: Designing Interactions
5.1 Design goal interaction steps
5.2 Specify goal outcomes
5.3 Define new (exceptional) secondary actors
5.4 Design handler interaction steps
5.5 Specify handler outcomes
5.6 Add mode switches to handler steps, if needed

• Possible goal and handler outcomes
• <<success>>, <<failure>>, <<abandoned>>, <<degraded>>

38

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Elevator Arrival Example
Use Case: ElevatorArrival
Intention: System wants to move the elevator to the User’s destination

floor.
Level: Subfunction
Main Success Scenario:
1. System asks Motor to start moving in the direction of the

destination floor.
2. FloorSensor informs System that elevator is approaching destination

floor.
3. System requests Motor to stop.
4. System requests Door to open.
Use case ends in <<success>> FloorReached.

39

• Write detailed interaction scenarios for each use case and
handler

• Each step is either an input interaction or an output interaction

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

User Emergency Example
Handler Use Case: UserEmergency
Handler Class: Safety
Contexts & Exceptions: TakeElevator{EmergencyStop}
Intention: User wants to stop the movement of the cabin.
Level: User Goal
Frequency & Multiplicity: Since there is only one elevator cabin, only one

User can activate the emergency at a given time.
Primary Actor: User (interacts by means of Emergency Button)
Main Success Scenario:
1. System initiates Emergency Brake.
 System clears all pending requests.
3. User informs System that emergency is over by toggling the Emergency

Button.
4. System deactivates Emergency Brakes and awaits the next request.

40

Take Elevator

<<safety handler>>

User

Emergency<<interrupt & continue>>

Exception:

{EmergencyStop}

New Exceptional Facilitator Actor

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Fault Assumptions
• System (to be built) fault-free
• Faults in the environment

• Actors fail to provide input to the system
• Actors fail to provide requested service to system
• Communication failure
• Protocol violations

• These situations interrupt the flow of normal
interaction that leads to the fulfillment of the user
goal

41

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 6: Defining Service-Related Exceptions
6.1 Document expected reliability and safety for actors
6.2 Annotate subgoal and handler steps with reliability and safety
6.3 Define service-related exceptions

• Consider the importance of each interaction step
• Reliability:

How essential is the interaction step for the successful completion of the user goal / subgoal?
• Annotate essential steps with a <<reliability>> tag and specify the success probability, if known

• Safety:
Does the failure of this interaction step threaten system safety?
• Annotate critical steps with a <<safety>> tag and an appropriate safety level

• Consider feasibility of each interaction step
• Is it possible for the system to be in a state in which the execution of the step is impossible?
• Are there service-related exceptional situations in which an entire sub-goal cannot be

executed?

42

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Different Source of Problems
• Input Problems

• If omission of input from an actor can cause the goal to fail different
options of handling the situation have to be considered.
• Prompt again after timeout
• Use default input
• Temporary system shutdown for safety reasons

• Output Problems
• Whenever an output triggers a critical action of an actor, then the

system must make sure that it can detect eventual communication
problems or failure of an actor to execute the requested action.
• Example: Motor fails to stop.
• Additional hardware or timeouts might be necessary to ensure reliability.
• Example: Movement Sensor (exceptional detection actor)

43

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Results of Task 6

• For each discovered service-related exception
• Define a name
• Elaborate a short description describing the situation
• Add exceptions to the exceptions section of the use cases

and handlers

44

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case: ElevatorArrival
Intention: System wants to move the elevator to the User’s destination

floor.
Main Success Scenario:
1. System asks Motor to start moving in the direction of the

destination floor.
 Reliability: 99%
2. FloorSensor informs System that elevator is approaching destination

floor.
 Reliability: 98% Safety-index: 2 (minor effects)
3. System requests Motor to stop.
 Reliability: 99% Safety-index: 4 (catastrophic effects)
4. System requests Door to open. Reliability: 97%
Exceptions:

Exception{MissedFloor}, Exception{MotorFailure},
Exception{DoorStuckClosed}

Elevator Arrival Example

45

Reliability numbers do not reflect reality!

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 7: Dependability Assessment
7.1 Map use cases and handlers to DA-Charts
7.2 Perform reliability and safety analysis
7.3 Compare dependability analysis results with expected
dependability values

• DA-Chart comprise:
• A System component

• Input interactions are mapped to events
• Output interactions are mapped to transition actions

• One orthogonal component for each actor
• Input interactions are mapped to probabilistic transition actions
• Output interactions are mapped to probabilistic events

• A safety status component
• Failed safety-critical interactions trigger toUnsafe events

46

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Dependability Assessment Charts

Sequencing according to use case,
goalSuccess/goalFailure states

Fault-free - no probabilities

System State Actor States

Actors
can fail

with certain
probability!

System ApFlSnsrMotor

Safety

atFlSnsr

goalSuccess goalFailure

sysStopped
missedFloor

sysStarted

sysReady apFlrSnsrReady

apFlrSnsrAck
apFlrSnsrFailure

atFlrSnsrReady

atFlrSnsrAck atFlrSnsrFailure

mtrReady

mtrStarted

mtrStopped

normal

safe unsafe

startAck{0.02}
/missedFloor;toUnsafe

startAck{0.98}
/apFlrSnsrD

stopAck{0.95}
/floorReached

stopAck{0.05}
/atFlrSnsrFailure

/start

missedFloor

motorFailure

atFlrSnsrFailure
floorReached
/openDoortoSafe toUnsafe

start
/startAck

stop{0.01}
/motorFailure;
toUnsafe

stop{0.99}
/stopAck

Safety mtrFailure

47

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Tool Support
• Tool support for DA-Charts based on AToM3

• DA-Chart support built by extending the state chart meta-model with
probabilities

• Analysis done by mapping DA-Charts to Markov chains
• Safety = Probability to end up in the Safe state
• Reliability = Probability to end up in the GoalSuccess state

• Elevator Arrival
• Safety: 97.02% Reliability: 92.169

• Careful: These numbers represent “best achievable” safety /
reliability, not actual!

48

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Refining Dependability
• What can be done if the calculated dependability is

lower than the expected dependability?
• Determine “weak” steps
• Either increase reliability of step

• Buy better hardware
• Make communication links more reliable
• Replicate hardware
➡ No effects on requirements / use case structure

• Or redesign interactions to decrease importance of step
• Continue with task 8 and task 9

49

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 8: Specifying Detection Mechanisms

50

8.1 Add detection actors
8.2 Add detection interaction steps for standard use cases and revisit goal
outcomes
8.3 Add detection interaction steps for handlers and revisit handler outcomes

• Before recovery measures can be taken, the exceptional situation has to be
detected

• Detection might require:
• Additional secondary actors
• Additional hardware, so called detector actors

• Sensors
• Timeouts

• The occurrence of an exception is documented in the exceptions section of the
use case template

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Elevator Arrival Example
Use Case: ElevatorArrival
Intention: System wants to move the elevator to the User’s destination floor.
Level: Subfunction
Main Success Scenario:
1. System asks Motor to start moving towards the destination floor.
2. FloorSensor notifies System that elevator is approaching destination floor.
 Reliability: 98% Safety-index: 2
3. System requests Motor to stop. Reliability: 99% Safety-index: 4
4. AtFloorSensor informs System that elevator is stopped at destination floor.
 Reliability: 95%

5. System requests Door to open. Reliability: 97%
6. DoorSensor notifies System that door is open. Reliability: 95%
Exception:
2a. Exception{MissedFloor}
4a. Exception{MotorFailure}
6a. Exception{DoorStuckClosed}

51

Very often, timeouts have to be
used to detect the exception

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 9: Specifying Handler Use Cases
• Depending on the application domain (and the

opinion of the stakeholders), a handler use case
performs additional interactions to

• Continue to provide the original service (reliability handler)
• Offer a degraded service instead (reliability handler)
• Take actions that prevent a catastrophe (safety handler)
• Bring the system to a safe halt (safety handler)

• Behaviour should be intuitive to the people that
interact with the system

52

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 10: Defining Degraded Modes
• Evaluate the effects of each service-related

exception on future service provision
• If promised reliability and safety levels cannot be

maintained, a degraded operation mode should be
defined

• After completing task 10, the process returns to
task 5 (i.e. 5.4 Design Handler Interaction Steps),
and then dependability is re-assessed

53

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Example Refinement: Emergency Brake
Handler Use Case: EmergencyBrake
Handler Class: Safety
Context & Exception: ElevatorArrival{MotorFailure}
Intention: System wants to stop operation of elevator and secure the

cabin.
Level: Subfunction
Main Success Scenario:
1. System stops Motor.
2. System activates EmergencyBrakes.
 Reliability: 99.99% Safety-index: 4
3. System turns on the EmergencyDisplay.

54

Reliability numbers do not reflect reality!

Elevator Arrival

<<safety handler>>

Emergency

Brake<<interrupt & fail>>

Exception:

{MotorFailure}

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 7: Dependability Assessment

55

Motor
mtrReady

mtrStarted

mtrStopped

start
/startAck

stop{0.01}
/motorFailure

stop{0.99}
/stopAck

mtrFailure

System

goalSuccess goalFailure

sysStopped missedFloor

sysStarted

sysReady
/start

missedFloor

motorFailure
/activateEB

atFlrSnsrFailure
/activateEBfloorReached

/openDoor
Safety

normal

safe unsafe

toSafe toUnsafe

Brake
Brake State

brakeReady

brakeFailedbrakeActivated

activateEB{0.001}
/toUnsafeactivateEB{0.999}

/toSafe

ApFlSnsr
apFlrSnsrReady

apFlrSnsrAck
apFlrSnsrFailure

startAck{0.02}
/missedFloor;toUnsafe

startAck{0.98}
/apFlrSnsrD

atFlSnsr
atFlrSnsrReady

atFlrSnsrAck atFlrSnsrFailure

stopAck{0.95}
/floorReached

stopAck{0.05}
/atFlrSnsrFailure

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 8
Specifying
Detection

Mechanisms

Task 9
Specifying

Handler Use Cases

Task 10
Defining Degraded

Modes

DREP Overview (again)

56

Task 4
Elicit Dependability

Expectations,
discover exc. modes

Task 1
Discovering

Actors, Goals,
Modes

Task 2
Discovery of

Context-Affecting
Exceptions

Task 3
Elicit Handlers for
Context-Affecting

Exceptions

Task 6
Service-Related
Exceptions and
Their Effects

Task 7
Assessing Safety
and Reliability

Task 12
Summarizing

Exception Table

Task 11
Summarizing

Use Cases
and Handlers

Task 5
Designing

Interactions

When should a
developer stop
refining?

When the assessed
dependability is
acceptable!

Finally: Build
summary use case
diagram and
exception table

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 11: Use Case & Handler Summary

57

Elevator Control System

Take Elevator

Call Elevator Ride Elevator

Elevator

Arrival

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e

>
>

User

0..*

Main Scenario & Alternatives

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case & Handler Summary (2)

58

Elevator Control System

Take Elevator

<<safety handler>>

ReturnTo

GroundFloor

<<safety handler>>

User

Emergency

Call Elevator Ride Elevator

Elevator

Arrival

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e

>
>

<<interrupt & fail>> <<interrupt & continue>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride}

Exception:
{EmergencyStop}

<<safety handler>>

Emergency

Brake

0..* 0..*

Environment-related Exceptions
Environment Handlers

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case & Handler Summary (3)

59

Elevator Control System

Take Elevator

<<safety handler>>

ReturnTo

GroundFloor

<<safety handler>>

User

Emergency

<<reliability handler>>

DoorAlertCall Elevator Ride Elevator

Elevator

Arrival

<<reliability handler>>

Redirect

Elevator

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e

>
>

<<interrupt & continue>>

<<interrupt & fail>> <<interrupt & continue>>

<<interrupt & continue>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride}

Exception:
{EmergencyStop}

<<safety handler>>

Overweight

Alert

<<interrupt & continue>>

Exception:
{Overweight}Exception:

{MissedFloor}

<<safety handler>>

Emergency

Brake

<<interrupt & fail>>

Exception:
{DoorStuckOpen}

Exception:
{MotorFailure}

0..* 0..*

Service-Related Exceptions
Detection Mechanisms & Handlers

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Use Case & Handler Summary (4)

60

Elevator Control System

Take Elevator

<<safety handler>>

ReturnTo

GroundFloor

<<safety handler>>

User

Emergency

<<reliability handler>>

DoorAlert

<<safety handler>>

CallElevator

Operator

Call Elevator Ride Elevator

Elevator

Arrival

<<reliability handler>>

Redirect

Elevator

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e

>
>

<<interrupt & continue>>

<<interrupt & fail>> <<interrupt & continue>>

<<interrupt & continue>>

<<interrupt & fail>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride}

Exception:
{EmergencyStop}

Exception:
{DoorStuckOpenTooLong}

<<safety handler>>

Overweight

Alert

<<interrupt & continue>>

Exception:
{Overweight}Exception:

{MissedFloor}

<<safety handler>>

Emergency

Brake

<<interrupt & fail>>

Exception:
{DoorStuckOpen}

Exception:
{MotorFailure}

<<interrupt & fail>>

<<interrupt & fail>>
Exception:
 {OverweightTooLong}

Exception:
 {ElevatorStoppedTooLong}

0..* 0..*

<<interrupt & fail>>

Exception:
{RedirectionFailure}

<<interrupt & fail>>

Exception:
{SafeReturnFailure}

Refined Version that takes into
account Exceptions within Handlers

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Task 12: Exception Summary

61

Exception Description Context Handler Detection

EmergencyStop

An emergency
situation in the
elevator cabin

makes the User want
to stop the elevator

TakeElevator UserEmergency
Triggered by User
actor pressing the
emergency button

MotorFailure

Due to a motor or
communication

failure, the motor
does not respond to

requests

TakeElevator
- or -

ReturnToGround
Floor

EmergencyBrake

Sensor detects cabin
is approaching a

floor beyond
destination floor

- or -
timeout expires, and

no sensor
information has

been sent

...............

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Conclusion
• Focussing on dependability during requirements engineering is essential

• Discover the users expectations during exceptional situations
• Predict achievable dependability before investing in any further development

activities
• DREP

• Dependability-aware Requirements Engineering Process
• Tasks focus the developer on different aspects of dependability
• Step-by-step instructions
• Iterative - guided refinement until dependability is achievable

• Dependability-aware Modeling Notations
• Separate exceptional from normal behavior
• Separation enables separate quality control / development / priority

• Tool support

62

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Current Work
• Complete the RE Process

• Consider requirements on how to handle faulty design / implementation
• Establish detailed specification models

• Extend tool support
• Map exceptional use cases to extended activity diagrams
• Allow modifications in any formalism
• Propagate changes back to the textual use case description

• Integrate timeliness into the approach
• Needed to reason about mean time to failure (MTTF), mean time to repair

(MTTR), and availability
• Map dependability requirements to architecture / design phase

63

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

SEL Projects Related to FT
• Fault Tolerance and Software Development

• Software Architecture
• Example: Client-Server, Layered, Event-Based, Pipe & Filter, etc...
• Error confinement regions for different software architectures, exception propagation, fault

tolerance models for architectures
• Detailed Design

• Designing with fault tolerance models - “Fault tolerance Design Patterns”
• Structured Exception Handling

• Implementation
• AspectJ Implementation of AspectOptima needs to be aligned with our Reusable Aspect

Models
• Extension of AspectOptima to support exception handling and other extended transaction

models
• Extension of AspectOptima to support look-ahead
• CaesarJ Implementation of AspectOptima

64

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Our References
[1] Aaron Shui, Sadaf Mustafiz, Jörg Kienzle, Christophe Dony: Exceptional Use Cases. International
Conference on Model-Driven Engineering Languages and Systems - MoDELS 2005, Lecture Notes in
Computer Science 3713, Springer Verlag, 2005, p. 568-583.
[2] Aaron Shui, Sadaf Mustafiz, Jörg Kienzle: Exception-Aware Requirements Elicitation with Use Cases.
Advances in Exception Handling Techniques, LNCS 4119, Springer Verlag, 2006, p.221 - 242.
[3] Sadaf Mustafiz, Ximeng Sun, Jörg Kienzle, Hans Vangheluwe: Model-Driven Assessment of Use
Cases for Dependable Systems. Proceedings of MoDELS 2006, LNCS 4199, Springer Verlag 2006, p.558
- 573.
[4] Aaron Shui: Exceptional Use Cases. Master Thesis, McGill University, 2005.
[5] S. Mustafiz, X. Sun, J. Kienzle, and H. Vangheluwe, “Model-Driven Requirements Assessment of
System Dependability,” Software and Systems Modeling, pp. 487 – 502, October 2008.
[6] S. Mustafiz and J. Kienzle, “A Requirements Engineering Process for Dependable Reactive Systems,”
in Methods, Models and Tools for Fault Tolerance (A. Romanovsky, C. Jones, J. L. Knudsen, and A.
Tripathi, eds.), no. 5454 in Lecture Notes in Computer Science, pp. 220 – 250, Springer Verlag, 2009.
[7] S. Mustafiz, J. Kienzle, and A. Berlizev, “Addressing Degraded Service Outcomes and Excep- tional
Modes of Operation in Behavioural Models,” in International Workshop on Software Engineering for
Resilient Systems (SERENE ’08), (New York, NY, USA), pp. 19 – 28, ACM, November 2008.

65

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Other References (1)
• Fred D. Davis: User acceptance of information technology: System characteristics, user perceptions

and behavioral impacts. International Journal of ManMachine Studies, 38(3):475–487, March 1993.
• Bishop, P.: “Software Fault Tolerance by Design Diversity” In M. R. Lyu (ed.), Software Fault

Tolerance, John Wiley & Sons, pp. 211-229, 1995.
• de Lara, J., Vangheluwe, H.: AToM3 : A tool for multi-formalism and meta-modelling. In: European

Joint Conference on Theory And Practice of Software (ETAPS), Fundamental Approaches to Software
Engineering(FASE). Lecture Notes in Computer Science 2306, Springer 2002, p. 174 – 188.

• A. Cockburn; Structuring Use Cases with Goals. Journal of Object-Oriented Programming (JOOP
Magazine), Sept-Oct and Nov-Dec, 1997.

• E. Ecklund, L. Delcambre and M. Freiling; Change cases: use cases that identify future requirements.
OOPSLA ‘96 - Proceedings of the eleventh annual conference on Object-oriented programming
systems, languages, and applications, 1996. pp. 342 - 358.

• M. Fowler; Use and Abuse Cases. Distributed Computing Magazine, 1999. Available at http://
www.martinfowler.com/articles.html

• M. Glinz; Problems and Deficiencies of UML as a Requirements Specification Language. Proceedings
of the Tenth International Workshop on Software Specification and Design, San Diego, 2000, pp.
11-22.

66

COMP-667 Dependable Requirements Engineering, © 2012 Jörg Kienzle

Other References (2)
• T. Korson; The Misuse of Use Cases. Object Magazine, May 1998.
• R. Malan and D. Bredemeyer; Functional Requirements and Use Cases. June 1999.

Available at http://www.bredemeyer.com/papers.htm
• J. Mylopoulos, L. Chung and B. Nixon; Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach. IEEE Transactions on Software
Engineering, Vol. 23, No. 3/4, 1998, pp. 127-155.

• A. Pols; Use Case Rules of Thumb: Guidelines and lessons learned. Fusion
Newsletter, Feb. 1997.

• S. Sendall and A. Strohmeier; From Use Cases to System Operation Specifications.
UML 2000 - The Unified Modeling Language: Advancing the Standard, Third
International Conference, York, UK, October 2-6, 2000, S. Kent, A. Evans and
B.Selic (Ed.), LNCS (Lecture Notes in Computer Science), no. 1939, 2000, pp.
1-15.

• R. Wirfs-Brock; The Art of Designing Meaningful Conversations. Smalltalk Report,
February, 1994.

67

