
COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

COMP-533

Dependability-Oriented
Requirements Engineering

Jörg Kienzle	

School of Computer Science, McGill University	

Montreal, Canada	

!

Contributing authors:	

Sadaf Mustafiz, Shane Sendall, Aaron Shui, Alexander Romanovsky, Christophe Dony,	

Hans Vangheluwe, Ximeng Sun

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Overview
• Dependability	

• Software Development for Dependable Systems	

• Fault Tolerance and Recovery	

• Exceptions	

• Idealized Fault-Tolerant Component	

• Dependability-Focused Requirements Engineering Process	

• Motivation	

• Context-Affecting Exceptions	

• Safety and Reliability Handlers	

• Service-Affecting Exceptions	

• Dependability Assessment	

• Conclusion & Future Work

���2

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Dependability

1J. C. Laprie, A. Avizienis, and H. Kopetz, editors. Dependability: Basic Concepts and Terminology. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1992.	

2J.-C. Geffroy and G. Motet: Design of Dependable Computing Systems. Kluwer Academic Publishers, 2002.

���3

Dependability	

Property of a computer system such that

reliance can be justifiably be placed on the
service it delivers1

Reliability: Aptitude to provide service as long as required2

Safety: Lack of catastrophic failures2

 Availability, reliability, safety, maintainability, confidentiality, integrity

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Statistical	

Inference

Reliable Software Development

���4

Fault Tolerance

Rigorous
Software	

Development
Model-Driven	

Architecture

Formal	

Methods

Software	

Reuse

Clear	

Documentation

Fault Avoidance

Experience

Quality	

Estimation

Reliability	

Measurement

Fault Forecasting

Verification

Validation

Testing

Formal	

Inspection

Fault Removal

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Fault Tolerance

• Continue to provide service in the presence of
faults of underlying components or the
environment

���5

Fault Error Failure Consequence

Internal
(System/Component/Object) External

Time

Fault Tolerance

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Recovery

• Error detection	

• Identify erroneous state	

• Error diagnosis	

• Assess the damage	

• Error containment / isolation	

• Prevent further damage / error propagation	

• Error recovery	

• Substitute the erroneous state with an error-free one	

• Backward and Forward Error Recovery

���6

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Exceptions
• Programming language feature	

• Exceptional situation in which normal processing can not

continue	

• Exception Handling Systems1	

• Define exception handling contexts	

• Provide a means to signal exceptions	

• Define exception handlers	

• Attach handlers to contexts	

• Hierarchical model	

!
1 C. Dony: Exception Handling and Object-oriented Programming: Towards a Synthesis.	

 In 4th European Conference on Object–Oriented Programming (ECOOP ’90). ACM SIGPLAN Notices, ACM Press.

���7

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Exception Occurrence
• At run-time, signaling an exception amounts to	

• Identify the kind of exceptional situation	

• Interrupt the usual processing	

• Look for a relevant handler	

• Invoke the handler with occurrence information	

• Handling amounts to establishing a coherent state and to either	

• Resumption model1:	

• Continue the program after the signaling statement	

• Termination model1:	

• Discard the context between the signaling statement and the handler	

• Signal a new exception to the enclosing context	

!
1 J.B. Goodenough: Exception Handling: Issues and a Proposed Notation.	

 Communications of the ACM 18 (1975), p. 683 – 696.

���8

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Idealized Fault Tolerant ComponentNormal	

Processing

Idealized Fault-Tolerant Component1

���9

Service
Request Reply

Service
Request Reply

Failure
Exception

Interface
Exception

Interface
Exception

Failure
Exception

Error	

Processing

Local Exception

1 Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”, in Dependable	

 Computing and Fault-Tolerant Systems, Springer Verlag, 2nd ed., 1990.

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Advantages of Exception Handling

• Provides clear identification of exceptional
situations / conditions	

• Separates normal behavior from exceptional
behavior	

• Hierarchy	

• Recursion	

• Object-oriented Exceptions	

• Polymorphic Handling

���10

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

E & SD: Current State of the Art

���11

Requirements Elicitation

Analysis

Architecture Design

Detailed Design

Implementation

Exceptions Well Understood

Not Many Guidelines on
Designing with Exceptions

Exception Concepts Unclear

Idealized Fault-Tolerant
Component? ?

Coordinated
Exception Handling

(e.g. CA Actions)
? ?

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Requirements Elicitation & Use Cases
• Requirements Elicitation performed to discover the

system functionality, properties and qualities	

• Use Cases capture interactions between the system and

the environment to achieve user goals	

• Actors - entities that interact with the system	

• Primary actor - initiates the use case	

• Secondary actors - needed by the system to provide the functionality	

• Designed to be understood by non-technical parties	

• Consist of (textual) descriptions and Use Case Diagrams

���12

EFTS 2006 - Exceptions and the Software Life-Cycle: Starting with Requirements

Single-Cabin Elevator Example
Use Case: TakeElevator!
Scope: Elevator Control System!
Primary Actor: User!
Intention: The intention of the
User is to take the elevator
to go to a destination floor.!

Level: User Goal!
Main Success Scenario: !
! 1. User Call[s]Elevator!
! 2. User Ride[s]Elevator!
Extensions: !
! 1a. Cabin is already at
User’s floor…!

! 1b. User is already inside…!

• Main success vs. extensions
• Hierarchy

���13

Elevator Control System

Take

Elevator

Call

Elevator

Ride

Elevator

Elevator

Arrival

<
<
in

cl
ud

e>
> <

<
include>

>

<
<
in

cl
u
d
e
>
>

<
<
include>

>

User

Door

Motor

Exterior

FloorButton

Interior

FloorButton

Floor

Sensor

2..*

0..*

2..*

2..*

1

1

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Importance of “Good” Requirements
• Faults / omissions made at the

requirements stage are
expensive to fix later 	

• Stated requirements might be
implemented, but the system is not
one that the customer wants	

• Need to determine and
establish the precise
expectations of the 
customer!	

• Also for exceptional
situations!

���14

Requirements
Design
Coding

Unit Test
Acceptance Test

Maintenance

1
5
10
20
50
200

Relative Cost to Repair a Defect
at Different Lifecycle Phases [Davis 93]

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Fault Assumptions

• System (to be built) fault-free	

• Faults in the environment	

• Actors fail to provide input to the system	

• Actors fail to provide requested service to system	

• Communication failure	

• Protocol violations	

• These situations may interrupt the flow of
normal interaction that leads to the fulfillment of
the user goal

���15

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Motivation for Dependablity-Focused RE
• The major cause of common faults are flawed 

specifications [Bishop 95]	

• Incompleteness	

• Ambiguity	

• Non-identified exceptional situations can lead to	

• Lack of functionality	

• Unreliable system behavior	

• Unexpected system behavior	

• Operation faults	

• Idea: extend use case-based requirements elicitation to discover

dependability requirements and specify how to deal with
exceptional situations	

���16

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 8	

Specifying	

Detection	

Mechanisms

Task 9	

Specifying	

Handler Use Cases
Task 10	

Defining Degraded
Modes

Process Overview

���17

Task 4	

Elicit Dependability

Expectations,
discover exc. modes

Task 1	

Discovering	

Actors, Goals,
Modes

Task 2	

Discovery of	

Context-Affecting	

Exceptions

Task 3	

Elicit Handlers for	

Context-Affecting	

Exceptions

Task 6	

Service-Related	

Exceptions and
Their Effects

Task 7	

Assessing Safety	

and Reliability

Task 12	

Summarizing	

Exception Table

Task 11	

Summarizing	

Use Cases	

and Handlers

Task 5	

Designing

Interactions

Elicitation and Discovery

Definition and Specification

Dependability Analysis

Dependability-Based Refinements

Requirements Summary

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 1: Discovering Actors, Goals and Modes

1.1 Brainstorm services/goals and outcomes	

1.2 Brainstorm actors	

1.3 Classify services/goals and actors	

1.4 Decompose services into subgoals	

1.5 Brainstorm operation modes	

!

• An operation mode is defined by the set of services that
the system offers when operating in that mode	

• Example: cell-phone with child-safe mode

���18

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 2: Discovering Context-Affecting Exceptions

2.1 Brainstorm context-affecting exceptions	

2.2 Define new exceptional detection actors	

• Context-Affecting Exceptions	

• Exceptional situation arising in the environment that affect the

context in which the system operates	

• Temporary situation or permanent situation	

• Cannot be detected by the system	

• Exceptional actors signal the situation to the system	

• System safety threatened	

• User goals change	

• Example	

• Fire outbreak in an elevator, signalled by a smoke detector

���19

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Discovering Context-Affecting Exceptions
• Discovered in a top-down manner	

• System Level	

• What situation prevents the system from being operational?	

• Operational needs: power source, accessibility, connectivity	

• What situation prevents the system from providing safe service? In these situations,
should the system provide some other service?	

• Emergencies, safety concerns, malicious behavior	

• User-goal Level / Subfunction-level Goal	

• What situations / conditions / changes in the environment prevent the system from

satisfying a primary actor’s goal (or subgoal)? In such situations, can the system
partially fulfill the service?	

• What situations take priority over the primary actor’s goal?	

• What situations / conditions / changes in the environment could make the primary

actor change his goal? In such situations, how can the primary actor inform the
system of the goal change?

���20

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Results of Task 2

• For each discovered context-affecting exception	

• Define a name	

• Elaborate a short description describing the situation	

• Identify new system services, i.e. exceptional goals	

• These services are triggered by the occurrence of the exception	

• Exceptional actors	

• Exceptional primary actors detect the occurrence of the exception and
signal it to the system	

• Exceptional secondary actors are actors needed by the system to
handle the exception

���21

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 3: Eliciting Handlers for CA Exceptions

3.1 Discover and classify exceptional services 	

3.2 Decompose exceptional services into subgoals	

3.3 Discover new exceptional secondary actors	

• For each context-affecting exception, a handler use case outline is
defined that describes the exceptional service that is provided by the
system, (i.e. how the system is supposed to react in that situation)	

• Handlers are classified as safety or reliability handlers	

• Linked to the context in which they are 	

• Example	

• Fire outbreak in an elevator, signalled by a smoke detector	

• Safety handler directs elevator cabin down to the ground floor

���22

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 4: Eliciting Dependability Expectations

4.1 Eliciting dependability expectations for each service	

4.2 Document provided reliability and safety of mandatory
secondary actors	

4.3 Discover exceptional modes of operation 	

• For each goal / service that the system provides, expected safety and
reliability is specified	

• Reliability specified with “chance of success”, e.g. 99.97%	

• Safety specified with “chance of safety violation”, e.g. 0.0002%	

• Depending on the application, different safety levels can be defined, e.g. DO-178B	

• This is where discussions on “acceptable risk” should take place among
stakeholders

���23

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Exceptional Modes

• Dependable systems should not offer services they can
not provide in a reliable and safe way	

➡ When an exceptional situation is encountered, reliability
and safety of future service provision should be
evaluated	

➡ If system cannot guarantee dependable service
provision, a mode switch is necessary

���24

Operation Mode = Set of Offered Services
 (with defined minimal reliability and safety)

(Emergency Modes, Degraded Modes, etc..)

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 5: Designing Interactions
5.1 Design goal interaction steps	

5.2 Specify goal outcomes	

5.3 Define new (exceptional) secondary actors	

5.4 Design handler interaction steps	

5.5 Specify handler outcomes	

5.6 Add mode switches to handler steps, if needed	

• Possible goal and handler outcomes	

• <<success>>, <<failure>>, <<abandoned>>, <<degraded>>

���25

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Elevator Arrival Example
Use Case: ElevatorArrival !
Intention: System wants to move the elevator to the User’s destination

floor. !
Level: Subfunction !
Main Success Scenario: !
1. System asks Motor to start moving in the direction of the

destination floor.!
2. FloorSensor informs System that elevator is approaching destination

floor.!
3. System requests Motor to stop.!
4. System requests Door to open.!
Use case ends in <<success>> FloorReached.

���26

• Write detailed interaction scenarios for each use case and
handler

• Each step is either an input interaction or an output interaction

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

User Emergency Example
Handler Use Case: UserEmergency !
Handler Class: Safety !
Contexts & Exceptions: TakeElevator{EmergencyStop} !
Intention: User wants to stop the movement of the cabin. !
Level: User Goal !
Frequency & Multiplicity: Since there is only one elevator cabin, only one

User can activate the emergency at a given time. !
Primary Actor: User (interacts by means of Emergency Button)!
Main Success Scenario: !
1. System initiates Emergency Brake. !
 System clears all pending requests. !
3. User informs System that emergency is over by toggling the Emergency

Button. !
4. System deactivates Emergency Brakes and awaits the next request.

���27

Take Elevator

<<safety handler>>

User

Emergency<<interrupt & continue>>

Exception:

{EmergencyStop}

New Exceptional Facilitator Actor

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Fault Assumptions
• System (to be built) fault-free	

• Faults in the environment	

• Actors fail to provide input to the system	

• Actors fail to provide requested service to system	

• Communication failure	

• Protocol violations	

• These situations interrupt the flow of normal
interaction that leads to the fulfillment of the user
goal

���28

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 6: Defining Service-Related Exceptions
6.1 Document expected reliability and safety for actors 	

6.2 Annotate subgoal and handler steps with reliability and safety	

6.3 Define service-related exceptions	

• Consider the importance of each interaction step	

• Reliability: 

How essential is the interaction step for the successful completion of the user goal / subgoal?	

• Annotate essential steps with a <<reliability>> tag and specify the success probability, if known 	

• Safety: 
Does the failure of this interaction step threaten system safety?	

• Annotate critical steps with a <<safety>> tag and an appropriate safety level	

• Consider feasibility of each interaction step	

• Is it possible for the system to be in a state in which the execution of the step is impossible?	

• Are there service-related exceptional situations in which an entire sub-goal cannot be

executed?

���29

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Different Source of Problems
• Input Problems	

• If omission of input from an actor can cause the goal to fail different
options of handling the situation have to be considered.	

• Prompt again after timeout	

• Use default input	

• Temporary system shutdown for safety reasons	

!

• Output Problems	

• Whenever an output triggers a critical action of an actor, then the

system must make sure that it can detect eventual communication
problems or failure of an actor to execute the requested action.	

• Example: Motor fails to stop.	

• Additional hardware or timeouts might be necessary to ensure reliability.	

• Example: Movement Sensor (exceptional detection actor)

���30

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Results of Task 6

• For each discovered service-related exception	

• Define a name	

• Elaborate a short description describing the situation	

• Add exceptions to the exceptions section of the use cases

and handlers

���31

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Use Case: ElevatorArrival !
Intention: System wants to move the elevator to the User’s destination

floor. !
Main Success Scenario: !
1. System asks Motor to start moving in the direction of the

destination floor.!
 Reliability: 99%!
2. FloorSensor informs System that elevator is approaching destination

floor.!
 Reliability: 98% Safety-index: 2 (minor effects)!
3. System requests Motor to stop.!
 Reliability: 99% Safety-index: 4 (catastrophic effects)!
4. System requests Door to open. Reliability: 97%
Exceptions:  

Exception{MissedFloor}, Exception{MotorFailure},  
Exception{DoorStuckClosed}!

!

Elevator Arrival Example

���32

Reliability numbers do not reflect reality!

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 7: Dependability Assessment
7.1 Map use cases and handlers to DA-Charts	

7.2 Perform reliability and safety analysis	

7.3 Compare dependability analysis results with expected
dependability values	

• DA-Chart comprise:	

• A System component	

• Input interactions are mapped to events	

• Output interactions are mapped to transition actions	

• One orthogonal component for each actor	

• Input interactions are mapped to probabilistic transition actions	

• Output interactions are mapped to probabilistic events	

• A safety status component	

• Failed safety-critical interactions trigger toUnsafe events

���33

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Dependability Assessment Charts

Sequencing according to use case,
goalSuccess/goalFailure states

Fault-free - no probabilities

System State Actor States

Actors
can fail

with certain
probability!

System ApFlSnsrMotor

Safety

atFlSnsr

goalSuccess goalFailure

sysStopped
missedFloor

sysStarted

sysReady apFlrSnsrReady

apFlrSnsrAck
apFlrSnsrFailure

atFlrSnsrReady

atFlrSnsrAck atFlrSnsrFailure

mtrReady

mtrStarted

mtrStopped

normal

safe unsafe

startAck{0.02}
/missedFloor;toUnsafe

startAck{0.98}
/apFlrSnsrD

stopAck{0.95}
/floorReached

stopAck{0.05}
/atFlrSnsrFailure

/start

missedFloor

motorFailure

atFlrSnsrFailure
floorReached
/openDoortoSafe toUnsafe

start
/startAck

stop{0.01}
/motorFailure;
toUnsafe

stop{0.99}
/stopAck

Safety mtrFailure

���34

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Tool Support
• Tool support for DA-Charts based on AToM3	

• DA-Chart support built by extending the state chart meta-model with
probabilities	

• Analysis done by mapping DA-Charts to Markov chains	

• Safety = Probability to end up in the Safe state	

• Reliability = Probability to end up in the GoalSuccess state	

• Elevator Arrival	

• Safety: 97.02% Reliability: 92.169	

• Careful: These numbers represent “best achievable” safety /
reliability, not actual!

���35

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Refining Dependability
• What can be done if the calculated dependability is

lower than the expected dependability?	

• Determine “weak” steps	

• Either increase reliability of step	

• Buy better hardware	

• Make communication links more reliable	

• Replicate hardware	

➡ No effects on requirements / use case structure	

• Or redesign interactions to decrease importance of step	

• Continue with task 8 and task 9

���36

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 8: Specifying Detection Mechanisms

���37

8.1 Add detection actors	

8.2 Add detection interaction steps for standard use cases and revisit goal
outcomes	

8.3 Add detection interaction steps for handlers and revisit handler outcomes	

• Before recovery measures can be taken, the exceptional situation has to be
detected	

• Detection might require:	

• Additional secondary actors	

• Additional hardware, so called detector actors	

• Sensors	

• Timeouts	

• The occurrence of an exception is documented in the exceptions section of the
use case template

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Elevator Arrival Example
Use Case: ElevatorArrival !
Intention: System wants to move the elevator to the User’s destination floor. !
Level: Subfunction !
Main Success Scenario: !
1. System asks Motor to start moving towards the destination floor. !
2. FloorSensor notifies System that elevator is approaching destination floor.!
 Reliability: 98% Safety-index: 2
3. System requests Motor to stop. Reliability: 99% Safety-index: 4 !
4. AtFloorSensor informs System that elevator is stopped at destination floor.!
 Reliability: 95% !

5. System requests Door to open. Reliability: 97%!

6. DoorSensor notifies System that door is open. Reliability: 95%!

Exception: !
2a. Exception{MissedFloor} !
4a. Exception{MotorFailure} !
6a. Exception{DoorStuckClosed}!

���38

Very often, timeouts have to be
used to detect the exception

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 9: Specifying Handler Use Cases
• Depending on the application domain (and the

opinion of the stakeholders), a handler use case
performs additional interactions to	

• Continue to provide the original service (reliability handler)	

• Offer a degraded service instead (reliability handler)	

• Take actions that prevent a catastrophe (safety handler)	

• Bring the system to a safe halt (safety handler)	

• Behaviour should be intuitive to the people that
interact with the system

���39

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 10: Defining Degraded Modes
• Evaluate the effects of each service-related

exception on future service provision	

• If promised reliability and safety levels cannot be

maintained, a degraded operation mode should be
defined	

!

• After completing task 10, the process returns to
task 5 (i.e. 5.4 Design Handler Interaction Steps),
and then dependability is re-assessed

���40

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Example Refinement: Emergency Brake
Handler Use Case: EmergencyBrake !
Handler Class: Safety !
Context & Exception: ElevatorArrival{MotorFailure} !
Intention: System wants to stop operation of elevator and secure the

cabin. !
Level: Subfunction !
Main Success Scenario: !
1. System stops Motor. !
2. System activates EmergencyBrakes.!
 Reliability: 99.99% Safety-index: 4
3. System turns on the EmergencyDisplay.!

���41

Reliability numbers do not reflect reality!

Elevator Arrival

<<safety handler>>

Emergency

Brake<<interrupt & fail>>

Exception:

{MotorFailure}

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 7: Dependability Assessment

���42

Motor
mtrReady

mtrStarted

mtrStopped

start
/startAck

stop{0.01}
/motorFailure

stop{0.99}
/stopAck

mtrFailure

System

goalSuccess goalFailure

sysStopped missedFloor

sysStarted

sysReady
/start

missedFloor

motorFailure
/activateEB

atFlrSnsrFailure
/activateEBfloorReached

/openDoor
Safety

normal

safe unsafe

toSafe toUnsafe

Brake
Brake

brakeReady

brakeFailedbrakeActivated

activateEB{0.001}
/toUnsafeactivateEB{0.999}

/toSafe

ApFlSnsr
apFlrSnsrReady

apFlrSnsrAck
apFlrSnsrFailure

startAck{0.02}
/missedFloor;toUnsafe

startAck{0.98}
/apFlrSnsrD

atFlSnsr
atFlrSnsrReady

atFlrSnsrAck atFlrSnsrFailure

stopAck{0.95}
/floorReached

stopAck{0.05}
/atFlrSnsrFailure

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 8	

Specifying	

Detection	

Mechanisms

Task 9	

Specifying	

Handler Use Cases
Task 10	

Defining Degraded
Modes

DREP Overview (again)

���43

Task 4	

Elicit Dependability

Expectations,
discover exc. modes

Task 1	

Discovering	

Actors, Goals,
Modes

Task 2	

Discovery of	

Context-Affecting	

Exceptions

Task 3	

Elicit Handlers for	

Context-Affecting	

Exceptions

Task 6	

Service-Related	

Exceptions and
Their Effects

Task 7	

Assessing Safety	

and Reliability

Task 12	

Summarizing	

Exception Table

Task 11	

Summarizing	

Use Cases	

and Handlers

Task 5	

Designing

Interactions

When should a
developer stop
refining?
!
When the assessed
dependability is
acceptable!
!
Finally: Build
summary use case
diagram and
exception table

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 11: Use Case & Handler Summary

���44

Elevator Control System

Take Elevator

Call Elevator Ride Elevator

Elevator

Arrival

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e

>
>

User

0..*

Main Scenario & Alternatives

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Use Case & Handler Summary (2)

���45

Elevator Control System

Take Elevator

<<safety handler>>

ReturnTo

GroundFloor

<<safety handler>>

User

Emergency

Call Elevator Ride Elevator

Elevator

Arrival

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e
>

>

<<interrupt & fail>> <<interrupt & continue>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride}

Exception:
{EmergencyStop}

<<safety handler>>

Emergency

Brake

0..* 0..*

Environment-related Exceptions
Environment Handlers

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Use Case & Handler Summary (3)

���46

Elevator Control System

Take Elevator

<<safety handler>>

ReturnTo

GroundFloor

<<safety handler>>

User

Emergency

<<reliability handler>>

DoorAlertCall Elevator Ride Elevator

Elevator

Arrival

<<reliability handler>>

Redirect

Elevator

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e
>

>

<<interrupt & continue>>

<<interrupt & fail>> <<interrupt & continue>>

<<interrupt & continue>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride}

Exception:
{EmergencyStop}

<<safety handler>>

Overweight

Alert

<<interrupt & continue>>

Exception:
{Overweight}Exception:

{MissedFloor}

<<safety handler>>

Emergency

Brake

<<interrupt & fail>>

Exception:
{DoorStuckOpen}

Exception:
{MotorFailure}

0..* 0..*

Service-Related Exceptions
Detection Mechanisms & Handlers

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Use Case & Handler Summary (4)

���47

Elevator Control System

Take Elevator

<<safety handler>>

ReturnTo

GroundFloor

<<safety handler>>

User

Emergency

<<reliability handler>>

DoorAlert

<<safety handler>>

CallElevator

Operator

Call Elevator Ride Elevator

Elevator

Arrival

<<reliability handler>>

Redirect

Elevator

<<include>>

<<include>>

<<inclu
de>>

<
<

in
c
lu

d
e
>

>

<<interrupt & continue>>

<<interrupt & fail>> <<interrupt & continue>>

<<interrupt & continue>>

<<interrupt & fail>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride}

Exception:
{EmergencyStop}

Exception:
{DoorStuckOpenTooLong}

<<safety handler>>

Overweight

Alert

<<interrupt & continue>>

Exception:
{Overweight}Exception:

{MissedFloor}

<<safety handler>>

Emergency

Brake

<<interrupt & fail>>

Exception:
{DoorStuckOpen}

Exception:
{MotorFailure}

<<interrupt & fail>>

<<interrupt & fail>>
Exception:
 {OverweightTooLong}

Exception:
 {ElevatorStoppedTooLong}

0..* 0..*

<<interrupt & fail>>

Exception:
{RedirectionFailure}

<<interrupt & fail>>

Exception:
{SafeReturnFailure}

Refined Version that takes into
account Exceptions within Handlers

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Task 12: Exception Summary

���48

Exception Description Context Handler Detection

EmergencyStop

An emergency
situation in the
elevator cabin

makes the User want
to stop the elevator

TakeElevator UserEmergency
Triggered by User
actor pressing the
emergency button

MotorFailure

Due to a motor or
communication

failure, the motor
does not respond to

requests

TakeElevator
- or -

ReturnToGround 
Floor

EmergencyBrake

Sensor detects cabin
is approaching a

floor beyond
destination floor

- or -
timeout expires, and

no sensor
information has

been sent

...

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Conclusion
• Focussing on dependability during requirements engineering is essential	

• Discover the users expectations during exceptional situations	

• Predict achievable dependability before investing in any further development

activities	

• DREP	

• Dependability-aware Requirements Engineering Process	

• Tasks focus the developer on different aspects of dependability	

• Step-by-step instructions	

• Iterative - guided refinement until dependability is achievable	

• Dependability-aware Modeling Notations	

• Separate exceptional from normal behaviour	

• Separation enables separate quality control / development / priority	

• Tool support

���49

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Our References
[1] Aaron Shui, Sadaf Mustafiz, Jörg Kienzle, Christophe Dony: Exceptional Use Cases. International
Conference on Model-Driven Engineering Languages and Systems - MoDELS 2005, Lecture Notes in
Computer Science 3713, Springer Verlag, 2005, p. 568-583.	

[2] Aaron Shui, Sadaf Mustafiz, Jörg Kienzle: Exception-Aware Requirements Elicitation with Use Cases.
Advances in Exception Handling Techniques, LNCS 4119, Springer Verlag, 2006, p.221 - 242.	

[3] Sadaf Mustafiz, Ximeng Sun, Jörg Kienzle, Hans Vangheluwe: Model-Driven Assessment of Use
Cases for Dependable Systems. Proceedings of MoDELS 2006, LNCS 4199, Springer Verlag 2006, p.558
- 573.	

[4] Aaron Shui: Exceptional Use Cases. Master Thesis, McGill University, 2005.	

[5] S. Mustafiz, X. Sun, J. Kienzle, and H. Vangheluwe, “Model-Driven Requirements Assessment of
System Dependability,” Software and Systems Modeling, pp. 487 – 502, October 2008.	

[6] S. Mustafiz and J. Kienzle, “A Requirements Engineering Process for Dependable Reactive Systems,”
in Methods, Models and Tools for Fault Tolerance (A. Romanovsky, C. Jones, J. L. Knudsen, and A.
Tripathi, eds.), no. 5454 in Lecture Notes in Computer Science, pp. 220 – 250, Springer Verlag, 2009.	

[7] S. Mustafiz, J. Kienzle, and A. Berlizev, “Addressing Degraded Service Outcomes and Excep- tional
Modes of Operation in Behavioural Models,” in International Workshop on Software Engineering for
Resilient Systems (SERENE ’08), (New York, NY, USA), pp. 19 – 28, ACM, November 2008.

���50

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Other References (1)
• Fred D. Davis: User acceptance of information technology: System characteristics, user perceptions

and behavioral impacts. International Journal of ManMachine Studies, 38(3):475–487, March 1993.	

• Bishop, P.: “Software Fault Tolerance by Design Diversity” In M. R. Lyu (ed.), Software Fault

Tolerance, John Wiley & Sons, pp. 211-229, 1995.	

• de Lara, J., Vangheluwe, H.: AToM3 : A tool for multi-formalism and meta-modelling. In: European

Joint Conference on Theory And Practice of Software (ETAPS), Fundamental Approaches to Software
Engineering(FASE). Lecture Notes in Computer Science 2306, Springer 2002, p. 174 – 188.	

• A. Cockburn; Structuring Use Cases with Goals. Journal of Object-Oriented Programming (JOOP
Magazine), Sept-Oct and Nov-Dec, 1997. 	

• E. Ecklund, L. Delcambre and M. Freiling; Change cases: use cases that identify future requirements.
OOPSLA ‘96 - Proceedings of the eleventh annual conference on Object-oriented programming
systems, languages, and applications, 1996. pp. 342 - 358.	

• M. Fowler; Use and Abuse Cases. Distributed Computing Magazine, 1999. Available at http://
www.martinfowler.com/articles.html	

• M. Glinz; Problems and Deficiencies of UML as a Requirements Specification Language. Proceedings
of the Tenth International Workshop on Software Specification and Design, San Diego, 2000, pp.
11-22.

���51

COMP-533 Dependability-Oriented Requirements Engineering, © 2012 Jörg Kienzle

Other References (2)
• T. Korson; The Misuse of Use Cases. Object Magazine, May 1998.	

• R. Malan and D. Bredemeyer; Functional Requirements and Use Cases. June 1999.

Available at http://www.bredemeyer.com/papers.htm 	

• J. Mylopoulos, L. Chung and B. Nixon; Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach. IEEE Transactions on Software
Engineering, Vol. 23, No. 3/4, 1998, pp. 127-155.	

• A. Pols; Use Case Rules of Thumb: Guidelines and lessons learned. Fusion
Newsletter, Feb. 1997. 	

• S. Sendall and A. Strohmeier; From Use Cases to System Operation Specifications.
UML 2000 - The Unified Modeling Language: Advancing the Standard, Third
International Conference, York, UK, October 2-6, 2000, S. Kent, A. Evans and
B.Selic (Ed.), LNCS (Lecture Notes in Computer Science), no. 1939, 2000, pp.
1-15.	

• R. Wirfs-Brock; The Art of Designing Meaningful Conversations. Smalltalk Report,
February, 1994.

���52

