Software Fault Tolerance

Cooperative Concurrency

Jorg Kienzle

Software Engineering Laboratory
School of Computer Science
McGill University

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Overview

e Conversations
* Synchronous vs. Asynchonous Entry

e Atomic Actions
e Cooperative Exception Handling
* Preemptive and Non-preemptive Execution

* Ada Implementation of Atomic Actions

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Cooperating Concurrent Systems

* Processes (or threads) running in the system
have been designed together

e Are aware of each other
 Communicate explicitly with other processes
* Share resources
* Cooperate to achieve a joint goal
e Must also cooperate in case of exceptional situations

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Conversations

e Introduced in 1975 [Ran75]

e “Concurrent recovery block™

* Fixed number of processes

e Upon entrance, a checkpoint is established in each of them
* Inside the conversation, the processes freely communicate

 No communication to the outside
(side boundaries, no information smuggling!)

 When all processes come to an end, their acceptance tests are
checked

e If all are successful, the processes exit synchronously
e Otherwise, the checkpoints are restored, and potential alternates are executed

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Conversation Execution (Asynch. Entry)

Direct .
Communication (Done Work Cl1 J Synchronous]
(‘Enter C1 | / Blocked J | Exit
\ 7= \
Thread A \ (3 aanbEEEEEEEEECEEEEED AT b——
Thread B d t (SRREEE AT —
Thread C (‘ AT ——
Thread D fem e AT ——
- \
(Enter C1 I \— \
(Done Work Cl1 Blocked) Acceptance Test)

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Conversation Execution (Synch. Entry)

D W k 1 Synchronous
One WOt / Blocked J Exit

/

(Ererci
Thread A \\ ----------------- AT —>
7y = // 7

Thread B —1--- A AT b/
(| Blocked J’L d —/L (,

Thread C — e — AT AT b—
(Enter C1.1 (nested) J/T 5/

Thread D AT —

A
(Enter C1 % (D one Work C1 h [,JA(\;ceptance Test)
& McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Atomic Actions [CR86, LA90]

* Fixed number of processes

e Support for forward error recovery using exception handling

* Internal exceptions
e Handled by all participants

e External exceptions

e Recursive (external exceptions of a nested action are internal
exceptions of the containing one)

e Cooperative handling
e Reasoning: Error can spread to all participants
e Concurrent exception resolution

e Can include support for backward error recovery just like
conversations with checkpointing and acceptance test

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Atomic Action Execution

[Direct

Communication] (Exception X J Blocked) [Synchronous]
(Enter A1l \ / / Exit

Thread A

Thread B

Thread C

Thread D

\ v
o */ ,

(/-~ <

Enter Al :

((Exception Y / owr Cooperative
Resolve Handling

Exception Z R
T McGill

Atomic Action Issues

 How to perform exception resolution?

e Resolution Tree or

Exception Z

Resolution Graph

L

Exception Y

T

Exception X

Exception W

 How to inform participants of an exception that occurred

in other participants?

* Pre-emptive vs. non-preemptive models

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

T McGill

Non-Preemptive

e Each participant performs its work, and at the end
synchronizes with the others to inform them of success or
of encountered exceptions

* Advantages

» Participants are in a consistent state, ready for recovery
* Nested actions have completed

e Disadvantages
e Wasted time
e Can’t handle infinite loops
e Optimizations
e Abort participant when library takes control

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Pre-emptive

e Other participants are interrupted / notified as soon as
an error 1s encountered

* Advantages

e No wasted time
e Can handle infinite loops

e Disadvantages
e Needs special language or OS support
e Often results in high run-time overhead 1n fail-free mode
e Consistency problems
e Hard to prove correctness
e Nested action abortion 1s problematic

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

Atomic Action Specification

with Ada.Exceptions; use Ada.Exceptions;
type Exceptions is array (Positive range <>) of Exception ID;

generic
with procedure Resolve(E: Exceptions) return Exception ID;
package Atomic Action Support is

type Action Type (Participants: Positive) is tagged limited private;
type Vote Type is (Commit, Abort);

generic

with procedure Work;

with function Exception Handler(E: Exception Id) return Vote Type;
procedure Action Component (A: access Action Type'Class);

Atomic Action Failure: exception;

private
——- continued on atomic action implementation slide

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 12

User-Defined Atomic Action (1)

with Atomic Action Support;

procedure My Resolution(E: Exceptions) is ...;
package My Support is new Atomic Action Support();
use My Support;

package My Atomic Action is
type My Action Type is tagged limited private;
procedure Participant 1 (A: access My Action Type);
procedure Participant 2 (A: access My Action Type);
My Action Failure: exception;

private
type My Action Type is tagged record

Action : Action Type (2);

end;

end My Atomic Action;

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 13

User-Defined Atomic Action (2)

package body My Atomic Action is
procedure Participant 1 (A: access My Action Type) is
procedure My Work is
begin
-- perform work ...;
end My Work;
function My Error Handler (E: Exception Id) return Vote Type is
begin
-- handle error ...
return Commit; -- or abort, if exception could not be handled
end My Error Handler;
procedure Work is new Action Component (My Work,My Error Handler);
begin
Work (A.Action’Access);
exception
when Atomic Action Failure => raise My Action Failure;
end Participant 1;
-- same for participant 2
end My Atomic Action;

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 14

Atomic Action Use

with My Atomic Action; use My Atomic Action;
Al : My Action Type;

task Client 1;
task body Client 1 is
begin
Participant 1(Al’Access);
exception
when My Action Failure =>
-—- handle error
end Client 1;

task Client 2;
task body Client 2 is
begin

Participant 2(Al’Access);
end Client 2;

McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 15

Atomic Action Implementation (1)

—-—- continuation of atomic action specification slide
private

protected type Action Controller(Participants: Positive) is
entry Wait Abort;
procedure Work Successful;
entry Get Resolved Exception(E: out Exception Id);
procedure Signal Abort (E: Exception Id);

private
Stopped: Positive = 0;
Exception Encountered: Boolean := False;
Exceptions: array (1 .. Participants) of Exception ID

:= (others => Null ID);
Resolved Exception: Exception ID = Null ID;
end Action Controller;

type Action Type (Participants: Positive) is tagged limited record
Controller: Action Controller (Participants);
end record;

end Atomic Action Support;

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 16

Atomic Action Implementation (2)

protected body Action Controller(Participants: Positive) is

entry Wait Abort when Exception Encountered is
begin

Stopped := Stopped + 1;

if Stopped = Participants then All Stopped
end Wait Abort;

procedure Work Successful is
begin

Stopped := Stopped + 1;

if Stopped = Participants then All Stopped := True;
end Work Successful;

I
H
=
o
M

procedure Signal Abort (E: Exception Id) is
begin
Stopped := Stopped + 1;
if Stopped = Participants then All Stopped := True;
Exceptions(Stopped) := E;
Exception Encountered := True;
end Signal Abort;

—-— continued on next slide

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 17

Atomic Action Implementation (2)

—- continued from previous slide
entry Get Resolved Exception(E: out Exception Id)
when All Stopped is
begin
if Stopped = Participants then
Resolved Exception := Resolve(Exceptions);
end if;
E := Resolved Exception;
Stopped := Stopped - 1;
if Stopped = 0 then
All Stopped := False;

Exception Encountered := False;

Resolved Exception := Null ID;

Exceptions := (others => Null ID);
end if;

end Get Resolved Exception;

end Action Controller;
end Atomic Action Support;

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 18

Atomic Action Implementation (3)

procedure Action Component (A: access Action T'Class) is
X: Exception Id; Decision: Vote Type;
begin
select
A.Controller.Wait Abort;
A.Controller.Get Resolved Exception(X);
Raise Exception(X);
then abort
begin
Work;
A.Controller.Work Successful;
exception
when E: others =>
A.Controller.Signal Abort(Exception Identity(E));
end;
A.Controller.Get Resolved Exception(X);
if X /= Null ID then Raise Exception(X);
end select;

exception
when E: others =>
Decision := Exception Handler (Exception Identity(E));
if Decision = Aborted then raise Atomic Action Failure;
end if;

end Action Component;
_A——m —

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle 19

References

[Ran75]
Randell, B.: “System Structure for Software Fault Tolerance”, IEEE

Transactions on Software Engineering 1(2), 1975, pp. 220 — 232.

[CR86]

Campbell, R. H.; Randell, B.: “Error Recovery in Asynchronous Systems”,
IEEE Transactions on Software Engineering SE-12(8), August 1986, pp. 811 —
826.

[LA90]

Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”, in
Dependable Computing and Fault-Tolerant Systems, Springer Verlag, 2nd ed.,
1990.

[RMW96]

Romanovsky, A.; Michell, S. E.; Wellings, A.: Implementing Atomic Actions
in Ada 95, Technical Report, University of Newcastle Upon Tyne.

T McGill

COMP-667 - Cooperative Concurrency, © 2012 Jorg Kienzle

