MIDTERM 2013

Jorg Kienzle

SSSSSSSSSSSSSSSSSSSSSSSSSSS

GROCERY COOPERATIVE

The application is about a grocery cooperative: a union of grocery retailers
are cooperating when purchasing goods in order to get better conditions
from the suppliers. The cooperative buys products, each characterized by a
name and a unit size (measured in integral steps of cm3), from suppliers. A
supplier is known by its name and address. Each supplier has its own price
for a given product. Goods are delivered by the supplier to one of the
warehouses managed by the cooperative.

The cooperative fixes its own retail prices. A retailer, known by its name and
address, orders from the cooperative the products in the quantities it needs.
Retailers have accounts with the cooperative. The amount a retailer must
pay is determined when the order is placed, but only when the goods were
shipped and delivered to the retailer the account of the retailer is charged.
The cooperative also allocates credit limits to its members. A retailer cannot
overdraw this credit limit by an order. Whenever the quantity of a product in
stock falls below a certain limit (as a consequence to an order by a retailer),
an order to replenish the stock is sent to the supplier that offers the best
price for that product.

I e - - ———————

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

GROCERY COOPERATIVE

12 for classes
13 for attributes

2 %
storedQWarehouse

Cooperative

managedBy

1..*| manages

Purchase ..
0.* [quantity: Positve | 0..* 8 for associations
mySales | unitPrice: Money myPurchases .
delivered: Boolean 33 points total
Catalog @
price: Money @ @ 1| orderedProduct
@ 1 | orderedFrom i — StP_;OductA @
> - String
namesgﬁﬁger @ suppliedBy ; myProducts | unitSize: Positive contains
- Qtpi 0.* 0..* | currentPrice: Money 0.*
address. Sing @ @ | currentStock: Positive

Retailer @

name: String @ 1

A

Could be in

Warehouse
SE—

©

myOrders

7 A stockLimit: Positive

receivedOrders@

@ RetailerOrder —

quantity: Positive w@

0..1 | address: String

<<enumeration>>
RetailerOrderStatus
onHold

address: String . :
: f 1 ; madeBy 0..% unitPrice: Money shipped
Sfeliﬂﬁﬁﬁmoﬁgxe 1 @ status: RetailerOrdetStatu received
- . paid
S ——
Could be Boolean
DR ettt

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

GROCERY COOPERATIVE OCL (1)

* Write the following OCL constraints:

1. Aretailer is not allowed to overdraw his account over the
credit limit.

context r: Retailer
inv: r.oalance + r.creditLimit >= 0

2. All stock for a given product is stored in the same warehouse.
@ Covered by model

3. The current stock of a product is not allowed to fall below the
stock limit for that product.

@ context p: Product
inv: p.currentStock >= p.stockLimit

R e e - ee——————t O

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 4

GROCERY COOPERATIVE OCL (2)

4. Write an OCL function that determines for a
given product the supplier that currently offers
the best price.

(+) context p: Product
def: bestSupplier() : Supplier =
p.catalog—any
(c | c.price = p.catalog.price—min()).suppliedBy

R g e - e e——————

33 for domain model
7 tfor OCL

40 points total

TR, St

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE S

TICKET VENDING MACHINE (1)

The system for which requirements are to be gathered is an automated ticket
vending machine like the ones you find for Montreal's subway system (“Le
Metro”) that allows users to upload tickets onto a chip card called “opus card”.
For simplicity reasons, we are going to focus only on the simple vending
machines that only accept debit or credit card to purchase tickets (single fare,
multi-fare, weekly and monthly tickets). A sketch of the input and output devices
of the simple ticket vending machine is shown below.

We are also going to assume that the "payment

system", i.e., the software that handles the credit/ Transaction

debit card reader and PIN keyboard, is provided select cabinet (
by some third-party vendor. In other words, the button——— o
software we are developing does not need to button” | keyboard

Smart card

communicate directly with the card reader, or reader/encoder {
have to deal with the details of how to handle Receipt .
credit/debit cards (entering and verifying PINs, . L Cabinet

connecting to credit and financial institutions to card reader | J
validate credit or debit money, etc.), but rather floor mountings
interacts with the payment system.

e~

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 6

TICKET VENGING MACHINE (2)

To use a ticket vending machine, the customer places the opus card
into the smart card reader/encoder. The user can then consult the
current tickets stored on the card, and is presented with a set of
recharge options on the transaction console. The selector buttons
are used to determine the desired choice. The user then interacts
with the payment system to use the credit/debit card reader and
PIN keyboard to pay for the selected ticket. If the payment
completes successfully, the tickets are uploaded to the card and a
receipt is printed. If payment was unsuccessful, the reason is
displayed on the console and no tickets are issued. At any point in
time before the payment is completed, the user can cancel his
transaction by pressing the cancel button or simply removing his
opus card from the smart card reader/encoder. Finally, during the
interaction, the system beeps within 30 seconds in the case where
the user does not make a selection, or forgets to remove his opus
card from the smart card reader/encoder.

e e e ———— R

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 7

RECHARGEOPUSCARD UsE CASE (1)

Use Case: RechargeOpusCard

Scope: TicketVendingMachine

Level: User-Goal

Intention in Context: The User wants to refill his OpusCard using a credit card.
Multiplicity: Only one User can recharge an opus card at a given time.
Primary Actor: User

Secondary Actors: SmartCardRE, PaymentSystem, Printer, Speaker

Main Success Scenario:

1. User notifies System that he wants to recharge his opus card.

2. System shows tickets that are currently on the card and recharge options to User.
3. User informs System of recharge choice.

Step 4 and 5 can happen in any order.

4. System displays price of current choice to User.

5. System informs PaymentSystem of price of the ticket.

User completes the transaction with the payment system.

6. PaymentSystem informs System of successful completion of the transaction.
7. System uploads tickets onto opus card using the SmartCardRE.

8. System prints receipt using Printer.

9. System asks the User to collect the receipt and remove opus card.

R ee——— - L —————

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 8

RECHARGEOPUSCARD USE CASE (2)

Extensions:
2-6a. User informs System that he wants to cancel the transaction. Use case ends in
success.
3a. Timeout

3a.1. System asks Speaker to beep. Use case continues at step 3.
6a. PaymentSystem informs Systems that payment was unsuccessful.

6a.1. System informs User about failed transaction. Use case continues at step 3.
10a. Timeout

10a.1. System asks Speaker to beep. Use case continues at step 10.

e - - e——————meptOEC

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 9

TICKETVENDING ENVIRONMENT MODEL

§%1
:SmartCardRE

@ @ uploadTicket(t: Set(Ticket))T \L cardInfo(o: OpusCard) @ @
1

(1) beep . . 1
- : TicketVending %
: @ dlsplaylnfoAndChowes@Opuﬁ‘frd)_ :
:Speaker rechargeChoice displayPrice(p: Mo 1l
@ @ —> removeCard
0..1 <<time-triggered>> transactionFailed
:SelectButton idleTimeout
1
@ purchaseOutcome i/ purchase(p: Money) \L receipt(p: Money)
—> (outcome: Boolean) @
cance
:CancelButton @ @ 1 @ 1
@ %% é% 25 points total

:PaymentSystem :Printer e

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 10

PARKING GARAGE USE CASE

The following is an informal description of how an automobilist
interacts with a parking garage control system (PGCS) when parking
his car. The function of the PGCS is to control and supervise the
entries and exits into and out of a parking garage. The system ensures
that the number of cars in the garage does not exceed the number of
available parking spaces.

The entrance to the garage consists of a gate, a state display showing
whether any parking space is available, a ticket machine with a ticket
request button and a ticket printer, and an induction loop (i.e., a device
that can detect the presence or absence of a vehicle). To enter the
garage, the driver, receives a ticket indicating the arrival time upon his
request. The gate opens after the driver takes the ticket. The driver
then parks the car and leaves the parking garage. In case of problems,
the PGCS notifies an attendant by means of an attendant call light.

I e - - ———————

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

11

PARKING GARAGE USE CASE (1)

S

@0 O

® © OO

Use Case: EnterGarage
Scope: PGCS
Level: User-Goal
Intention in Context: The Driver wants to enter the garage with his vehicle.
Multiplicity: Only one Driver can enter the garage at a given time for each entry. If
there are n entries, then n EnterGarage use cases can execute at the
same time.
Primary Actor: Driver
Secondary Actors: RequestButton, Display, TicketPrinter, InductionLoop, Gate,
Attendant Light
Main Success Scenario:
Driver drives the car to the entrance and stops.
RequestButton informs System that a Driver is requesting entry.
System requests TicketPrinter to print ticket.
TicketPrinter informs System that Driver has taken the ticket.
System instructs Gate to open.
Driver drives car passed the gate into the garage.
5. InductionLoop informs System that vehicle has left the parking spot and passed the
gate.
6. Gate informs System that it is closed.

B e e e - e ——————O

o R e

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

12

PARKING GARAGE UsSE CASE (2)

Extensions:
2a. There are no more parking spots available.
© 2a.1 System informs User that there are no more parking spots
available by displaying “Garage Full” on the Display. Use case ends
in failure.
3a. TicketPrinter informs System that printing has failed.
3a.1 System turns on AttendantCallLight. Use case ends in failure.
3b. Timeout: User has not taken the ticket. 0,
3b.1 System turns on AttendantCallLight. Use case ends in failure.
5a. Timeout: User has not driven past the gate.
3b.1 System turns on AttendantCallLight. Use case ends in failure.

OO

B e o e e - - e—S——ER

30 points total

D —— e t—

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

13

STRATEGIC CONQUEST

Strategic Conquest is a two player strategy game where the
ultimate goal is world domination. The game is fought on
land, sea and in the air with different types of military units
(e.g. tanks, fighter planes, etc.). The units are produced by
cities when they are under the control of a player. Land
units have to use transporters to move between islands. Air
units use a lot of fuel, and must refill at a city from time to
time, or else they crash and are destroyed in the process.

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

14

STRATEGIC CONQUEST CONCEPT MODEL (1)

<<system>> StrategicConquest

<<id>>

)

Game 0..1
numDays: Natural
0..1 | current
. 2 x| conqueredCities owher Pl 0.2
ayer
Clty dotiiiiiia i D..1 J
name: String producingCity name: String

L 0..1) owner

0.1 Production [-----
daysLeft: Natural
1 0..1 | unitUnderCofstruction
x| destSquare willContain eye .
Sector *"F= —1 MilitaryUnit "
currentSquare contains uhits
1 0..* ol =

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

User

15

STRATEGIC CONQUEST CONCEPT

MilitaryUnit
state: UnitStatus
speed: Natural
currentForce: Natural
maxForce: Natural
timeToProduce: Natural

A

unitsOnBoard

SeaUnit

0..6

A

LandUnit

0..1]transportedBy

A

AirUnit

fuelLevel: Natural
maxFuel: Natural

A

Battleship Transporter Tank Artillery FighterPlane
radarRange: Natural radarRange: Natural
Sector
xPos: Natural
yPos: Natural
I I
SeaSector LandSector CoastSector

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE

MODEL (2)

16

STRATEGIC CONQUEST OCL (1)

1. Describe the following invariant in English or French:
context s: SeaSector
inv: s.contains—(su | su.ocllsKindOf(SeaUnit)) —size() <= 1

@ There can be at most one sea unit on a sea sector.

2. Describe the following invariant in English or French:
context |: LandUnit
inv: if l.transportedBy — notEmpty() then
not |.currentSquare.ocllsTypeOf(LandSector)
else
not |.currentSquare.ocllsTypeOf(SeaSector)
endif

@ Land units must always stay on land or coast sectors, except when they are
transported by a transporter, in which case they are on sea or coast sectors.

3. Write the following invariant in OCL: Only coastal cities can build sea units.
context c: City
inv: c.unitUnderConstruction.ocllsKindOf(SeaUnit) implies
c.sector.ocllsTypeOf(CoastSector)

e L e—————t O

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 17

STRATEGIC CONQUEST OCL (2)

4. Write the following invariant in OCL: When land units are in a transporter,
they automatically move where the transporter moves
context t: Transporter
inv: t.unitsOnBoard—forAll(u | u.currentSquare = t.currentSquare)

5. Write the following invariant in OCL: The speed of air units is always
higher than the speed of land units.
context StrategicConquest
inv: AirUnit.allinstances()—forAll
(a | a.speed >= (LandUnit.allinstances().speed—max()))

6. Write and OCL function that determines the number of tanks that will be
constructed in the next n days for a given player.
context Player
def: numTanks(n: Days) : Integer = self.conqueredCities— select
(c : City | c.production.daysLeft <= n and
c.unitUnderConstruction—notEmpty() and
c.unitUnderConstruction.ocllsTypeOf(Tank))) — size()

15 points total

e L e—————t O

COMP-533 SOLUTION MIDTERM 2013 © 2013 JORG KIENZLE 18

