
COMP-533 Operation Model

Operation Model

Jörg Kienzle & Alfred Strohmeier

COMP-533 Operation Model © 2013 Jörg Kienzle

Behavioural Requirements Overview

• Operation Model!
• System Operation!
• Operation Schema!
• Messages!
• Pre- and postconditions!

• Protocol Model!
• User Requirements Notation!
• State diagrams!
• Sequence diagrams!

• Checking Consistency of Requirements Models

�2

COMP-533 Operation Model © 2013 Jörg Kienzle

Fondue Models: Requirements Spec.

�3

Requirements Specification and Analysis Models

Environment Model

Protocol ModelOperation Model

Concept Model

UCM model with Input/Output
message annotations (or UML State

or Sequence Diagram),	

describing the allowed sequencing of

system operations

OCL Pre- and Postconditions,
describing the desired effect of each

system operation on the conceptual state

COMP-533 Operation Model © 2013 Jörg Kienzle

Requirements Specification Phase

• Purpose!
• To produce a complete, consistent, and unambiguous description of !

• the problem domain and!
• the functional requirements of the system.!

• Models are produced, which describe!
• Structural Models (see previous lecture)!
• Behaviour Models!

• Operation Model!
•Defines for each system operation the desired effect of its execution on the

conceptual state!
• Protocol Model!

•Defines the system protocol, i.e. describes the allowed sequencing of system
operations!

• The models concentrate on describing what a system does, rather than
how it does it.

�4

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Model (1)
• The Operation Model specifies each system

operation declaratively by defining its effects in
terms of (conceptual) system state changes and
messages output by the system!
• In the requirements specification / analysis phase, the state of a

system is modelled as a set of objects that participate in
associations!

• The actual composition of the system state at any moment
depends on what system operations have been invoked

�5

COMP-533 Operation Model © 2013 Jörg Kienzle

System Operation
• A system operation is considered to be a black

box!
• No information is given about intermediate states when it is

performed.!
• A system operation may!

• Create a new instance of a class;!
• Remove an object from the system state;!
• Change the value of an attribute of an existing object;!
• Add a link to an association (i.e. create an association instance);!
• Remove a link form an association (i.e. delete an association

instance);!
• Send a message to an actor.

�6

COMP-533 Operation Model © 2013 Jörg Kienzle

System Operation (2)
• The operations are specified by preconditions and

postconditions, i.e. logical predicates.!
• The precondition characterizes the valid initial

states of the system when the operation is
invoked.!
• If the precondition is not true, the effect of the operation is undefined.!

• The result of the operation is expressed as a
postcondition.!
• The postcondition describes the changes made to the state of the

system and what messages have been sent to actors.!
• It must determine the behaviour for all valid initial states (satisfiable

schema).

�7

COMP-533 Operation Model © 2013 Jörg Kienzle

System Contract
• The state of a system may also be subject to

invariants, conditions that are true throughout its
entire life cycle, i.e., especially before and after
performing an operation.!

• The precondition, the postcondition and the
invariants define the contract for the service the
system promises to provide (contract model of
the system).

�8

COMP-533 Operation Model © 2013 Jörg Kienzle

System Operations
• A system operation is considered to be a black

box: no information about intermediate states.

�9

Before After

Precondition
must be true before

Postcondition
must be true after

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema (1)
• Operation: The entity that services the operation (aka the name

of the system), followed by the name of the operation and
parameter list, and the type of the returned message, if any. !

• Description: A concise natural language description of the
purpose and effects of the operation.!

• Use Cases: This clause provides cross-references to related
use case(s).!

• Scope: All classes and associations from the class model of the
system defining the name space of the operation. !

• Messages: This clause declares all the message types that are
output by the operation together with their destinations, i.e. the
receiving actor classes.

�10

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema (2)
• New: This clause provides declarations of names that

designate objects to be "created" by the operation, i.e. the
postcondition will state oclIsNew() for them. !

• Aliases: This clause provides declarations of names that act
like aliases. Aliases are name substitutions that are treated
as an atom.!

• Pre: The condition that must be met for the postcondition to
be guaranteed. It is a boolean expression written in OCL,
standing for a predicate.!

• Post: The condition that will be met after the execution of the
operation. It is a boolean expression written in OCL, standing
for a predicate.

�11

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema Example (1)
Message (type) declarations: !
! InsufficientFunds_e(); DispenseCash(amount: Money);!
!

Operation:!Bank::withdraw (acc: Account, request:
Money);!
Description: Request from an ATM of some amount to
be taken from a given account. Cash is dispensed only if
account has sufficient funds.!
Scope:! ! Account;!
Messages: !ATM::{InsufficientFunds_e; DispenseCash;};!

�12

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema Example (2)
Pre: ! true;!
Post: !
! ! if (acc.balance@pre ≥ request) then !
! ! ! acc.balance = acc.balance@pre - request &!
! ! ! sender^dispenseCash(request)!
! ! else!
! ! ! sender^insufficientFunds_e() !
! ! endif;!
!

!

�13

COMP-533 Operation Model © 2013 Jörg Kienzle

Naming Conventions
• Generally names are case sensitive, and the

following conventions should be used for better
readability, and in order to avoid ambiguities:!
• Capital first letter for datatypes, e.g. String, classes, e.g., Person, and

associations, e.g. Owns;!
• Lowercase first letter for data values and data constants, e.g.

Color::blue, Gender::male, objects, e.g., john: Person, roles, e.g. wife,
collections, e.g. company.employee, allEmployees, attributes, e.g.
john.birthdate, and functions (methods), e.g. isUnique().!

• Comments are written following two successive
dashes (minus signs) and signify the rest of the line
is a comment.

�14

COMP-533 Operation Model © 2013 Jörg Kienzle

Tuples
• The Tuple notation of OCL is used for denoting the attribute

values of an object and the values of a composite datatype.
Tuples can also be used for denoting the actual parameters of
a message.!
!
Tuple ::= “Tuple” “{" TupleItem ("," TupleItem)* “}"!
TupleItem ::= name [: TypeName] "=" value!
!

• The name is the name of an object attribute, datatype field or
message parameter.!

• A tuple must always be complete, i.e. values must be defined
for all attributes, fields, or parameters.

�15

COMP-533 Operation Model © 2013 Jörg Kienzle

Tuple Examples
-- a tuple with a single component:!
Tuple {amount = request}!
!
-- a tuple with three components 
Tuple { 
! name : String = ‘Josh Kronfield’,  
 ! birthdate : Date = Tuple {year = 1971, month = 6, day = 20},  
 ! nationality : String = ‘New Zealander’}!
!
Context: p: Person, c: Company!
p.all = Tuple { name : String = ‘Josh Kronfield’,  
 ! birthdate = Tuple {year = 1971, month = 6, day = 20},  
 ! nationality : String = ‘New Zealander’}!
c.all = Tuple { name = ‘Microsoft’,  
! headquarters = ‘Richmond’,  
! budget = 50.0E9}

�16

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages Reminder
• Messages are model elements. They have parameters. A

message type is quite similar to a class, and message
instances are similar to objects of the class. Also, the
parameters of a message type are similar to the attributes
of a class.!

• All communications between the system and the actors
are through message instance delivery. The flow of
information is in the same direction as the direction of the
message; otherwise stated, all parameters are of mode in.!

• All messages are asynchronous, i.e. we deal only with
what’s called Signal(s) in the UML.

�17

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages (2)
• Input message instances are incoming to the system and

trigger input events that lead to the execution of system
operations.!
• The signature of the event corresponds to that of the message. !
• The parameters of the input message are the parameters of the input event,

which are the parameters of the system operation. !
• Output message instances are outgoing from the system

and are delivered to a destination actor.!
• A message instance has an implicit reference to its sender,

referred to by sender. Only actors can act as senders.!
• If an actor is able to deal with instances of a given

message (type), then it is possible to state that a message
instance was sent to the actor (e.g. as a result of an
operation.)

�18

COMP-533 Operation Model © 2013 Jörg Kienzle

Message Declarations
MessageDeclaration ::=!
!MessageName "(" ParameterList ")" !
ParameterList ::= Parameter (","Parameter)*!
Parameter ::= EntityDeclaration!
!

• Note that the "sender" is not explicitly declared.
Indeed, any actor is allowed as a sender, and it
cannot be constrained to a subtype. The sender
instance is set implicitly when a message is
delivered.

�19

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages (3)
• Some message types are qualified as being

exceptions. An instance of an exception signals
an unusual outcome to the receiver, e.g., an
overdraft of an account. !

• We use a naming convention to differentiate
exceptions from “regular” messages. The suffix
“_e” is added to the name of an exception.!
• The reason for this naming convention is to help specifiers visually

differentiate between different kinds of messages.

�20

COMP-533 Operation Model © 2013 Jörg Kienzle

Message Declaration Examples

InsufficientFunds_e ();!
DispenseCash (amount: Money);!
DebitReport (amount: Money, timestamp: Date);!
!

type Direction is enum {debit, credit};!
type Transaction is TupleType!
! {amount: Money, timestamp: Date, d: Direction};!
Report(t: Transaction)!
MonthlyReport(movements: Sequence
(Transaction));

�21

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: Operation
"Operation" ":" SystemClassName "::" OperationName
"(" [ParameterList] ")" !
!

• The SystemClassName is the server of the operation. It is also the
context of the schema. self therefore refers to an instance of this
class.!

• The OperationName together with the ParameterList follows the
syntax of a message declaration, since it corresponds to an input
message sent to the system.!

• All parameters in ParameterList are of mode in. This does not mean
that the state of an object which is a parameter cannot be changed. !

• Example!
Bank :: withdrawCash(acc: Account, amount: Money);

�22

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: Scope
“Scope” “:” NameList!
NameList ::= (NameListElement “;”)*!
NameListElement ::= ClassName!
!

• Scope lists all conceptual system state from the Concept Model
that the system operation accesses or modifies!

• NameList is a list of class and association class names.!
• Note that “simple” associations are not listed, only association classes. !
!

• Examples of NameListElements!
• Person!
• Account!
• Job

�23

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: New
"New: " ItemList!
ItemList ::= (Item ";")*!
Item ::= ObjectDeclaration | ObjectCollectionDeclaration !
!

• The New clause declares names for objects or object collections
to be created by the execution of the operation.!
• Each name declaration designates an object or a collection of objects to be “created” by

the operation, i.e. the postcondition will state oclIsNew() for it, or its elements,
respectively. !

• Each name in an ObjectDeclaration declares a distinct object.!
• Examples!

New:!
! acc1, acc2: Account;!
! john: Person;!
! bidders: Set (Person);

�24

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: Aliases
"Aliases" ":" ItemList!
ItemList ::= (Alias ";")*!
Alias ::= EntityDeclaration ”=" Expression!
!

• An alias is a name substitution that overrides precedence rules,
i.e., treated as an atom, and not just as a macro expansion. !
• Everything declared in the Aliases clause is local to the schema.!

• Examples!
Aliases:!
! art: Person = self.person→any(p | p.firstName = "arthur");!
! b: Integer = art.account.balance;!

�25

COMP-533 Operation Model © 2013 Jörg Kienzle

New and Aliases and Scope
• If a ClassName is used in an ObjectDeclaration or

ObjectCollectionDeclaration of a New clause or in an
EntityDeclaration of an Aliases clause, it must be in the
scope of the schema, i.e. declared in the Scope clause. !

• Similarly, if a ClassName is used in an Expression of an
Aliases clause, it must be in the scope of the schema.

�26

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: Messages
“Messages" ":" ActorWithMessagesList  
ActorWithMessagesList ::= (ActorWithMessages ";")*!
ActorWithMessages ::=  
ActorClassName "::" "{" (MessageName ";")* “}"!
!

• ActorWithMessages shows which kinds of messages are sent to
a given actor class. !

• Examples!
Messages:!
! ATM ::! {DispenseCash; InsufficientFunds_e; Report;};!
! Bank ::! {Withdraw_r;};!
! Clerk ::! {AccountNumber;};

�27

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: Pre and Post (1)

"Pre:" Condition ";"!
"Post:" Condition ";"!
Condition ::=  
! BooleanExpression ("&" BooleanExpression)*!
!

• Condition is a boolean expression, the meaning of the sign “&”
being that of a logical and.!

• Expressions are written in OCL!
• If the precondition is true, the operation terminates and the

postcondition is true after the execution of the operation. !
• The pre- and postcondition assertions constitute the contract

model of the operation. If the precondition is met, then the
operation will meet the postcondition, but if the precondition is
not met, then nothing is guaranteed, i.e., the effect of the
operation is undefined.

�28

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema: Pre and Post (2)

• An empty precondition can be expressed by the constant
condition true!

• Pre and Post clauses refer only to entities declared in
the Aliases and New clauses, to parameters of the
operation, to self, to sender, or to entities navigated to
from any of the previous ones. !

• A Condition in a Post clause can use the @pre suffix to
denote the value of a property before the triggering of
the system operation.!

• Note that the Pre and Post clause may make use of
(OCL) functions, but it is not possible to refer to another
Operation Schema within the postcondition of a schema.

�29

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages in Postconditions (1)

• Messages that are output by the system during
the execution of an operation are specified in the
respective schema by stating:!
• the type of the message and the destination actor type;!
• the condition(s) under which the message instance is sent; !
• the actual parameters of the message instance;!
• the destination actor instance;!
• asserting by special syntax that the message instance was sent to

the actor instance.

�30

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages in Postconditions (2)

• Stating in a postcondition that a message instance was sent to
some actor instance is done as follows:!
• destination actor followed by a ^ sign !
• followed by a message (type) name !
• followed within parentheses by its actual parameters.!

• Note that the notation is such that a message instance cannot
be sent twice (since there is no name for referring to it).!
ActorExpression “^” MessageName "(" ActualParameterList ")“!
ActualParameterList ::= [Actual (“,” Actual)*]!
Actual ::= ValueExpression | “?” “:” TypeExpression!

• ActorExpression must denotate an actor instance.!
• The question mark denotates an actual with unknown value or

with a value of no importance.

�31

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages in Postconditions Example

• The examples could be part of a withdrawal operation performed by an ATM of
a bank. !
Message (type) declarations:!
! InsufficientFunds_e (); 
DispenseCash (amount: Money); 
Report (t: Transaction); 
type Transaction is TupleType!
! ! {amount: Money, timestamp: Date, d: Direction};!
!
Messages: ATM::{InsufficientFunds_e; DispenseCash; Report;};!
Post:!
sender^dispenseCash (request) &!
sender^report (Tuple {amount = request,  
! timestamp = Tuple {year = 2000, month = 2, day =14},!
 d = Direction::debit});

�32

COMP-533 Operation Model © 2013 Jörg Kienzle

Messages in Postconditions (3)

• It is possible to access and make assertions about
all the instances of a given message type sent to an
actor instance. !
• The notation is:!

ActorExpression “^^” MessageName "(" ActualParameterList ")“!
• It denotates a Sequence of message instances of

type MessageName.!
• For example, if observer is an actor instance, and

Update is a message type with two Integer
parameters, it is possible to write:!
observer^^update(?: Integer, ?: Integer)!
• The type of the result is Sequence(Update)

�33

COMP-533 Operation Model © 2013 Jörg Kienzle

EmploymentAgency

Example UML Class Diagram

�34

Person Company
0..*1..*

Job
salary

name	

budget

name	

gender

income()

employee employer

0..1

0..1

wife

husband

* *

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema Example
Operation: EmploymentAgency::jobFilled 
 (worker: Person, comp: Company, amount: Money);!
Description: Creates a job for a given person and company, where
company must have a budget smaller than or equal to 10 million;!
Scope: Person; Company; Job;!
New: researchJob: Job;!
Post: !
! researchJob.oclIsNew() &!
! researchJob.salary = amount &!
! researchJob.employee = worker &!
! researchJob.employer = comp;!

�35

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema Example (2)
message (type) declaration!
! Asset(name: String, number: AccNumber, amount: Money);!
!
Operation: Bank :: checkAssets ();!
Description: Request issued by a manager. Lists the balances of all accounts,
together with the owner’s names. Sends multiple messages, one for each
account!!
Scope: Account; Customer; Owns;!
Messages: Manager :: {Asset;}; !
Post:!
! self.account→forAll(a | sender^^asset(? : String, ? : AccNumber, ? : Money)!
! ! →one (m : OclMessage | 
! ! ! m.name = a.customer.name and m.number = a.number and 
! ! ! m.amount = a.balance))!

�36

COMP-533 Operation Model © 2013 Jörg Kienzle

Operation Schema Example (3)
type LineItem is TupleType  
! {name: String, number: AccNumber, amount: Money};!
message (type) declaration!
! CurrentAssets (contents: Sequence (LineItem));!
!
Operation: ! Bank :: checkAssets ();!
Description: Request issued by a manager. Lists the balances of all accounts,
together with the owner’s names. Sends one message containing all assets.!
Scope: Account; Customer; Owns;!
Messages: Manager :: {CurrentAssets;}; !
Post: let seq: Sequence (LineItem) in !
! ! self.account→forAll (a | seq→includes  
! (Tuple {name = a.customer.name, number = a.number,  
! ! amount = a.balance})) and sender^currentAssets (seq)!
endlet;

�37

COMP-533 Operation Model © 2013 Jörg Kienzle

Parameterized Predicates
• A parameterized predicate is a boolean

expression!
• Useful to!

• Improve readability of post clauses!
• Reuse commonly occurring effects!
!

Predicate: SystemName :: PredicateName
([ParameterList]);!
Aliases: if needed.!
Body: Condition;

�38

COMP-533 Operation Model © 2013 Jörg Kienzle

Parameterized Predicates Example (1)

• Message type declaration!
type Line is TupleType {number: AccNumber, amount: Money};!
Statement(content: Set(Line)); !

!

• Predicate declaration!
Predicate: Bank :: StatementHasBeenSent(Customer c);!
Body: let currentStatement: Set(Line) in!

c.myAccounts→forAll (a |
currentStatement→includes  
! (Tuple {number = a.number,  
! ! amount = a.balance})) and
c.client^statement(currentStatement);

�39

COMP-533 Operation Model © 2013 Jörg Kienzle

Parameterized Predicates Example (2)

• StatementHasBeenSent can now be used in
several operation schemas!
!

Operation: Bank :: MonthlyStatement(Customer c);!
Post: self.StatementHasBeenSent(c); !
!

Operation: Bank :: CloseAccount(Account a);!
Post: self.account→excludes(a) and
self.StatementHasBeenSent(a.owner);

�40

COMP-533 Operation Model © 2013 Jörg Kienzle

Questions?

�41

? ??
?

??

? ?
?

COMP-533 Operation Model © 2013 Jörg Kienzle

Pre- and Post-condition Question

• Are the following clauses appropriate for
preconditions and/or postconditions?!
1. No condition.!
2. The user actor has not yet pushed any button.!
3. The system invariant A, e.g. ”A worker is at least fourteen years

old.”, is fulfilled. !
4. The protocol as defined by the Protocol Model is obeyed.!
5. First an unfilled order is sent to the packager, then the billing

department is informed about the order, and finally the
procurement department is asked to stock up the delivered good.

�42

COMP-533 Operation Model © 2013 Jörg Kienzle

Train Depot Continued

�48

1..*
participantsTrain TrainUnit

Engine Car

0..1

weight: Positive

traction: Positive currentLoad: Positive	

maxLoad: Positive

COMP-533 Operation Model © 2013 Jörg Kienzle

Train Depot Questions
• Write Operation Schemas to!
1.Change the load of a car (as a result of loading or unloading

it). The new weight is a parameter of the operation.!
2.Add an (existing) car to a train.!
3.Transfer one train unit from one train to another one.!
4.Compute the total load of a train and communicate it to the

driver of the train. What are the consequences for the
concept model?!
!

• You can use the functions defined in the OCL lecture
exercise, i.e. totalTraction, totalWeight, totalLoad.

�49

COMP-533 Operation Model © 2013 Jörg Kienzle

Elevator Operation Model
• You are to devise the Operation Model for the elevator system

based on the Environment Model and the Concept Model.!
• There is only one elevator cabin, which travels between the floors.!
• There is a single button on each floor to call the lift.!
• Inside the elevator cabin, there is a series of buttons, one for each floor.!
• Requests are definitive, i.e., they cannot be cancelled, and they persist; thus they

should eventually be serviced.!
• The arrival of the cabin at a floor is detected by a sensor.!
• The system may ask the elevator to go up, go down or stop. In this example, we

assume that the elevator's braking distance is negligible.!
• The system may ask the elevator to open its door. The system will receive a

notification when the door is closed. This simulates the activity of letting people on
and off at each floor.!

• The door closes automatically after a predefined amount of time. However, neither
this function of the elevator nor the protection associated with the door closing
(stopping it from squashing people) are part of the system to realize.

�55

COMP-533 Operation Model © 2013 Jörg Kienzle

Take Lift Use Case (1)
Use Case: Take Lift!
Scope: Elevator Control System!
Level: User Goal!
Intention in Context: The User intents to go from one floor to another.!
Multiplicity: The System has a single lift cabin that may service many

users at any one time.!
Primary Actor: User!
Main Success Scenario:!
1. User enters lift.!
2. User exits lift at destination floor.!
Extensions:!
1a. User fails to enter lift; use case ends in failure.!

�56

COMP-533 Operation Model © 2013 Jörg Kienzle

Enter Life Use Case (1)
Use Case: Enter Lift!
Scope: Elevator Control System!
Level: Subfunction!
Intention in Context: The User intends to enter the cabin at a certain floor.!
Primary Actor: User!
Secondary Actors: Floor Sensor, Motor, Door!
Main Success Scenario:!
1. User requests System for lift;!
2. System acknowledges request to User.!
3. System requests Motor to go to source floor.!
Step 4 is repeated until System determines that the source floor of the User has

been reached!
4. Floor Sensor informs System that lift has reached a certain floor.!
5. System requests Motor to stop;!
6. Motor informs System that lift is stopped.!
7. System requests Door to open;!
User enters lift at source floor.!

�57

COMP-533 Operation Model © 2013 Jörg Kienzle

Enter Life Use Case (2)
Extensions:!
3a. System determines that another request has priority:!
 3a.1. System schedules the request; use case

continues at step 2.!
3b. System determines that the cabin is already at the

requested floor.!
 3b.1a System determines that the door is open; use

case ends in success.!
 3b.1b System determines that the door is closed; use

case continues at step 7.!

�58

COMP-533 Operation Model © 2013 Jörg Kienzle

Exit Life Use Case (1)
Use Case: Exit Lift!
Scope: Elevator Control System!
Level: Subfunction!
Intention in Context: The User intends to leave the cabin at a certain floor.!
Primary Actor: User!
Secondary Actors: Floor Sensor, Motor, Door!
Main Success Scenario:!
Steps 1 and 2 can happen in any order.!
1. User requests System to go to a floor.!
2. System acknowledges request to User.!
3. Door informs System that it is closed.!
4. System requests Motor to go to destination floor.!
Step 5 is repeated until System determines that the destination floor of the User has been reached.!
5. Floor Sensor informs System that lift has reached a certain floor.!
6. System requests Motor to stop.!
7. Motor informs System that lift is stopped.!
8. System requests Door to open.!
9. User exits lift at destination floor.

�59

COMP-533 Operation Model © 2013 Jörg Kienzle

Exit Lift Use Case (2)
Extensions:!
(3-5)||a. User requests System to go to a different floor;!
 (3-5)||a.1 System schedules the request; use case

continues at the same step.!
4a. System determines that another request has priority.!
 4a.1. System schedules the request; use case

continues at step 4.!
9a. System determines that there are additional

requests pending; use case continues at step 3.!

�60

COMP-533 Operation Model © 2013 Jörg Kienzle

Elevator Environment Model

�61

: CabinButton!

2..*!

up!
down!
stop!

stopped!

: Elevator!

: Motor!

1!

: Door!

1!

: FloorButton!

2..*!

isClosed!
floorRequest!

floorRequest!

servicedRequest!

servicedRequest!
open!

: Sensor!

2..*!

atFloor!

2..*!

[0..1]!0..1

COMP-533 Operation Model © 2013 Jörg Kienzle

Elevator Concept Model

�62

<<enumeration>>
Direction

up
down
any

Floor
num : Positive

2..*!

Cabin
ds : DoorState
mvt : Movement

1!

Request 0..*!

: Door!

1!

: Motor!

1!

: Sensor!

2..*!

: ReqSource!

4..*!

: CabinButton!

2..*!

: FloorButton!

2..*!

<<system>>ElevatorControl

currentFloor!0..1!

0..1!

1!
targetFloor!

reqsForFloor!

currentRequest! 0..1!
0..1!
activeCabin!

<<id>>!

<<id>>!

<<id>>!
0..*!

dir: Direction

<<enumeration>>
Movement

goingUp
goingDown
stoppingUp
stoppingDown
stopped

<<enumeration>>
DoorState

open
closed

COMP-533 Operation Model © 2013 Jörg Kienzle

Elevator Operation Model Question

• You are to develop the Operation Model for the
Elevator System based on the Environment
Model and the Concept Model, i.e. you have to
write the 4 operation schemas atFloor(f : Floor),
stopped, isClosed, floorRequest(f : Floor).

�63

