
COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance

Hybrid Systems
Jörg Kienzle

Software Engineering Laboratory
School of Computer Science

McGill University

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Overview
• Duality of transactions and conversations
• Multithreaded Transactions
• Open Multithreaded Transactions

• Look-Ahead
• Coordinated Atomic Actions
• Design Diverse Extended Models

• N-Version Programming Variants
• Distributed Recovery Blocks
• Consensus Recovery Blocks
• Two-Pass Adjudicators
• Self-Configuring Optimal Programming

2

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

The “Object” Model
• The transaction model (“object” model) and the

conversation model (“process” model) are duals
[SMR93]

• OM (Object and transaction model)
• Two primary entities:

• Object: long lived entity for holding system state
• Transaction: short lived entity, providing a context in which state changes

take place
• Widely used in distributed systems
• Example: database application, e.g. banking, office

information and airline reservation systems

3

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

The “Process” Model

4

• PM (Process and conversation model)
• Two primary entities:

• Process: long lived entity for holding system states
• Conversation: short lived entity, providing a context in which state

changes take place
• Widely used in real-time systems
• Example:

• Process control systems
• Avionics systems
• Telephone switching systems

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Duality Mapping

5

OM model PM model
Objects Processes

Transaction Conversation
Object invocations Message interactions

Concurrency control for
serializability

Conversation rules: no outside
communication

Stable objects Stable processes
Growing phase (get locks) Processes enter a conversation

Shrinking phase (release locks) Processes leave a conversation

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

AuthorizerAuthorizer Account BAccount B

Example: Transfer Operation using OM

6

Thread

Begin
Transfer

authorize deposit

Begin
Authorize

Commit
Authorize

Begin
Deposit

Commit
Deposit

Commit
Transfer

(all locks are
released)

Account AAccount A

withdraw

Begin
Withdraw

Commit
Withdraw

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Synchronous
Exit

Example: Transfer Operation using PM

7

Thread
Account A

Authorizer
Thread

Thread
Account B

Start
Deposit

Start
Authorize

BlockedStart Transfer
Conversation

Start
Withdraw

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Competition vs. Cooperation

8

• Different application domains traditionally use one
model

• Process control: conversations
• Data-intense applications: transactions

• There’s a need for integration of cooperation and
competition

• When the two domains want to interact
• When concurrency is required

• Distributed systems
• Multi-processors
• Threads to handle user interface and / or network

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Multithreaded Transactions (1)

• Venari/ML [HKM+94] and Transactional Drago
[JPPMA00]

• A thread in a transaction can spawn new threads
• The forking takes place at the transaction border
• The additional threads must terminate before the main

thread commits / aborts the transaction
• Disadvantage

• External threads can not join a running transaction

9

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Transactional ObjectTransactional ObjectTransactional Object

Multithreaded Transactions (2)

10

Begin of T1
forks 2 new threads

Thread

T1

T1.1

op1

op2
op3 op4

Not allowed if
operation conflicts

with op3

Commit of T1
Must wait for threads to join

Allowed, since
operation called from
the same transaction

Allowed, since
operation called from a

child transaction

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Open Multithreaded Transactions [KRS01]

11

• Thread creation / termination possible at any time, but:
• Threads created outside a transaction are not allowed to

terminate inside
• Threads created inside must terminate inside

• Starting an Open Multithreaded Transaction
• Any thread can start a transaction (joined participant)
• Open Multithreaded Transactions can be nested

• Joining an Open Multithreaded Transaction
• A thread can join an ongoing transaction iff it is not participating

in any transaction other than ancestor transactions (also joined
participant)

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Open Multithreaded Transactions (2)

12

• Threads spawned inside a transaction become
spawned participants of the transaction

• Ending an Open Multithreaded Transaction
• All participants vote commit or abort
• The transaction commits iff all participants vote commit
• Spawned participants terminate after voting
• Joined participants are blocked until the outcome of the

transaction has been determined.

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Transactional Object O1

Tr. Object O2

Transactional Object O1

Tr. Object O2

Commit T1

Commit T1

Commit T1
(Synchronous

Exit)Blocked

Blocked

Open Multithreaded Transaction (3)

13

Thread A

Thread B

Thread D

Begin T1

Join T1

Join T1
Create
Thread

Vote and
terminate

Thread B’

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Open Multithreaded Transactions (4)

14

T1.1

T1
Thread A

Thread B

Thread C

Thread D

Thread C’

Thread B’

A spawned participant of T1 becomes a
joined participant of T1.1

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Exceptions in OMTTs (1)

15

• Internal exceptions are handled locally by a
participant

• External exception result in aborting the
transaction
• Participants are notified with TransactionAbort exception

• Unhandled exceptions crossing the transaction
boundary result in aborting the transaction

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Exceptions in OMTTs (2)

16

T1.1

Thread B

Thread C

Thread B’

Handler

Thread A

Thread D

Handler Exception Z

TransactionAbortX

T1

Y Z

Exception X is successfully handled
locally in Thread B

Local handling of exception Y is attempted,
but fails. External exception Z is thrown

Exception Z causes T1.1 to abort. TransactionAbort
exception is thrown in all joined participants

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Additional Features of OMTTs

17

• Closing an Open Multithreaded Transaction
• Once closed, no new participants can join
• Fix number of participants at creation-time
• Any participant can close the transaction explicitly

• Naming an Open Multithreaded Transaction
• Unnamed transactions -> asymmetric
• Named transactions -> symmetric

• Deserters are treated as errors -> the transaction
is aborted

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Transactional Objects in OMTTs

18

• Two-level Concurrency Control
• Competitive: Inter-transaction isolation
• Cooperative: Mutual exclusion for updates performed by

participants of the same transaction
• Self-checking Transactional Objects

• Help the programmer guarantee consistency by invariants
• Pre- and post-conditions for operations
• Upon violation, an exception is raised
• Triggers abort, if not handled

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Auction System Example

19

• Dynamic system with cooperative and
competitive concurrency

• Users register with the auction system
• Members can:

• Deposit money on their account
• Sell an item, starting a new auction
• Consult the list of current auctions
• Participate in an auction and bid for an item

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Transactional Objects in the Auction System

20

• Data that should survive failures must be
encapsulated inside a transactional object

• Transactional Objects in the Auction system:
• Member Information
• Member Directory
• Accounts
• Auctions
• Auction List

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Auction Design using OMTTs

21

Commit

Commit

Abort

Commit

Blocked

Auction Object

Auction
List

Seller

Bidder A

Bidder B
Account

Seller
Account

Begin

Bidder A
Account

Auction
List

Join

Bidder B

Join
Auction Object

Bidder A
Account

Auction ObjectAuction Object

Bidder B
Account

Auction ObjectAuction Object

Seller
Account

Auction Object
CreateGet Current BidPlace Bid

Begin

Commit

Get Current Bid

Withdraw

Begin

Insert Withdraw

Place BidAccept Bid

DepositWithdrawInsert Withdraw Deposit

Create, etc.

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Advantages of using OMTTs for Auctions

22

• Consistency of the application state is
guaranteed in spite of concurrent auctions

• All-or-nothing semantics: either the auction
completes as a whole, or no money is transferred

• Fault tolerance
• Partial undo using nesting
• Users participating in several auctions cannot

overdraw their account

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Waisted Time due to Synchronous Exit

23

• To ensure isolation property, threads are blocked at
commit time until outcome is known

Time spent Waiting

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Look-Ahead

24

• Allow threads to look-ahead, i.e. continue
optimistically as if the transaction committed

• Transparent!

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Look-Ahead Complications

25

• Look-ahead operations have to be undone if
former transaction aborts!

Operations Potentially Executed under
Wrong Assumptions

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Look-Ahead Transactions

26

• Commit of look-ahead transactions is delayed until the
outcome of the former transaction is known
	

 ⇒ constraint on serialization order

T’(T1.1) must commit after T1.1

Former Transaction Look-Ahead Transaction

What to do with Lone Code?

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Lone Code

27

• Automatic encapsulation of lone code inside an
implicit transaction
• Implicitly created by first look-ahead participant
• Other look-ahead participants join
• Isolate the look-ahead operations from non-look-ahead

participants
• In case of an abort of the former transaction, the

implicit transaction is aborted as well
• No effect on non-look-ahead participants

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Transactional Lone Code Encapsulation

28

T1
Thread A

Thread C

Thread D

Thread F

Thread E

Thread B
T1.1

T’(T1.1)

i(T1.1)

i(T1.1)

i(T’(T1.1))

Lone code encapsulated in
implicit transaction

A new implicit transaction
is created for each new

look-ahead

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Transactional Objects

29

• A look-ahead transaction might access an object that is
going to be accessed by a former transaction in the future

Concurrency Control of Object O
Must Be Made Look-Ahead Aware

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Optimizing Pessimistic Concurrency Control

30

• Pessimistic Concurrency Control
• Before allowing a transaction to perform an operation on a

transactional object, it has to get the permission to do so
• If there is a potential conflict with any other ongoing transaction,

access is denied
• Block / abort / notify the calling transaction

• A Look-ahead transactions should not cause a former
transaction to abort, because it depends on the former
transaction to commit

• Pessimistic concurrency control must be modified
• If the conflicting operation is a look-ahead transaction, then abort the

look-ahead!

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Exceptions: Case 1

31

T1
Thread A

Thread C

Thread D

Thread F

Thread E

Thread B
T1.1

T’’(T1.1)

T’(T1.1)

Exception X raised Exception Y raised in T1

Handler

Operations Executed Under
Wrong Assumption

Threads A & F are isolated from B - E thanks to implicit
transactions! They do not speculate on commit of T1.1

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Exceptions: Case 2

32

• First block, then, if resource conflict is detected,
abort look-ahead, else handle exception

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Spawned Participants

33

• Creation and termination of threads is delayed
until implicit transaction ends

Termination of Thread D’ postponed until former
transaction commits (end of implicit transaction)

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Dealing with Joining and Nesting

34

• Joining rules for look-ahead participants
• Joining of non-look-ahead transactions blocks the look-

ahead participant until the former transaction commits
• Prevent cascading aborts
• Joining of look-ahead transactions is allowed

• Nesting
• Looking ahead over different nesting levels is supported
• Look-ahead from top-level transaction is supported as well

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Look-Ahead Conclusions

35

• Look-ahead improves performance for “fast”
participants of OMTTs

• Transparent for the application programmer
• Non-trivial implementation consequences

• Transaction commit dependencies
• Concurrency control must be aware of look-ahead

• Future Work
• Dynamic switching between standard and look-ahead

execution depending on run-time information
• Implementation of look-ahead for AspectOPTIMA

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Look-Ahead for Atomic Actions [Rom01]

36

• Participants can leave (if there is a containing action)
• In case of an exception, handling is initiated at the level of the action

that contains all participants

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Coordinated Atomic Actions [XRR+95]
• Atomic actions with external objects

• Each CA action has an associated transaction. External objects
are accessed with transactional semantics

• Exception handling
• Structured exception handling following the ideas of idealized

fault tolerant component
• Concurrent exception resolution and coordinated handling

• Disadvantages
• Fixed number of participants
• Not possible to create threads in the inside
• Exception handling always coordinated / global

37

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Coordinated Atomic Actions (2)

38

Local Object

Process A

Process C

Process B
Exception X

Cooperative

Op

External Object
Synchronous or

Asynchronous Entry

Handling

Direct Communication

Op Op

Synchronous Exit

Synchronous
Exit

Accessed
transactionally

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Design Diverse Extended Models

• N-version Programming Extensions
• Distributed Recovery Blocks
• Consensus Recovery Blocks
• Two-Pass Adjudicator
• Self-Configuring Optimal Programming

39

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

N-Version Programming Extensions

• Acceptance Voting [A89]
• Only results that pass an acceptance test are voted

upon
• N-Version Programming with Tie Breaker and

Acceptance Test [TM93]
• Compare the two fastest versions
• If they match, proceed
• Else wait for all results and vote, then execute

acceptance test

40

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Distributed Recovery Blocks [K84]
• Provide hardware and software fault tolerance for Real-Time

systems

• Concurrent execution of the two algorithms
• If primary fails the AT, then the alternate result is used
• If both fail, backward error recovery is applied and the roles are

interchanged
• Watchdogs monitor the local execution and the execution of the

other node

ensure Acceptance Test on Node 1 or Node 2
by Primary on Node 1 or Alternate on Node 2

else by Alternate on Node 1 or Primary on Node 2
else signal failure exception

41

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Consensus Recovery Block [SGM83]
• N-version and recovery block combined
• The N versions are ranked with respect to their

reliability
• All versions are run concurrently, and the result is voted

upon
• If the voter fails, then the highest ranked version’s

result is submitted to an acceptance test, and so on…
• Idea: Reduce importance of acceptance test, and be able

to handle cases where N-version fails due to MCR

42

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Two-Pass Adjudicator [P92]
• Design and data diverse technique
• First pass

• N-version programming
• If voting not successful, then perform a second pass

• Re-express input data
• Execute the N versions again with re-expressed input

43

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

Self-Configuring Optimal Programming

• Idea
• Reduce cost of fault tolerance (time and space)
• Adjust trade-off dynamically at run-time

• Select a set of versions to be run in phase one,
according to the number of results needed to
make a decision, and the number of processors
available

• If more results are needed, add additional phases

44

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

References (1)
• [KRS01]

Kienzle, J.; Romanovsky, A.; Strohmeier, A.: “Open Multithreaded Transactions:
Keeping Threads and Exceptions under Control”. In Proceedings of the 6th
International Worshop on Object-Oriented Real-Time Dependable Systems, pp.
197 – 205, IEEE Computer Society Press, Los Alamitos, California, USA, 2001.

• [KJRP01]
Kienzle, J.; Jiménez-Peris, R.; Romanovsky, A.; Patiño-Martinez, M.:
“Transaction Support for Ada”. In Reliable Software Technologies - Ada-
Europe’2001, pp. 290 – 304, Lecture Notes in Computer Science 2043, Springer
Verlag, 2001.

• [A89]
Athavale, A.: “Performance Evaluation of Hybrid Voting Schemes”, M.S. thesis,
North Carolina State University, Department of Computer Science, 1989.

• [TM93]
Tai, A. T.; Meyer, J. F.; Aviziensis, A.: “Performability Enhancement of Fault-
Tolerant Software”, IEEE Transactions on Reliability 42(2), pp. 227 - 237, 1993.

45

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

References (2)
• [K84]

Kim, K. H.: “Distributed Execution of Recovery Blocks: An Approach to Uniform
Treatment of Hardware and Software Faults”, Proceedings of the Fourth International
Conference on Distributed Computing Systems, pp. 526 - 532, 1984.

• [SGM83]
Scott, R. K.; Gault, J. W.; Mc Allister, D. F.: “The Consensus Recovery Block”,
Proceedings of the Total Systems Reliability Symposium, Gaithersburg, MD, pp. 95 -
104, 1983.

• [P92]
Pullum, L. L.: ”Fault-Tolerant Software Decision-Making Under the Occurrence of
Multiple Correct Results”, Ph.D. thesis, Southeastern Institute of Technology, 1992.

• [SMR93]
 S. Shrivastava, L. Mancini and B. Randell: “The Dualty of Fault-Tolerant System
Structures”, Software Practice and Experience, Volume 23(7), pages 773 - 798, July
1993.

46

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

References (3)
• [Obj00]

Object Management Group, Inc.: Object Transaction Service, Version 1.1, May 2000.
• [SSK03]

Silaghi, R.; Strohmeier, A.;Kienzle, J.: “Porting OMTTs to CORBA”, International
Symposium on Distributed Objects and Applications, DOA 2003, to be published.

• [HKM+94]
Haines, N.; Kindred, D.; Morrisett, J. G.; Nettles, S. M.; Wing, J. M.: “Composing First-Class
Transactions”, ACM Transactions on Programming Languages and Systems 16(6), Nov 1994,
pp. 1719 – 1736.

• [JPPMA00]
Jiménez-Peris, R.; Patiño-Martinez, M.; Arévalo, S.: “TransLib: An Ada 95 Object-Oriented
Framework for Building Transactional Applications”, Computer Systems: Science &
Engineering Journal 15(1), 2000, pp. 7 – 18.

• [XRR+95]
Xu, J.; Randell, B.; Romanovsky, A.; Rubira, C. M. F.; Stroud, R. J.; Wu, Z.: “Fault Tolerance
in Concurrent Object-Oriented Software through Coordinated Error Recovery”, in FTCS-25:
25th International Symposium on Fault Tolerant Computing, pp. 499 – 509, Pasadena,
California, 1995.

47

COMP-667 - Hybrid Systems, © 2012 Jörg Kienzle

References (4)
[CR86] Campbell, R. H.; Randell, B.: “Error Recovery in Asynchronous

Systems”, IEEE Transactions on Software Engineering SE-12(8), August
1986, pp. 811 – 826.

[KRS01] Kienzle, J.; Romanovsky, A.; Strohmeier, A.: “Open Multithreaded
Transactions: Keeping Threads and Exceptions under Control”. In
Proceedings of the 6th International Worshop on Object-Oriented Real-Time
Dependable Systems, pp. 197 – 205, IEEE Computer Society Press, Los
Alamitos, California, USA, 2001.

[Rom01] Romanovsky, A.: “Looking Ahead in Atomic Actions with Exception
Handling”, 20th Symposium on Reliable Distributed Systems (SRDS 2001),
October 21-28, New Orleans, p.142-151, 2001.

[K03] Kienzle, J.: Open Multithreaded Transactions: A Transaction Model for
Concurrent Object-Oriented Programming. Kluwer Academic Publishers,
2003.

48

