COMP-667 Software Fault Tolerance

Course Overview

Jörg Kienzle Software Engineering Laboratory School of Computer Science McGill University

Outline

- Motivation
- Course Goals
- Course Information
- Background on me
- Suggested Textbooks
- Grading
- Questionnaire

Motivation

- Scope, complexity and pervasiveness of computer-based and controlled systems continue to increase
- Software assumes more and more responsibility
- Consequences of systems failing
 - Annoying to catastrophic
 - Opportunities lost, businesses failed, security breaches, systems destroyed, lives lost

Ariane V Disaster

On June 4, 1996 an Ariane V rocket launched by the European Space Agency exploded just forty seconds after lift-off

Ariane V Architecture

"hot standby"

Ariane V Launch, June 4th 1996

IRS raises an *Operand Error* exception while converting a 64bit float to 16bit integer No specific exception handler Operand Error caused by high value of Horizontal Bias, which is normal for Ariane V Function serves no purpose after lift-off in Ariane 5 Ariane IV, from which the code was reused, needs it during 50 seconds Not possible to switch to backup IRS, for it had failed as well (72ms earlier) On-board Computer interprets "core dump" data as normal flight data Full nozzle deflection of solid boosters and vulcan engine Angle of attack $> 20^{\circ}$ Separation of boosters from main stage Self-destruction after 39 seconds

Course Goals

- Goal of Fault Tolerance: Continue service in spite of design faults and faults of the surrounding environment
- Understand the important and fundamental concepts of fault tolerance
 - Be aware of the main techniques that can be applied by developers to produce fault-tolerant software
- Gain experience in implementation
 - Master the tricky subtleties of your favorite programming language

Tentative Course Outline

- Fundamental Fault Tolerance Concepts
 - Terminology, Definitions, Fault Tolerance Context
- Programming language features for implementation
- Sequential Design Diverse Systems
 - Recovery blocks, retry blocks
- Independent Concurrent Systems
 - N-Version programming, N-Copy programming
- Dependability-Focused Requirements Elicitation
- Other Concurrent Fault Tolerance Techniques
 - Competitive: Transactions, etc...
 - Cooperative: Atomic Actions, etc...
 - Hybrid models

Course Info

- Pre-requisites: COMP-409 Concurrent Programming
- Course hours:
 - Monday, Wednesday: 10:00 11:30
- Course webpage:

http://www.cs.mcgill.ca/~joerg/SEL/ COMP-667_Home.html

(handouts available for download there)

Instructor

Jörg Kienzle McConnell Engineering, room 327 Email: Joerg.Kienzle@mcgill.ca Phone: (514) 398-2049 Home: (514) 871-2780

> Office hours: Monday: 11:30 - 12:30 + any other time (send email)

My Background

- Born in Princeton, NJ, USA
- German parents
- Grown up in Switzerland (German speaking part)
- Studied at the Swiss Federal Institute of Technology, Lausanne (French speaking part)
- Married a Canadian girl

My Interests

- Fault tolerance
 - Integrating the concern of fault tolerance into the software development cycle
 - Determine the need for fault tolerance at the analysis level
 - Choose an appropriate architecture and fault tolerance model during design
 - Providing fault tolerance to the programmer (frameworks, aspectorientation)
 - Implementing fault tolerance models on top of COTS middleware
- Fault tolerance in massively multi-player games
- Aspect-oriented Software Development

Teaching Assistant

Wisam Al Abed McConnell Engineering, room 322 Email: <u>wisam.alabed@mail.mcgill.ca</u> Phone: (514) 398-7071 ext. 00116

> Office hours: TBA (or by appointment)

Textbooks that Could Help

• Laura L. Pullum: Software Fault Tolerance: Techniques and Implementation, Artech House, Boston, 2001. ISBN: 1-58053-137-7

- Available online at: <u>http://library.books24x7.com</u>/book/id_3628/toc.asp
- Jörg Kienzle:

Open Multithreaded Transactions: A Transaction Model for *Concurrent Object-Oriented Programming*, Kluwer Academic Publishers, 2003. ISBN: 1-4020-1727-8

More Books

 Jean-Claude Geffroy and Gilles Motet: *Design of Dependable Computing Systems*, Kluwer Academic Publishers, 2002. ISBN: 1-4020-0437-0

- P. A. Lee and T. Anderson: *Fault Tolerance Principles and Practice*, 2nd edition, Springer Verlag, 1990.
 ISBN: 0-3878-2077-9
- K. Ramamritham and P. K. Chrysanthis: Advances in Concurrency Control and Transaction Processing, ACM Press, Los Alamitos, California, 1997. ISBN: 0-8186-7405-9

Grading

- 4 homework assignments
 - 1 warm-up assignment (5%)
 - 2 programming assignments (2 x 20% or (1x25% and 1x15%))
 - 1 non-programming assignment (1 x 10%)
- Project (45%) (individual)

- Provide a software fault tolerance scheme (distributed or concurrent) as a library / framework for a programming language of your choice Hand-in: short report and code
- Study a specific software fault tolerance scheme or application using software fault tolerance (e.g. airbus, space-shuttle, TGV, air-traffic control, nuclear power plant, etc...)

Hand-in: 45 - 60 min. presentation in class

• Custom :)

Questions?

Questionnaire

- For you
 - Evaluate your "concurrent" knowledge
- For me
 - To help me plan the course
 - Programming language background
 - Programming project or case study presentation?
- For all
 - Have some fun!

