
COMP-533 Model-Driven Software Development

Midterm
October 30th 2013: 6pm - 9pm, MDHAR-G10

(30% of final grade)

Name:

McGill ID:

Instructions:
• DO NOT TURN THIS PAGE UNTIL INSTRUCTED
• This is a closed book examination. Non-electronic translation dictionaries are permitted, but instructors

and invigilators reserve the right to inspect them at any time during the examination.
• Besides the above, only writing implements (pens, pencils, erasers, pencil sharpeners, etc.) are allowed.

The use of any other tools or devices is prohibited.
• Answer all questions on this examination paper and return it. If you need additional space, use pages

10-12, and clearly indicate where each question is continued.
• You are allowed to detach the OCL summary (last sheet of the exam) from this booklet at your convenience.

The exam has 4 questions, weighted as follows:
• Problem 1 - Grocery Cooperative: Domain Model, OCL invariants and functions (40%)
• Problem 2 - Ticket Vending Machine: Environment Model (25%)
• Problem 3 - Parking Garage: Use Case Model (20%)
• Problem 4 - Strategic Conquest: OCL invariants and functions (15%)

1

Problem 1: Grocery Cooperative
Domain Model, OCL invariants and functions (40%)
The application is about a grocery cooperative: a union of grocery retailers are cooperating when purchasing goods
in order to get better conditions from the suppliers. The cooperative buys products, each characterized by a name
and a unit size (measured in integral steps of cm3), from suppliers. A supplier is known by its name and address.
Each supplier has its own price for a given product. Goods are delivered by the supplier to one of the warehouses
managed by the cooperative.

The cooperative fixes its own retail prices. A retailer, known by its name and address, orders from the cooperative
the products in the quantities it needs. Retailers have accounts with the cooperative. The amount a retailer must
pay is determined when the order is placed, but only when the goods were shipped and delivered to the retailer the
account of the retailer is charged. The cooperative also allocates credit limits to its members. A retailer cannot
overdraw this credit limit by an order. Whenever the quantity of a product in stock falls below a certain limit (as
a consequence to an order by a retailer), an order to replenish the stock is sent to the supplier that offers the best
price for that product.

Task 1.1

Devise a domain model that models the concepts of the grocery cooperative.

2

Task 1.2

Write the following constaints and functions in OCL (if your model already models that constraint, then just write:
“Is covered by model”)

1. A retailer is not allowed to overdraw his account over the credit limit.

2. All stock for a given product is stored in the same warehouse.

3. The current stock of a product is not allowed to fall below the stock limit for that product.

4. Write an OCL function that determines for a given product the supplier that currently offers the best price.

3

Problem 2: Ticket Vending Machine Environment Model

Informal Description:

Figure 1: Simple Vending Machine

The system for which requirements are to be gathered is an automated ticket
vending machine like the ones you find for Montreal’s subway system (“Le
Metro”) that allows users to upload tickets onto a chip card called “opus card”.
For simplicity reasons, we are going to focus only on the simple vending ma-
chines that only accept debit or credit card to purchase tickets (single fare,
multi-fare, weekly and monthly tickets). A sketch of the input and output
devices of the simple ticket vending machine is shown in figure 1. We are also
going to assume that the "payment system", i.e., the software that handles the
credit/debit card reader and PIN keyboard, is provided by some third-party
vendor. In other words, the software we are developing does not need to com-
municate directly with the card reader, or have to deal with the details of how
to handle credit/debit cards (entering and verifying PINs, connecting to credit
and financial institutions to validate credit or debit money, etc.), but rather
interacts with the payment system.

To use a ticket vending machine, the customer places the opus card into
the smart card reader/encoder. The user can then consult the current tickets
stored on the card, and is presented with a set of recharge options on the
transaction console. The selector buttons are used to determine the desired
choice. The user then interacts with the payment system to use the credit/debit card reader and PIN keyboard to
pay for the selected ticket. If the payment completes successfully, the tickets are uploaded to the card and a receipt
is printed. If payment was unsuccessful, the reason is displayed on the console and no tickets are issued. At any
point in time before the payment is completed, the user can cancel his transaction by pressing the cancel button
or simply removing his opus card from the smart card reader/encoder. Finally, during the interaction, the system
beeps within 30 seconds in the case where the user does not make a selection, or forgets to remove his opus card
from the smart card reader/encoder.

The use case RechargeOpusCard describing the complete interaction between the environment and the ticket
vending machine software under development is presented below:

Use Case Model:

Use Case: RechargeOpusCard
Scope: TicketVendingMachine
Level: User-Goal
Intention in Context: The User wants to refill his OpusCard using a credit card.
Multiplicity: Only one User can recharge an opus card at a given time.
Primary Actor: User
Secondary Actors: SmartCardRE, PaymentSystem, Printer, Speaker
Main Success Scenario:
1. User notifies System that he wants to recharge his opus card.
2. System shows tickets that are currently on the card and recharge options to User.
3. User informs System of recharge choice.

Step 4 and 5 can happen in any order.
4. System displays price of current choice to User.
5. System informs PaymentSystem of price of the ticket.

User completes the transaction with the payment system.
6. PaymentSystem informs System of successful completion of the transaction.
7. System uploads tickets onto opus card using the SmartCardRE.
8. System prints receipt using Printer.
9. System asks the User to collect the receipt and remove opus card.

4

Extensions:
2-6a. User informs System that he wants to cancel the transaction. Use case ends in success.
3a. Timeout

3a.1. System asks Speaker to beep. Use case continues at step 3.
6a. PaymentSystem informs Systems that payment was unsuccessful.

6a.1. System informs User about failed transaction. Use case continues at step 3.
10a. Timeout

10a.1. System asks Speaker to beep. Use case continues at step 10.

Task 2

Elaborate a low-level Environment Model for the TicketVendingMachine here. Low-level means that you should
show that the software interacts with the hardware devices. In other words, you are not allowed to send or receive
messages directly from the User. Provide type and message definitions (with parameters) on the next page.

5

Type and Message Definitions:

6

Problem 3: Parking Garage Use Case
The following is an informal description of how an automobilist interacts with a parking garage control system
(PGCS) when parking his car. The function of the PGCS is to control and supervise the entries and exits into and
out of a parking garage. The system ensures that the number of cars in the garage does not exceed the number of
available parking spaces.

The entrance to the garage consists of a gate, a state display showing whether any parking space is available,
a ticket machine with a ticket request button and a ticket printer, and an induction loop (i.e., a device that can
detect the presence or absence of a vehicle). To enter the garage, the driver, receives a ticket indicating the arrival
time upon his request. The gate opens after the driver takes the ticket. The driver then parks the car and leaves
the parking garage. In case of problems, the PGCS notifies an attendant by means of an attendant call light.

Task 3

Elaborate the EnterGarage use case, which describes all the interaction steps between the system and the envi-
ronment that occur when a driver enters the garage. You do not have to specify what happens when paying for
parking and exiting the garage. You also do not have to specify the interactions that the attendant has with the
PGCS when servicing the system or when handling problems.

You are asked to write the EnterGarage use case at a low-level of abstraction, clearly stating which hardware
devices the software is interacting with.

7

Problem 4: Strategic Conquest Concept Model and OCL
Strategic Conquest is a two player strategy game where the ultimate goal is world domination. The game is fought
on land, sea and in the air with different types of military units (e.g. tanks, fighter planes, etc.). The units are
produced by cities when they are under the control of a player. Land units have to use transporters to move between
islands. Air units use a lot of fuel, and must refill at a city from time to time, or else they crash and are destroyed
in the process.

The Concept Model for StrategicConquest is shown in figure 2.

numDays: Natural !

User!

2!

<<system>> StrategicConquest!

Player!
name: String !

Game!

City!
name: String !

Sector! MilitaryUnit!

Production!
daysLeft: Natural !

1!

0..1!

0..1!

1!

0..*!

0..*!
currentSquare!

destSquare!

contains!

willContain!

current!
owner!

owner!

0..1!

0..1!

0..1!

units!
0..*!

conqueredCities!
0..*!

unitUnderConstruction!0..1!

producingCity!
0..1!

2..*!

2..*!

0..2!

0..1!

*!

<<id>>!
1!1!

LandUnit!
fuelLevel: Natural!
maxFuel: Natural!

AirUnit!

FighterPlane!

SeaUnit!

Transporter!Battleship!
radarRange: Natural!

Artillery!
radarRange: Natural!

Tank!

MilitaryUnit!
state: UnitStatus!
speed: Natural!
currentForce: Natural!
maxForce: Natural!
timeToProduce: Natural!

unitsOnBoard!

0..6!

transportedBy!0..1!

LandSector! CoastSector!SeaSector!

Sector!
xPos: Natural!
yPos: Natural!

Figure 2: Strategic Conquest Concept Model

8

Task 4

1. Describe the following invariant in English or French:

context s: SeaSector
inv: s.contains!select(su | su.oclIsKindOf(SeaUnit))!size() 1

2. Describe the following invariant in English or French:

context l: LandUnit
inv: if l.transportedBy!notEmpty() then

not l.currentSquare.oclIsTypeOf(LandSector)
else

not l.currentSquare.oclIsTypeOf(SeaSector)
endif ;

3. Write the following invariant using OCL: Only coastal cities can build sea units.

4. Write the following invariant using OCL:
When land units are in a transporter, they automatically move where the transporter moves.

5. Write the following invariant using OCL:
The speed of air units is always higher than the speed of land units.

6. Write an OCL function that determines the number of tanks that will be constructed in the next n days for
a given player.

9

If you use this page for supplying your answer, please state which question your answer belongs to:

10

If you use this page for supplying your answer, please state which question your answer belongs to:

11

If you use this page for supplying your answer, please state which question your answer belongs to:

12

Use Case Template

Use Case:
Scope:
Level:
Intention in Context:
Multiplicity:
Primary Actor:
Secondary Actors:
Main Success Scenario:
Extensions:

OCL Summary
Operations of any OCL type:

• =, <>
• oclIsKindOf(OclType) : boolean – true if the object is of type OclType or a subclass
• oclIsTypeOf(OclType) : boolean – true if the object is of type OclType

Operations of any user-defined class:

• allInstances() : Set(user-defined-class) – returns all instances of a given class in a set

Boolean:

• not
• if .. then .. else .. endif
• =, <>
• or, and, xor
• implies

Integer and Real:

• .abs(), .max(), .min()
• For Integers: .div(), .mod()
• For Reals: .floor(), .ceil(), .round(positive position)
• - (negation)
• *, /
• +, -
• <, >, <=, >=
• =, <>

Enumeration type:
• Defined by UML class with stereotype < <enumeration> >

• Literals: class::value

• =, <>

13

Operations on Collections: (applied using the !operator)

• size() : Natural – returns the number of elements
• isEmpty() : Boolean
• notEmpty() : Boolean
• count(object) : natural – returns the number of occurrences of object in the collection
• includes(object) : Boolean – true if object is an element of the collection
• includesAll(collection) : Boolean – true if collection is a subset of the current collection
• excludes(object) : Boolean – true if object is not an element of the collection
• excludesAll(collection) : Boolean – true if none of the objects in collection is in the current collection
• any(boolean expression) : Object – selects one object that satisfies the expression at random
• sum() : Real – calculates the sum of all elements in the collection
• = – true if all elements in the two collections are the same. For two bags, the number of times an element

is present must also be the same. For two sequences, the order of elements must also be the same.
• union(collection) : Collection
• intersection(collection) : Collection
• including(object) : Collection – returns a collection that includes object
• excluding(object) : Collection – returns a collection where all occurrences of object have been removed
• exists(boolean expression) : Boolean – true if expression is true for at least one element of the collection
• one(boolean expression) : Boolean – true if expression is true for exactly one element of the collection
• isUnique(expression) : Boolean – true if expression is unique for each element in collection
• select(boolean expression) : Collection – returns all elements of the collection that satisfy expression

• reject(boolean expression) : Collection – returns all elements of the collection that do not satisfy expression

• collect(expression) : Bag – computes expression for each element, and puts all results in a bag (or in a
sequence, if applied to a sequence)

• forAll(boolean expression) : Boolean – true if for all elements in the collection expression is true
• asSet() : Set – transforms the collection into a set
• asBag() : Bag – transforms the collection into a bag
• sortedBy() : Sequence – produces a sorted sequence containing the elements of the original set

How to write an Invariant

(words in bold are keywords)

context Class
inv : boolean expression

How to define an OCL function

(words in bold are keywords)

context Class::FunctionName ([ParameterList]) : TypeName
body : result = Expression (of type TypeName)
or
context Class
def : FunctionName ([ParameterList]) : TypeName = Expression

14

