
COMP-361 Specifying Behavioural Requirements

Specifying Behavioural
Requirements

Jörg Kienzle & Alfred Strohmeier

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Behavioural Requirements Overview

• Operation Model
• System Operation
• Operation Schema
• Messages
• Pre- and postconditions

• Protocol Model
• Use Case Maps
• From Use Cases to Protocol Model

• Requirements Specification Process Summary
• Checking Consistency of Requirements Models

2

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Fondue Models: Requirements Spec.

3

Requirements Specification and Analysis Models

Environment Model

Protocol ModelOperation Model

Concept Model

URN Use Case Map,
describing the allowed sequencing of

system operations

Pre- and Postconditions, describing the
desired effect of each system operation on

the conceptual state

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Requirements Specification Phase

• Purpose
• To produce a complete, consistent, and unambiguous description of

• the problem domain and
• the functional requirements of the system.

• Models are produced, which describe
• Structural Models (see previous lecture)
• Behaviour Models

• Operation Model
•Defines for each system operation the desired effect of its execution on the

conceptual state
• Protocol Model

•Defines the system protocol, i.e., describes the allowed sequencing of system
operations

• The models concentrate on describing what a system does, rather than
how it does it.

4

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Model (1)
• The Operation Model specifies each system

operation declaratively by defining its effects in
terms of (conceptual) system state changes and
messages output by the system.
• In the requirements specification / analysis phase, the conceptual

state of a system is modelled as a set of objects that participate in
associations.

• The actual composition of the system state at any moment
depends on what system operations have been invoked.

5

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

System Operation
• A system operation is considered to be a black

box. No information is given about intermediate
states when it is performed.

• A system operation may:
• Create a new instance of a class;
• Remove an object from the system state;
• Change the value of an attribute of an existing object;
• Add a link to an association;
• Remove a link from an association;
• Send a message to an actor (or multiple actors).

6

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

System Operation (2)
• The operations are typically specified by preconditions

and postconditions, i.e. logical predicates.
• The precondition characterizes the valid initial states of

the system when the operation is invoked. If the
precondition is not true, the effect of the operation is
undefined.

• The result of the operation is expressed as a
postcondition. The postcondition describes the changes
that were made to the state of the system and what
messages have been sent to actors. It must determine the
behaviour for all valid initial states (satisfiable schema).

7

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

System Contract
• The state of a system may also be subject to

invariants, conditions that are true throughout its
entire life cycle, i.e., especially before and after
performing an operation.

• The precondition, the postcondition and the
invariants define the contract for the service the
system promises to provide (contract model of
the system).

8

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

System Operations
• A system operation is considered to be a black

box: no information about intermediate states.

9

Before After

Precondition
must be true before

Postcondition
must be true after

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Schema
• Operation: The entity that services the operation (aka the name of the

system), followed by the name of the operation and parameter list, and
the type of the returned message, if any.

• Scope: All classes and associations from the Concept Model defining the
name space of the operation.

• Messages: This clause declares all the message types that are output by
the operation together with their destinations, i.e. the receiving actor
classes.

• New: This clause declares names for objects that might be created by
this system operation.

• Pre (optional): A concise natural language description of the
preconditions that must be met in order for this operation to make sense.

• Post: A concise natural language description of the effects of the
operation on the conceptual system state (i.e. the entities of the concept
model).

• Use Cases: This clause provides cross-references to related use case(s).

10

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Schema Example (1)
Message (type) declarations:

InsufficientFunds_e(); DispenseCash(amount: Money);

Operation: Bank::withdraw (acc: Account, request: Money);
Scope: Account;
Messages: ATM::{InsufficientFunds_e; DispenseCash;};
Pre: true
Post: If there is enough money in the account, the effect of the operation
is to decrease the balance of the account by the requested amount, as
well as to send a “Dispense Cash” output message to the sender of the
withdraw message, i.e. to the ATM machine requesting the withdraw. In
case there is not enough money on the account, the operation outputs an
“Insufficient Funds” message.

11

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Messages (1)
• Messages are model elements. They have parameters.

Messages are specifications of observable instances. A
message type is quite similar to a class, and message
instances are similar to objects of the class. Also, the
parameters of a message type are similar to the attributes
of a class.

• All communications between the system and the actors
are through message instance delivery. The flow of
information is in the same direction as the direction of the
message; otherwise stated, all parameters are of mode in.

• All messages are asynchronous

12

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Messages (2)
• Input message instances are incoming to the system and trigger

input events that lead to the execution of system operations.
The signature of the event corresponds to that of the message.
• The parameters of the input message are the parameters of the input event which are

the parameters of the system operation.
• Output message instances are outgoing from the system and

are delivered to a destination actor.
• A message instance has an implicit reference to its sender. Only

actors can act as senders.
• If an actor is able to deal with instances of a given message

(type), then it is possible to state that a message instance is
sent to the actor (e.g. as a result of an operation.)

13

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Messages (3)
• Some message types are qualified as being

exceptions. An instance of an exception signals
an unusual outcome to the receiver, e.g., an
overdraft of an account.

• We use a naming convention to differentiate
exceptions from “regular” messages. The suffix
“_e” is added to the name of an exception. The
reason for this naming convention is to help
specifiers visually differentiate between different
kinds of messages.

14

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Schema: Operation
"Operation" ":" SystemClassName "::" OperationName
"(" [ParameterList] ")"

• The SystemClassName is the server of the operation. It is also
the context of the schema.

• The OperationName together with the ParameterList follows
the syntax of a message declaration, since it corresponds to an
input message sent to the system.

• All parameters in ParameterList are of mode in. This does not
mean that the state of an object which is a parameter cannot be
changed.

• Example
Bank :: withdrawCash(acc: Account, amount: Money);

15

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Schema: Scope
“Scope” “:” NameList
NameList ::= (NameListElement “;”)*
NameListElement ::= ClassName

• The Scope should list all conceptual system state (classes
and association classes from the Concept Model) that the
operation uses and affects.
• Note that “simple” associations are not listed, only association classes.

• NameList is a list of class and association class names.

• Examples of NameListElements
• Person
• Account
• Job

16

COMP-361 Specifying Behavioural Requirements © 2014 Jörg KienzleCOMP-361 Object-Orientation © 2013 Jörg Kienzle

Operation Schema: New
"New: " ItemList
ItemList ::= (Item ";")*
Item ::= ObjectDeclaration | ObjectCollectionDeclaration

• The New clause declares names for objects or object
collections to be created by the execution of the operation.
• Each name in an ObjectDeclaration declares a distinct object.

• Examples
New:

acc1, acc2: Account;
john: Person;
bidders: Set (Person);

17

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Schema: Messages
“Messages" ":" ActorWithMessagesList  
ActorWithMessagesList ::= (ActorWithMessages ";")*
ActorWithMessages ::=  
ActorClassName "::" "{" (MessageName ";")* "}"

• ActorWithMessages shows which kinds of messages are sent to
a given actor class.

• Examples
Messages:

ATM :: {DispenseCash; InsufficientFunds_e; Report;};
Bank :: {Withdraw_r;};
Clerk :: {AccountNumber;};

18

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Message Declaration Examples

InsufficientFunds_e ();
DispenseCash (amount: Money);
DebitReport (amount: Money, timestamp: Date);

type Direction is enum {debit, credit};
type Transaction is TupleType
{amount: Money, timestamp: Date, d: Direction};

Report(t: Transaction)
MonthlyReport(movements: Sequence
(Transaction));

19

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

EmploymentAgency

Example UML Class Diagram

20

Person Company
0..*1..*

Job
salary

name
budget

name
gender

income()

employee employer

0..1

0..1

wife

husband

* *

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Operation Schema Example
Operation: EmploymentAgency::jobFilled 
 (worker: Person, comp: Company,
amount: Money);
Scope: Person; Company; Job;
New: newJob: Job;
Post: Creates a job for a given person and
company, and initializes the salary attribute;

21

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Message (type) declaration: Asset(name: String, number: AccNumber, amount: Money);

Operation:Bank::checkAssets ();
Scope: Account; Customer; Owns;
Messages: Manager::{Asset;};
Post: Sends multiple “Asset” output messages to the manager, one for each account in
the bank system, providing the balance of the account together with the owner’s name.

type LineItem is TupleType {name: String, number: AccNumber, amount: Money};
Message (type) declaration: CurrentAssets (contents: Sequence (LineItem));

Operation: Bank :: checkAssets ();
Scope: Account; Customer; Owns;
Messages: Manager :: {CurrentAssets;};
Post: Sends one output message to the manager, which lists the balances of all
accounts, together with the owner’s names.

Operation Schema Example (2)

22

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Protocol Model (1)
• The Protocol Model defines the allowable

sequences of interactions that the system may have
with its environment over its lifetime.

• If at any point the system receives an event, either
time-triggered or triggered by a message, that is not
allowed according to the Protocol Model, then the
system ignores the event and leaves the state of the
system unchanged.
• Note: A dependable system, instead of ignoring the message, should

inform the environment about the “interaction error”
• In this class, the Protocol Model is depicted by a use

case map (UCM).

23

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Use Case Maps
• Part of the User Requirements Notation (ITU Standard)

• Not part of the UML

• Use Case Maps (UCMs) model scenario concepts
• Causal relationships between responsibilities
• Mainly for operational requirements, functional requirements, and business

processes
• For reasoning about scenario interactions, performance, and architecture

• Use Case Maps provide …
• Visual description of behaviour superimposed over entities (from

stakeholders and users to software architecture to hardware)
• Easy graphical manipulation of scenario descriptions
• Single scenario view
• Combined system view
• Connections to goal models (not covered in this class)
• Connections to performance models and testing models (not covered in

this class)

24

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Use Case Map Example

25

System Actor
Component

Start Point Metadata Responsibility

End Point

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Basic UCM Path Elements
• Start Node

• Flow of control begins here
• There can be several start nodes

• End Node
• Flow of control ends here
• There can be several end nodes

• Responsibility
• Represents an activity that is carried out by

the system or an actor

• OR-fork/join
• One path is taken, depending on a condition

• AND-fork/join
• Fork: All paths are taken in parallel
• Join: Wait until all paths are complete

• Stubs
• Flow of control continues on another UCM

26

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

ATM Example
• An individual ATM works as follows:

• The user starts a session by inserting her/his card. From then on, the
user can abort the session whenever it pleases her/him. The session
then ends immediately and the card is ejected, so the user can grab it.

• Then the user must type in her/his personal identification number. Up to
three trials are allowed, then the ATM swallows the card, and the
session ends.

• Once authorized, the user can either ask for account information or
request a withdrawal.

• If s/he requests a withdrawal, the specified amount is delivered, a
receipt is printed, the card is ejected (so the user can grab it), and the
session ends.

• If the user asks for account information, the information is displayed.
The user is then asked if s/he wants to perform another operation. If
not, the session ends. If the user asks for another operation, for security
reasons, s/he is asked to provide again her/his PIN, getting again up to
three trials.

27

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

User

ATM Interaction UCM

28

insertCard providePIN [correct]

[incorrect]

[3 times]

[<3 times]
start

accountBlocked

swallowCard

requestBalance

provideBalance

otherOperation

withdraw

Printer BillDispenser

printReceipt dispenseBills

[balance<amount]

[balance>]

withdrawSuccess

done

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Advanced UCM: Stubs
• A Stub is a placeholder for a (or several) UCM

maps (called plug-in maps)
• in paths are linked to start nodes, end nodes are linked to out-paths

• Static stub

• Static stub (multiple out-paths)

• Dynamic stub and dynamic synchronizing stub
• Multiple UCMs are linked to a dynamic stub, and the ones that

execute are chosen depending on a condition
• For synchronizing stubs, the flow of control only 

continues once all executing UCMs have terminated

29

in out

in success

failure

S

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

WAITING PLACES AND TIMERS

• Timer and Waiting Place
• Transient = a trigger is counted only if a scenario is

already waiting
• Persistent = all triggers are counted (i.e., remembered)

• Waiting place
• Scenario is allowed to continue if cond = true or the

trigger counter > 0
• Timer

• Regular path if CT = true
• Regular path if CT = false and no timeout and CTO =

false and trigger counter > 0
• Timeout path if CT = false and CTO = true
• Timeout path if CT = false and timeout occurred and

CTO = false and trigger counter = 0

30

[cond]

[CTO]

[CT]

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Failures and Aborts (1)
• Failure Start Point

• Activated if condition evaluates to true

• Explicit approach with Failure Points
• Indicates location of failure on scenario path
• Failure condition sets failure variable to indicate which failure

occurred
• Control flow continues at failure point that corresponds to failure

variable
• Concurrent control flows remain unaffected

31

F
[failure1]

start [failureCond]

R1 R2

RF

➙ failure1 = true
RO

RO is always executed

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Failures and Aborts (2)
• Abort Start Points

• Activated if condition evaluates to true
• Aborts all other paths in the abort scope (all concurrent

branches that are active on the same or lower level maps)

32

F [failure2]

start [failureCond]

R1 R2

RF

➙ failure2 = true
RO

If failure2 is activated, control flow that executes RO is aborted

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

From Use Cases to UCMs
• The Use Case Model defines the interaction

scenarios between the environment and the system
informally
• We use UCMs to formalize the interaction flow

• The Environment Model defines input and output
messages used during the interaction
• The UCMs describe the flow of control between the inputs and outputs

• Inputs are modelled as responsibilities marked with
stereotype <<in>>

• Outputs are modelled as responsibilities marked
with stereotype <<out>>

33

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Parking Garage Example
This is an informal description of how an automobilist interacts with a
parking garage control system (PGCS) when parking his car. The
function of the PGCS is to control and supervise the entries and exits
into and out of a parking garage. The system ensures that the number
of cars in the garage does not exceed the number of available parking
spaces.

The entrance to the garage consists of a gate, a state display showing
whether any parking space is available, a ticket machine with a ticket
request button and a ticket printer, and an induction loop (i.e., a device
that can detect the presence or absence of a vehicle). To enter the
garage, the driver receives a ticket indicating the arrival time upon his
request. The gate opens after the driver takes the ticket. The driver
then parks the car and leaves the parking garage. In case of problems,
the PGCS notifies an attendant by means of an attendant call light.

34

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

EnterGarage UC High-Level (1)

35

Use Case: EnterGarage
Scope: PGCS
Level: User-Goal
Intention in Context: The Driver wants to enter the garage with his

vehicle.
Multiplicity: Only one Driver can enter the garage at a given time per

entry. If there are n entries, then n EnterGarage use cases can
execute at the same time.

Primary Actor: Driver
Secondary Actors: Gate, Attendant
Main Success Scenario:
 Driver drives the car to the entrance and stops.
1. Driver informs System that she is requesting entry.
2. System delivers ticket to Driver.
3. System is made aware that Driver took the ticket.
4. System instructs Gate to open.
 Driver drives car passed the gate into the garage.
5. System is made aware that Driver has left the entry and passed the

gate.
6. Gate informs System that it is closed.

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

EnterGarage UC High-Level (2)

36

Extensions:
2a. There are no more parking spots available.
2a.1 System informs User that there are no more parking spots
available. Use case ends in failure.

3a. There is a problem with the ticket printer.
3a.1 System notifies Attendant. Use case ends in failure.
3b. Timeout: User has not taken the ticket.
3b.1 System notifies Attendant. Use case ends in failure.
5a. Timeout: User has not driven past the gate.
5a.1 System notifies Attendant. Use case ends in failure.

• Use case is written at a high level of abstraction. Not all
secondary actors are mentioned.

➡ We need to identify all secondary actors, and clearly mark
inputs and outputs

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

EnterGarage UC Low-Level (1)

37

Use Case: EnterGarage
Scope: PGCS
Level: User-Goal
Intention in Context: The Driver wants to enter the garage with his

vehicle.
Multiplicity: Only one Driver can enter the garage at a given time per

entry. If there are n entries, then n EnterGarage use cases can
execute at the same time.

Primary Actor: Driver
Secondary Actors: TicketButton, TicketPrinter, Gate, InductionLoop,

AttendantLight, Display
Main Success Scenario:
 Driver drives the car to the entrance, stops and hits TicketButton.
1. TicketButton informs System that a Driver is requesting entry.
2. System instructs TicketPrinter to print ticket for Driver.
3. TicketPrinter informs System that Driver took the ticket.
4. System instructs Gate to open.
 Driver drives car past the gate into the garage.
5. InductionLoop informs System that Driver has left the entry and

passed the gate.
6. Gate informs System that it is closed.

«in»

«out»

«in»

«out»

«in»

«in»

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

EnterGarage UC Low-Level (2)

38

Extensions:
2a. There are no more parking spots available.
2a.1 System displays on Display that there are no more  
parking spots available. Use case ends in failure.

3a. TicketPrinter informs System that there is a printing
problem.

3a.1 System turns on AttendantLight. Use case ends in failure.
3b. Timeout: User has not taken the ticket.
3b.1 System turns on AttendantLight. Use case ends in failure.
5a. Timeout: User has not driven past the gate.
5a.1 System turns on AttendantLight. Use case ends in failure.

• Now we can define message types for each
communication, and derive the Environment Model

«in»

«out»

«out»

«out»

«out»

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Parking Garage Environment Model

39

:Gate

1

: PGCS

<<time-triggered>>
timeout

:Display

1

noMoreSpots

open

vehicleLeft

:TicketButton

1 requestTicket

closed

:AttendantLight

1

:TicketPrinter

1

ticketTaken printTicket(t: Ticket)
:InductionLoop

1
vehicleArrived?

notify printingProblem

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

EnterGarage Protocol Model

40

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Protocol Model and Operation Model (1)

• The behaviour of a system is defined by the Protocol Model and
the Operation Model taken together.

• The Protocol Model determines the acceptability of an event and
therefore of the corresponding triggering message.

• The precondition in the Operation Schema determines if the
effect of an event is well behaved / defined.

• The Protocol Model takes precedence over the precondition, as
shown by the following table:

41

Precondition true Precondition false

Protocol accepts Operation invoked and
effect defined

Operation invoked but
effect undefined

Protocol rejects Event ignored Event ignored

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Protocol Model and Operation Model (2)

• Rejecting/ignoring an input event means that the
state of the system is unaffected.
• However, analysis uses an abstract notion of state, and the

implementation is free to respond to the erroneous event and its
triggering message, for example, with a helpful error message.

• A system need not have a Protocol Model
• All input events are then acceptable at any time.

42

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Checking for Model Consistency

• The analysis models should be complete and
consistent
• A model is complete when it captures all the meaningful

abstractions in the domain.
• Models are consistent when they do not contradict each other.

• A model can also be checked for internal consistency.

43

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Requirements Specification Process (1)

• 1. Determine the system interface
• 1.1 For establishing the system interface, analyze the scenarios in

the Use Case Model. For each scenario:
• Find the actors who are involved, and
• The services they need.

• 1.2 Develop the Environment Model: identify actors, output
messages, and input messages (system operations).

• 1.3 Produce the Concept Model by adding the boundary and actors
to the Domain Model. Only actors having direct interaction with the
system should be shown, and nothing else should appear outside
of the boundary. Add roles to all association ends.

44

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Requirements Specification Process (2)

• 2. Develop the Behaviour Model
• 2.1 Develop the Protocol Model

• Generalize the scenarios of the Use Case Model and define system states.
• Combine system states to form the Protocol Model.

• 2.2 Develop the Operation Model
• 2.2.1 For each system operation, develop the precondition and description

of effects:
•Describe each aspect of the result with a sentence.
•Use the Environment Model to find the messages that have to be output as

a result.
• 2.2.2 Derive Scope and Messages clauses from the description

(incrementally with 2.2.1)
• 2.2.3 Complete the message (type) declarations in the Environment Model

45

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Requirements Specification Process (3)

• 3. Check the Analysis Models
• 3.1 Check for completeness against the requirements:

• All possible scenarios stated in the use cases are covered by the
Protocol Model.

• All required system services can be mapped onto system operations.
• All static information is captured by the Concept Model.
• Any other information, e.g. technical definitions and invariant constraints,

are documented.
• To check for completeness, compare the Use Case Model and the

Operation Model
• Inspect the use cases and define the state change that each should

cause. Then "execute" the use cases, using the operation schemas.
Check that resulting state conforms to what was expected.

• If the use cases describe alternate flows, make sure that the Concept
Model contains all the state needed to decide which scenario should
execute.

46

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Requirements Specification Process (4)

• 3.2 Consistency between models:
• Domain Model versus Concept Model:

• All classes, relationships and attributes mentioned in the Domain Model appear in the
Concept Model, or their absence can be justified and is documented.

• Environment Model versus Concept Model:
• The boundary of the Concept Model is consistent with the Environment Model.

• Environment Model versus Protocol Model:
• Every input message in the Environment Model appears in the Protocol Model as an

event, and vice versa.
• Concept Model versus Operation Model:

• All classes, attributes and associations used in the descriptions of the Operation Model
are part of the Concept Model, and there are no “useless” classes in the Concept
Model.

• The Operation Model must preserve Concept Model invariants.
• Environment Model versus Operation Model:

• An actor that appears in the Operation Model is part of the Environment Model.
• All input messages in the Environment Model must trigger an operation modeled by an

operation schema in the Operation Model, and all output messages in the Environment
Model must be generated by a system operation.

47

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Iterative Development
• It is usually necessary to go forth and back

between the Environment Model, the Concept
Model and the Operation Model to make them
• Complete
• Consistent
• As simple as possible (by eliminating the unused elements)

48

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Questions?

49

? ??
?

??

? ?
?

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Train Depot Questions (1)
• Develop a Concept Model that models the

following situation:
• A train is composed of train engines and cars.
• Train engines and cars have a certain weight (measured in steps of

1 kg).
• A car has a current load and a maximum carrying capacity (also

measured in steps of 1 kg).
• Train engines can pull up to a certain amount of kg (traction).

50

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Train Depot Question (2)
• Write Operation Schemas to
1.Change the load of a car (as a result of loading or

unloading it). The new weight is a parameter of the
operation.

2.Add an (existing) car to a train.
3.Transfer one train unit from one train to another

one.
4.Compute the total load of a train and

communicate it to the driver of the train. What are
the consequences for the concept model?

52

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Elevator Operation Model
• You are to devise the Operation Model for the elevator system

based on the Environment Model and the Concept Model.
• There is only one elevator cabin, which travels between the floors.
• There is a single button on each floor to call the lift.
• Inside the elevator cabin, there is a series of buttons, one for each floor.
• Requests are definitive, i.e., they cannot be cancelled, and they persist; thus they

should eventually be serviced.
• The arrival of the cabin at a floor is detected by a sensor.
• The system may ask the elevator to go up, go down or stop. In this example, we

assume that the elevator's braking distance is negligible.
• The system may ask the elevator to open its door. The system will receive a

notification when the door is closed. This simulates the activity of letting people on
and off at each floor.

• The door closes automatically after a predefined amount of time. However, neither
this function of the elevator nor the protection associated with the door closing
(stopping it from squashing people) are part of the system to realize.

58

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Take Lift Use Case (1)
Use Case: Take Lift
Scope: Elevator Control System
Level: User Goal
Intention in Context: The User intents to go from one floor to another.
Multiplicity: The System has a single lift cabin that may service many

users at any one time.
Primary Actor: User
Main Success Scenario:
1. User enters lift.
2. User exits lift at destination floor.
Extensions:
1a. User fails to enter lift; use case ends in failure.

59

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Enter Life Use Case (1)
Use Case: Enter Lift
Scope: Elevator Control System
Level: Subfunction
Intention in Context: The User intends to enter the cabin at a certain floor.
Primary Actor: User
Secondary Actors: Floor Sensor, Motor, Door
Main Success Scenario:
1. User requests System for lift;
2. System acknowledges request to User.
3. System requests Motor to go to source floor.
Step 4 is repeated until System determines that the source floor of the User has

been reached
4. Floor Sensor informs System that lift has reached a certain floor.
5. System requests Motor to stop;
6. Motor informs System that lift is stopped.
7. System requests Door to open;
User enters lift at source floor.

60

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Enter Life Use Case (2)
Extensions:
3a. System determines that another request has priority:
 3a.1. System schedules the request; use case

continues at step 2.
3b. System determines that the cabin is already at the

requested floor. 3b.1a System determines that the
door is open; use case ends in success.

 3b.1b System determines that the door is closed; use
case continues at step 7.

61

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Exit Life Use Case (1)
Use Case: Enter Lift
Scope: Elevator Control System
Level: Subfunction
Intention in Context: The User intends to leave the cabin at a certain floor.
Primary Actor: User
Secondary Actors: Floor Sensor, Motor, Door
Main Success Scenario:
Steps 1 and 2 can happen in any order.
1. User requests System to go to a floor.
2. System acknowledges request to User.
3. Door informs System that it is closed.
4. System requests Motor to go to destination floor.
Step 5 is repeated until System determines that the destination floor of the User has been reached.
5. Floor Sensor informs System that lift has reached a certain floor.
6. System requests Motor to stop.
7. Motor informs System that lift is stopped.
8. System requests Door to open.
9. User exits lift at destination floor.

62

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Exit Lift Use Case (2)
Extensions:
(3-5)||a. User requests System to go to a different floor;
 (3-5)||a.1 System schedules the request; use case

continues at the same step.
4a. System determines that another request has priority.
 4a.1. System schedules the request; use case

continues at step 4.
9a. System determines that there are additional

requests pending; use case continues at step 3.

63

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Elevator Environment Model

64

: CabinButton!

2..*!

up!
down!
stop!

stopped!

: Elevator!

: Motor!

1!

: Door!

1!

: FloorButton!

2..*!

isClosed!
floorRequest!

floorRequest!

servicedRequest!

servicedRequest!
open!

: Sensor!

2..*!

atFloor!

2..*!

[0..1]!

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Elevator Concept Model

65

<<enumeration>>
Direction

up
down
any

Floor
num : Positive

2..*!

Cabin
ds : DoorState
mvt : Movement

1!

Request 0..*!

: Door!

1!

: Motor!

1!

: Sensor!

2..*!

: ReqSource!

4..*!

: CabinButton!

2..*!

: FloorButton!

2..*!

<<system>>ElevatorControl

currentFloor!0..1!

0..1!

1!
targetFloor!

reqsForFloor!

currentRequest! 0..1!
0..1!
activeCabin!

<<id>>!

<<id>>!

<<id>>!
0..*!

dir: Direction

<<enumeration>>
Movement

goingUp
goingDown
stoppingUp
stoppingDown
stopped

<<enumeration>>
DoorState

open
closed

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Elevator Operation Model Question

• You are to develop the Operation Model for the
Elevator System based on the Environment
Model and the Concept Model, i.e. you have to
write the 4 operation schemas atFloor(f : Floor),
stopped, isClosed, floorRequest(f : Floor).

66

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Clinical Lab System Question
• The task is to develop a computerized data management

system for a clinical test analyzer. An analyzer can carry out
tests on body fluids such as blood, urine, and swab specimens.
An analyzer is capable of carrying out tests on several samples
simultaneously.

• The technician enters a batch of samples from a single patient
by first entering the patient’s identification and then indicating,
one at a time, the tests that need to be performed on the
samples. By a ”batch end” message, s/he informs the system
that there are no more samples for the current patient. When all
the tests for a patient have been performed by the analyzer, they
are collected together into a patient report, which is sent to the
technician.

71

COMP-361 Specifying Behavioural Requirements © 2014 Jörg Kienzle

Clinical Lab System Question (2)

• The system can perform test requests for more than one patient at
a time. The technician may ask for a report reflecting the current
status of a patient’s tests before they are all completed. The tests
for a patient may also be aborted, in which case a patient report
containing just the test results collected so far is generated and all
further tests on samples from the same patient are ignored.

• Environment Model
• Show by a Environment Model the interaction between the technician, the system and the

analyzer.
• Provide message declarations.
• Write down some possible/forbidden message sequences; show both input and output

messages. (Can also be answered based on the Protocol Model.)
• Protocol Model

• Devise a Protocol Model for the clinical lab system

72

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (1)
A drink vending machine is a simple but non-trivial kind of reactive
system. The physical machine consists of several components:
drink shelves, a sensor that detects when a drink has been
delivered, drink selector buttons, lights indicating drink availability,
a display, a coin slot, a cancel button, and a money box that
stores the coins inside the machine. Inside the machine, there is
also a small terminal for use by the service person. Human
interaction takes place between a customer or service person and
the physical components when, for example, the customer selects
a drink, or when the service person replenishes a shelf or
changes the price of a drink. Finally, software coordinates the
physical components, receiving messages from them and
sending commands to them.

77

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (2)
During an informal talk with the vending company it has been
determined that the interaction between a customer and the
machine should be as follows: the customer first selects a
drink, then inserts coins, and when the inserted amount
reaches or exceeds the price for the drink, the drink is provided
together with the change.
Also, due to the constraints of the hardware, some decisions
had to be made. They are summarized below:

78

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (3)
The money box is actually composed of three different
collectors: the first one keeps coins until the sale is complete or
cancelled, the second one receives the coins from the first one
once the drink has been distributed, and the third one contains
coins used for change. The money box accepts 25 cents, 1
dollar and 2 dollar coins. It is assumed that the first collector is
big enough to hold as many coins as needed to buy the most
expensive drink and more. The second collector, although very
big, has a limited capacity and must be emptied by the service
person now and then. If the moneybox is full, the vending
machine goes out of service. The third collector contains a fixed
amount of 25 cent coins used for change. If there is no change
left and a client does not insert the right amount, “no change” is
displayed and the money is returned to the client.

79

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (4)
Drinks are stored on shelves. Each shelf is associated with a
beverage kind and a price. Prices are all multiples of 25
cents. The number of shelves of the machine is fixed, and
the capacity of each shelf is fixed as well. Initially, there are
no drinks in the shelves.
If for some reason a selected drink can not be delivered, the
sale is cancelled.
Only authorized personnel is allowed to service the machine.

80

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Buy Drink Use Case (1)
Use Case: Buy Drink
Scope: Vending Machine
Level: User Goal
Intention in Context: The intention of the Customer is to buy a

drink in exchange of money.
Multiplicity: There can always be only one Customer

interacting with the system at a given time.
Primary Actor: Customer
Secondary Actors: Selector Button, Coin Slot, Shelf, Sensor,

Money Box, Drink Light, Cancel Button, Display, Terminal
Precondition: The system is in service, filled with drinks and

change, and the Money Box is not full.

81

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Buy Drink Use Case (2)
Main Success Scenario:
Customer selects drink by pushing appropriate drink selector button.
1. Button notifies System of selected drink.
2. System displays the price of the selected drink on Display.
Customer inserts a coin into Coin Slot.
3. Coin Slot notifies System.
4. System recognizes the coin, and updates the remaining price on Display.
Steps 3 and 4 are repeated until the amount of inserted money reaches or exceeds the
price of the drink.
5. System validates that there are sufficient funds for the selection and notifies
Shelf to start dispensing the drink.
6. Sensor informs System that the drink has been dispensed.
7. System asks Money Box to collect the specified amount of money and, if
necessary, provide the change.
Customer collects the drink and optionally the change.

82

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Buy Drink Use Case (3)
Extensions:
2a. System ascertains that the selected drink is not available and flashes Drink
Lights; use case ends in failure.
4a. System fails to identify the coin; System asks Money Box to eject coin; use
case continues at step 3.
(3-4)a. Customer informs System to abort the sale by hitting the Cancel button;
 (3-4)a.1 System asks Money Box to eject coins; use case ends in success.
(3-4)b. System times out.
 (3-4)b.1 System asks Money Box to eject the inserted coins; use case ends in
failure.
5a. System ascertains that the inserted money exceeds the price for the drink
and that there is not enough change;
 5a.1 System asks Money Box to eject inserted coins.
 5a.2 System displays “no change” on Display; use case ends in failure.
7a ||. The Money Box is full.
 7a ||.1 System displays “no service” on Display and goes out of service; use

case ends successfully.
7b ||. The delivered drink was the last one of that kind.
 7b ||.1 System turns on the appropriate Drink Light; use case ends successfully.

83

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Service Machine Use Case (1)
Use Case: Service Machine
Scope: Vending Machine
Level: User Goal
Intention in Context: The intention of the Service Person is to

maintain the machine by ensuring that there are drinks available,
modifying drink pricing, and by collecting the money earned.

Multiplicity: There can be only one service person servicing the
machine at a given time.

Primary Actor: Service Person
Precondition: No Customer is currently using the system.

84

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Service Machine Use Case (2)
Main Success Scenario:
Service Person interacts with the system by using the Terminal.
1. Service Person identifies himself with System.
Steps 2-3 can be repeated for each shelf, in any order.
2. Service Person informs System of new price for a shelf.
3. Service Person replenishes a shelf and informs System of new number of
drinks for that shelf.
4. Service Person empties the Money Box, replenishes the change and informs
the System.
5. Service Person informs System that maintenance is over.
Extensions:
2a. System fails to identify the Service Person; use case ends in failure.

85

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Vending Machine Use Case Diagram

86

Drink Vending Machine

Buy Drink

Service
Machine

Customer

0..*

ServicePerson

0..*

Terminal

1

Display

1

Selector
Button

1..*

Cancel
Button

1

MoneyBox

1

CoinSlot

1

Shelf

1..*
reads

uses

Sensor

1

DrinkLight

1..*

pushes

inserts
coins
into

pushes

reads

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine Questions

1. Create an Environment Model for the Drink
Vending Machine

2. Create a protocol model for the Drink Vending
Machine

87

