
COMP-667 Software Fault Tolerance

Assignment 2: N-Version Programming

(20% of Final Grade)

Problem Statement
Write an implementation of the n-version programming (or n-copy program-
ming) software fault tolerance technique seen in class in the programming lan-
guage of your choice. The idea is that the implementation should be in the form
of a reusable “library” (e.g. object / package / template / generic / framework
/ aspect).

Both distributed and single-process/multi-threaded solutions are acceptable,
as well as both preemptive and non-preemptive implementations. Your library
should provide at least two common voting strategies, and also allow the user
to implement their own voter, if desired. To show that your idea works, write a
small sample application that makes use of your library.

Grading
The grade will be based on:

• Correctness:

– Does your infrastructure correctly implement n-version programming
(or n-copy programming)?

– Are there no deadlocks / livelocks?

• Ease of use:

– Does your infrastructure have a simple, yet elegant interface?

– Can the programmer use your infrastructure without having to do
an excessive amount of programming on his own?

– Are the design decisions reasonable (and documented)?

1



• Safety:

– Does your infrastructure prevent a programmer from making mis-
takes when using it?

– Are programming conventions verified (statically / at run-time)?

– Is your infrastructure thread-safe?

• Sample Application:

– Is there a clear separation of code between the application and the
library?

– Note: the sophistication of the sample application does not affect the
grade.

Hand-In
Please hand in your solution before Friday February 24th! Send an email
to Joerg.Kienzle@mcgill.ca and Wisam.Al.Abed@mail.mcgill.ca with the title
“COMP-667 Assignment 2 of <your name>” containing:

• Source code

• Instructions that explain how to compile and run the code (if you are
using other languages than C, C++, Ada, Java, AspectJ, be prepared to
give me a small demo)

• Text explaining your design decisions

– Justify your interface

⇤ Explain what makes your library easy to use
⇤ Explain what makes your library safe to use

– Justify your implementation decisions

⇤ Explain why you use the programming language features that
you use

• Text explaining the sample application

2


