
COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

COMP-667 Software Fault Tolerance

Software Fault Tolerance

Cooperative Concurrency
Jörg Kienzle

Software Engineering Laboratory
School of Computer Science

McGill University

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Overview

• Conversations
• Synchronous vs. Asynchonous Entry
• Atomic Actions
• Cooperative Exception Handling
• Preemptive and Non-preemptive Execution
• Ada Implementation of Atomic Actions

2

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Cooperating Concurrent Systems

• Processes (or threads) running in the system
have been designed together

• Are aware of each other
• Communicate explicitly with other processes
• Share resources
• Cooperate to achieve a joint goal
• Must also cooperate in case of exceptional situations

3

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Conversations

4

• Introduced in 1975 [Ran75]
• “Concurrent recovery block”
• Fixed number of processes
• Upon entrance, a checkpoint is established in each of them
• Inside the conversation, the processes freely communicate
• No communication to the outside

(side boundaries, no information smuggling!)
• When all processes come to an end, their acceptance tests are

checked
• If all are successful, the processes exit synchronously
• Otherwise, the checkpoints are restored, and potential alternates are executed

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

AT

AT

AT

AT

Done Work C1

Done Work C1

Synchronous
ExitBlocked

Blocked

Conversation Execution (Asynch. Entry)

5

Thread A

Thread B

Thread C

Thread D

Enter C1

Enter C1

Direct
Communication

Acceptance Test

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

AT

AT

AT

AT

AT

AT

Done Work C1
Synchronous

Exit

Conversation Execution (Synch. Entry)

6

Thread A

Thread B

Thread C

Thread D

Enter C1

Enter C1
Acceptance Test

Blocked

Enter C1.1 (nested)

Blocked

Done Work C1.1

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Actions [CR86, LA90]
• Fixed number of processes
• Support for forward error recovery using exception handling
• Internal exceptions
• Handled by all participants

• External exceptions
• Recursive (external exceptions of a nested action are internal

exceptions of the containing one)
• Cooperative handling
• Reasoning: Error can spread to all participants
• Concurrent exception resolution

• Can include support for backward error recovery just like
conversations with checkpointing and acceptance test

7

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Exception X

Exception Y

Synchronous
Exit

Blocked

Cooperative
Handling

Atomic Action Execution

8

Thread A

Thread B

Thread C

Thread D

Enter A1

Enter A1

Direct
Communication

Exception Resolution

Resolved
Exception Z

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Issues

9

• How to perform exception resolution?
• Resolution Tree or

Resolution Graph

• How to inform participants of an exception that occurred
in other participants?
• Pre-emptive vs. non-preemptive models

Exception Z

Exception XException Y

Exception W

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Non-Preemptive

10

• Each participant performs its work, and at the end
synchronizes with the others to inform them of success or
of encountered exceptions

• Advantages
• Participants are in a consistent state, ready for recovery
• Nested actions have completed
• Disadvantages
• Wasted time
• Can’t handle infinite loops
• Optimizations
• Abort participant when library takes control

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Pre-emptive

11

• Other participants are interrupted / notified as soon as
an error is encountered

• Advantages
• No wasted time
• Can handle infinite loops
• Disadvantages
• Needs special language or OS support
• Often results in high run-time overhead in fail-free mode
• Consistency problems
• Hard to prove correctness
• Nested action abortion is problematic

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Specification

12

with Ada.Exceptions; use Ada.Exceptions;

type Exceptions is array (Positive range <>) of Exception_ID;

generic
 with procedure Resolve(E: Exceptions) return Exception_ID;
package Atomic_Action_Support is
 type Action_Type (Participants: Positive) is tagged limited private;
 type Vote_Type is (Commit, Abort);
 generic
 with procedure Work;
 with function Exception_Handler(E: Exception_Id) return Vote_Type;
 procedure Action_Component (A: access Action_Type'Class);
 Atomic_Action_Failure: exception;
private
 -- continued on atomic action implementation slide

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

User-Defined Atomic Action (1)

13

with Atomic_Action_Support;

procedure My_Resolution(E: Exceptions) is ...;
package My_Support is new Atomic_Action_Support();
use My_Support;

package My_Atomic_Action is
 type My_Action_Type is tagged limited private;
 procedure Participant_1 (A: access My_Action_Type);
 procedure Participant_2 (A: access My_Action_Type);
 My_Action_Failure: exception;
private
 type My_Action_Type is tagged record
 Action : Action_Type (2);
 end;
end My_Atomic_Action;

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

User-Defined Atomic Action (2)

14

package body My_Atomic_Action is
 procedure Participant_1 (A: access My_Action_Type) is
 procedure My_Work is
 begin
 -- perform work ...;
 end My_Work;
 function My_Error_Handler (E: Exception_Id) return Vote_Type is
 begin
 -- handle error ...
 return Commit; -- or abort, if exception could not be handled
 end My_Error_Handler;
 procedure Work is new Action_Component(My_Work,My_Error_Handler);
 begin
 Work(A.Action’Access);
 exception
 when Atomic_Action_Failure => raise My_Action_Failure;
 end Participant_1;
 -- same for participant 2
end My_Atomic_Action;

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Use

15

with My_Atomic_Action; use My_Atomic_Action;

A1 : My_Action_Type;

task Client_1;
task body Client_1 is
begin
 Participant_1(A1’Access);
exception
 when My_Action_Failure =>
 -- handle error
end Client_1;

task Client_2;
task body Client_2 is
begin
 Participant_2(A1’Access);
end Client_2;

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Implementation (1)

16

 -- continuation of atomic action specification slide
private
 protected type Action_Controller(Participants: Positive) is
 entry Wait_Abort;!
 procedure Work_Successful;
 entry Get_Resolved_Exception(E: out Exception_Id);
 procedure Signal_Abort (E: Exception_Id);
 private
 Stopped: Positive = 0;
 Exception_Encountered: Boolean := False;
 Exceptions: array (1 .. Participants) of Exception_ID
 := (others => Null_ID);
 Resolved_Exception: Exception_ID = Null_ID;
 end Action_Controller;
 type Action_Type (Participants: Positive) is tagged limited record
 Controller: Action_Controller (Participants);
 end record;
end Atomic_Action_Support;

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Implementation (2)

17

 protected body Action_Controller(Participants: Positive) is
 entry Wait_Abort when Exception_Encountered is
 begin
 Stopped := Stopped + 1;
 if Stopped = Participants then All_Stopped := True;
 end Wait_Abort;!
 procedure Work_Successful is
 begin
 Stopped := Stopped + 1;
 if Stopped = Participants then All_Stopped := True;
 end Work_Successful;
 procedure Signal_Abort (E: Exception_Id) is
 begin
 Stopped := Stopped + 1;
 if Stopped = Participants then All_Stopped := True;
 Exceptions(Stopped) := E;
 Exception_Encountered := True;
 end Signal_Abort;
 -- continued on next slide

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Implementation (2)

18

 -- continued from previous slide
 entry Get_Resolved_Exception(E: out Exception_Id)
 when All_Stopped is
 begin
 if Stopped = Participants then
 Resolved_Exception := Resolve(Exceptions);
 end if;
 E := Resolved_Exception;
 Stopped := Stopped - 1;
 if Stopped = 0 then
 All_Stopped := False;
 Exception_Encountered := False;
 Resolved_Exception := Null_ID;
 Exceptions := (others => Null_ID);
 end if;
 end Get_Resolved_Exception;
 end Action_Controller;
end Atomic_Action_Support;

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

Atomic Action Implementation (3)

19

procedure Action_Component (A: access Action_T'Class) is
 X: Exception_Id; Decision: Vote_Type;
begin
 select
 A.Controller.Wait_Abort;
 A.Controller.Get_Resolved_Exception(X);
 Raise_Exception(X);
! then abort
 begin
 Work;
 A.Controller.Work_Successful;
 exception
 when E: others =>
 A.Controller.Signal_Abort(Exception_Identity(E));
 end;
 A.Controller.Get_Resolved_Exception(X);
 if X /= Null_ID then Raise_Exception(X);
 end select;
exception
 when E: others =>
 Decision := Exception_Handler(Exception_Identity(E));
 if Decision = Aborted then raise Atomic_Action_Failure;
 end if;
end Action_Component;

COMP-667 - Cooperative Concurrency, © 2012 Jörg Kienzle

References

20

• [Ran75]
Randell, B.: “System Structure for Software Fault Tolerance”, IEEE
Transactions on Software Engineering 1(2), 1975, pp. 220 – 232.

• [CR86]
Campbell, R. H.; Randell, B.: “Error Recovery in Asynchronous Systems”,
IEEE Transactions on Software Engineering SE-12(8), August 1986, pp. 811 –
826.

• [LA90]
Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”, in
Dependable Computing and Fault-Tolerant Systems, Springer Verlag, 2nd ed.,
1990.

• [RMW96]
Romanovsky, A.; Michell, S. E.; Wellings, A.: Implementing Atomic Actions
in Ada 95”, Technical Report, University of Newcastle Upon Tyne.

