
COMP-361 Project
Design Models

(12% of final grade)

Hand-in Date
Please submit your models (upload on myCourses) by Friday February 13th 2015. The handin consists of 2 models: the
Interaction Model and the Design Class Model.

Scope

Some groups are going for a peer-to-peer implementation of Medieval Warfare (i.e., all nodes in the distributed system run
the same application), while others are planning to use a client-server architecture (i.e., player nodes run a “game client”
application that connects to a single “game server”). Whichever architecture you use, there is a node in your distributed
system that holds the complete game state1.

For this hand-in you must only develop the design models for the node that stores the entire game state. A partial
concept model that specifies the conceptual game state that this node (peer or server) must minimally contain is presented
in Figure 1. The information about external actors that the system communicates with was intentially omitted from the
diagram, since it would vary depending on the chosen architecture.

The following conceptual enumeration types are used in the concept model.

type PlayerStatus i s enum { Of f l i n e , Online } ;
type LandType i s enum {Sea , Grass , Tree , Meadow} ;
type Vi l lageType i s enum {Hovel , Town, Fort } ;
type UnitType i s enum {Peasant , In fantry , So ld i e r , Knight}
type ActionType i s enum {ReadyForOrders , Moved , BuildingRoad , ChoppingTree ,

ClearingTombstone , UpgradingCombining , S ta r tCu l t i va t ing , F in i shCu l t i va t i ng }

Interaction Model / Behavioural Design

The behavioural design consists of 7 operations. The behaviour of each operation is described below with an operation
schema that describes the conceptual state changes that this operation is supposed to achieve. Please provide an Interaction
Model in form of a Sequence Diagram (Communication Diagrams are not acceptable) that depicts all method invocations
(even invocations of getters and setters) needed to achieve the functionality described for each of the operations.

Of course you are allowed to submit additional sequence diagrams to describe the behaviour of design methods that
you introduce. This is useful, for example, when several operations share common methods, or if the design of a complex
operation becomes too big. In this case, simply call the new method in one design, and then specify the behaviour of the
method in a separate diagram.

Note that output messages have been intentially omitted from the operation schemas, because depending on if your
game runs on a server or a peer, outputs might have to be sent over the network or displayed by means of a GUI. We
ask you therefore to not include any communication design in the models you are handing in. In other words, you do not
have to show how you design your GUI and your network communication.

1
Typically, all peers in a peer-to-peer system store the entire game state. In a client-server setting, the full game state is stored on the server.

1

<<system>> Medieval Warfare

username: String
password: String
status: PlayerStatus
wins: int
losses: int

Player

int: roundsPlayed
Game Message

timestamp: Time
message: String

Clock
now: Time

myType: VillageType
gold: int
wood: int

Village

0..*
chat {ordered}

1
sender

0..1
turnOf

participants 1..* {ordered} currentGame 0..1

300..* map

supportedUnits 0..*
Unit

myType: UnitType
currentAction: ActionType

Structure
myType: StructureType

controlledBy 1

0..* myVillages

myType: LandType
Tile3..*

controlledRegion
myVillage
0..1

locatedAt 1
0..1 occupyingVillagemyVillage 1

occupyingStructure 0..1

1
lo

ca
te

dA
t

lo
ca

te
dA

t 1

0..6
neighbors

0..1 occupyingUnit

{s
ub

se
ts

}
{s

ub
se

ts
}

Figure 1: Medieval Warfare Conceptual Game State

Game Management (2 operations)

Provide an Interaction Model (in form of a Sequence Diagram) for the newGame and beginTurn operations described
conceptually below. For each of the operations you must decide:
• What class will be the controller of this operation. Please justify this choice with one or two short sentences.
• How to encode the conceptual parameters of the operation (please explain the encoding, if it is not obvious).

Operation: MedievalWarfare::newGame(participants: Set<Player>) or
MedievalWarfare::newGame(participants: Set<Player>, String mapToLoad)

Scope: Game, Tile, Village;
New: newGame: Game; newTiles: Set<Tile>; newVillages: Set<Village>
Description: The newGame operation creates/initializes all data structures needed to play a new game of Medieval

Warfare between (at least) two players (identified by the participants conceptual parameter). This includes creating a
new game, creating the tiles, and initializing the structure and topology of the battlefield (grass, meadow, sea, trees)
either by generating the map or by loading a preexisting one (identified by the mapToLoad parameter) and assigning
initial regions to players. It also positions the starting villages at some random positions within each region.

Operation: MedievalWarfare::beginTurn(g: Game, p: Player)
Scope: Game, Player, Village, Tile, Unit, Structure;
New: newStructures: Set<Structure>
Description: The beginTurn operation performs all game state updates that need to be done at the start of player p’s

turn. This includes replacing tombstones on tiles owned by p with trees, producing meadows and roads, updating
the gold stock of each village with the income and paying the wages of the villagers, potentially replacing villagers by
tombstones if their wages cannot be paid.

Game Moves (5 operations)

Provide an Interaction Model (in form of a Sequence Diagram) for the operations buildRoad, upgradeVillage, upgradeUnit,
takeoverTile and moveUnit (ordered in increasing complexity of conceptual change to the game state). For each of the
operations you must decide:

2

• What class will be the controller of this operation. Please justify this choice with one or two short sentences.
• How to encode the conceptual parameters of the operation (please explain the encoding, if it is not obvious).

Operation: MedievalWarfare::buildRoad(u: Unit)
Scope: Unit;
Description: If the unit u is a peasant, then buildRoad instructs u to start building a road at the current location.

Otherwise the game state is left unchanged.

Operation: MedievalWarfare::upgradeVillage(v: Village, newLevel: VillageType)
Scope: Village;
Description: The upgradeVillage operation upgrades the village (identified by the parameter v) to a new level (identified

by parameter newLevel), using the wood of the corresponding village to pay for the upgrade. In case there is not
enough wood, the game state is left unchanged.

Operation: MedievalWarfare::upgradeUnit(u: Unit, newLevel: UnitType)
Scope: Unit, Village;
Description: The upgradeUnit operation upgrades the villager (identified by the parameter u) to a certain level (identi-

fied by parameter newLevel), using the gold of the corresponding village to pay for the upgrade. In case there is not
enough gold, the game state is left unchanged.

Operation: MedievalWarfare::takeoverTile(dest: Tile)
Scope: Player, Village, Tile, Unit, Game
New: newVillages: Set<Village>
Description: The behaviour of the takeoverTile operation is to remove the dest tile from the region of the enemy player.

It is assumed that the unit that is capturing the tile is already on the dest tile (i.e., another operation (see moveUnit
below) has already checked that this tile can be captured by this unit, and moved the unit to the dest tile, and de-
stroyed any enemy units that might have been on the tile). Depending on the situation, one or several of the following
game state updates are additionally performed:
- if the dest tile has an enemy village on it, then it is invaded (i.e. the gold and wood of the enemy village are added
to the village of the capturing unit) and then destroyed. If the enemy region is still big enough to support a village, a
new hovel is placed at a random place on the enemy region.
- if capturing the dest tile split the enemy region into two or three unconnected regions, then the region that has the
enemy village on it loses all units that are not connected to the village anymore. Furthermore, if any of the new regions
is big enough to support a village, a new enemy hovel is created on a random tile in that region, and the units that
are located in that region are assigned to the new region. Any units located on regions that are too small to support
a village are destroyed, and all tiles belonging to the region are converted to neutral tiles.
- if the enemy player has no regions left under his control, he is eliminated from the game and his loss statistics are
updated.
- if the last enemy player is eliminated, the win statistics for the current player are updated.

Operation: MedievalWarfare::moveUnit(u: Unit, dest: Tile)
Scope: Game, Player, Village, Tile, Unit, Structure;
New: newStructures: Set<Structure>
Description: The behaviour of the moveUnit operation is to move a unit (identified by parameter u) to some new

position on the battlefield (identified by the dest parameter). If the unit can not be moved or if it is impossible for
the unit to reach the destination tile (e.g., because the destination tile is not a neighboring tile) or if the unit is not
allowed to walk on the dest tile (e.g., because it is a sea tile, or because u is a knight and dest contains a tree, or
because the tile is protected by an enemy unit of equal or greater level, ...), the game state is left unchanged. If it is
possible for u to reach dest, the current location of the unit is set to dest. Depending on the destination tile, one or
several of the following game state updates are performed:
- if the dest tile has a tombstone, the tombstone is removed.
- if the dest tile has a tree, the tree is removed and the wood reserve of the village is updated.
- if the dest file has a meadow without road and u is a knight, then the meadow is reverted to grass.
- if the dest tile contained an enemy unit, then the enemy unit is destroyed.
- if the dest tile is neutral or enemy territory, it is added to the region controlled by the village. In the case where the
acquisition of this tile results in two regions of the same player touching each other, then the regions are combined
into one, and so are the two villages (the village of lower level is removed, and its gold and wood reserve are added to
the reserve of the other village, and so is the control of its units).
- if the dest tile is enemy territory, then the takeoverTile operation effects (see above) are also applied.

3

Design Class Model / Structural Design

Elaborate a design class model that comprises all the structural properties needed to realize the behaviour that you
described in the interaction model for the 7 operations. Remember that the design class model must show all attributes
(all with visibility private) and methods for each class you used in your interaction model, as well as navigable associations
with role names between them, if any. Also, any inheritance relationships between classes, if any, need to be shown. You
do not have to show usage dependencies in the design class model.

Note that, since all attributes have private visibility, appropriate getter and/or setter methods have to be defined
whenever an attribute’s value needs to be made available to other objects. You can assume that template collection
classes like the ones that Java provides are available in order to implement any multi-objects you need. Simply name
them CollectionOfX (where X stands for the classname of the elements that the collection contains).

Tool Support

We believe it should be possible to model the design with TouchCORE (http://www.cs.mcgill.ca/~joerg/SEL/TouchCORE.html).
The advantage of using TouchCORE is that by construction your design model and interaction model will be consistent.
Also, if you are using Java as an implementation language, TouchCORE allows you to import Java classes into your design
(such as, for example, ArrayList), and eventually generate Java code from your design. On the downside: the tool is
unfortunately still not very stable. We will promise, though, to address bugs as fast as possible.

In case you choose to use TouchCORE, please upload a zip file to myCourses that contains the .core and .ram files
produced by TouchCORE and a pdf that justifies the choice of controllers.

4

