
COMP-361 Specifying Structural Requirements

Specifying Structural
Requirements

Jörg Kienzle & Alfred Strohmeier

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Structural Requirements Overview

• Purpose and Process of Requirements
Specification / Analysis Phase!

• Environment Model!
• Actors!
• Messages!
• System Operations!

• Concept Model

2

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Requirements Specification Phase

• Purpose!
• To produce a complete, consistent, and unambiguous description of !

• the problem domain and!
• the functional requirements of the system.!

• Models are produced, which describe!
• Structural Models!

• Environment Model!
• Defines the system’s interface, i.e. the boundaries of the system and the

operations that can be performed on the system.!
• Concept Model!

• Defines the static structure of the information in the system, i.e. the concepts
that exist in the system, and the relationships between them!

• Behavior Models (see next lecture)!
• The models concentrate on describing what a system does, rather than how it

does it.

3

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Fondue Models: Requirements Spec.

4

Requirements Specification and Analysis Models

Environment Model

Protocol ModelOperation Model

Concept Model

UML Class Diagram,	

describing the conceptual

state of the system

UML Communication Diagram,	

describing the system interface (i.e. system

boundary and input / output messages)

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Requirements Specification Process

5

• From Requirements Elicitation:!
• Use Case Model!
• Domain Model!

1.Develop the Environment Model!
• Identify actors, messages and system operations!

2.Produce the Concept Model!
• By adding the system boundary to the Domain Model!

3.Develop the Protocol Model (next lecture)!
4.Develop the Operation Model (next lecture)!

• Update Concept Model if needed!
5.Check the requirements models for consistency and

completeness

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Environment Model (1)
• The Environment Model defines the system

interface!
• It shows a black-box view of the system!
• It determines how the system functionality is mapped onto

individual operations!
• It is designed based on the domain model and the use case model!
• Technical decisions are needed concerning the amount of

communication traffic / data that will be sent to / from the system

6

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Environment Model (2)
• The system is modelled as a reactive entity that

interacts with other active, reactive and passive
entities called actors.!
• The system is just a name for the actor that is being analyzed.!
• The environment is the set of actors with which a system

communicates.!
• The actors communicate with the system by

sending input messages and by receiving output
messages.!
• An input message is always sent by an actor, never by an object in

the system.

7

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

<<time-triggered>>	

generateMonthly

: Bank

UML Communication Diagram

8

0..*

: ATM

: Client

: Clerk

*

0..*
*

*

: Manager

*
0..*

Uses

SpeaksTo

deposit
withdraw
checkBalance

currentBalance
insufficientFunds
dispenseCash

openAccount
findAccount

accountInfo

checkAssets

currentAssets

Classifier Role

System

Input Messages

Output Messages

Asynchronous!

Time-triggered	

Events

Actor

Actor	

Multiplicity

Communication Multiplicity

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Messages (1)

9

• A message instance is an instantaneous and
atomic unit of communication between the
system and its environment!

• The communication is asynchronous: the sender
does not wait for the message instance to be
received!

• The sender may supply parameters, i.e. data
values and objects, with a message instance!

• Example message type:!

Deposit(a : Account, amount : Real)

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Message Parameters
• During requirements specification, classes (in the

concept model) represent concepts relevant to
the problem domain!
• It has not yet been decided how these concepts are going to be

represented within the design of the software being built!
• Defining message types with objects as

parameters is perfectly ok!
• It means that conceptually, the object (i.e. its identity and the state

it encapsulates) is passed along with the message!
• During design, a way of passing the object’s identity and state

needs to be devised

10

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

OCL Tuples
• If structured data is to be passed as a parameter, but no corresponding

class exists in the concept model, then the Tuple notation of OCL can be
used to declare a composite datatype!
!
CompositeType ::= “type” CompositeTypeName 
 “is TupleType {" TupleItemDefinition ("," TupleItemDefinition)* “}"!
TupleItemDefinition ::= name [: TypeName]!
!

• Example datatype declarations:!
type Direction is enum {debit, credit};!
type Transaction is TupleType!
! {amount: Money, timestamp: Date, d: Direction};!
!

• Example message declarations:!
Report(t: Transaction)!
MonthlyReport(movements: Sequence (Transaction));

11

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Messages (2)
• A message instance received by the system (or

another actor) triggers an event that is delivered
to the system’s state machine, ready to be
processed!
• The event generated by the reception of a message has the same

signature as the message!
• In addition to events triggered by the reception of

messages, there might be time-triggered events
the system has to deal with

12

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

System Operations
• Processing an input event (time-triggered or triggered

by receiving a message) can cause a change of system
state and the output of messages!

• The effect associated with an input event is called a
system operation!
• An input event therefore triggers a system operation!

• A system operation is performed instantaneously!
• This is a simplifying assumption during requirements specification!
• At design time this assumption does not hold!!

• At any one point in time, only one input event can arise,
and therefore only one system operation can be active

13

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Environment Model (3)
• The Environment Model is defined by!

• The set of input messages the system can receive!
• The set of time-triggered input events (which together define the

set of system operations), and!
• The set of messages the system can output!

• A major factor is the granularity of data
associated with messages / operations:!
• Large grained operations lead to batch processing, e.g.,

processing a collection of orders.!
• Small grained operations lead to interactive systems, e.g.

processing each order in turn, and providing individual feedback.

14

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Actors and Messages
• Usually, many different actors may produce the same kinds

of messages triggering the same system operations. The
effect of the operation does not depend on the sending actor,
only on the actual message attributes!
• Example: The clerk of the bank, but also the client himself / herself might want to

get the balance of an account!

• Some systems interact with well identified single actors!
• Example: The system software of a terminal interacts with a pointing device, a

keyboard, and a screen!

• Sometimes, there are many “identical” actors, maybe even
varying over time, interacting with the system. In that case, it
is important to distinguish between “only one actor at any
given time” and “many concurrent actor instances”

15

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Actor and Communication Multiplicities (1)

• We are considering the working of just a single ATM. A single
terminal is linked to this ATM; it is “its” terminal. There are many
clients in the environment.!

• There might or might not be a client in front of the terminal. One
client at a time has access to the terminal, and all output
messages are sent to that terminal.

16

: ATM
1

: Terminal

1
0..1

: Client

*

10..1

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Actor and Communication Multiplicities (2)

• There are exactly two players. They might issue the
same input messages, but the computerized game has
to send output messages to the right player (or terminal).!
• They play different roles

17

: Game

1

white : Player

1

1

1

black : Player

1

1

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Actor and Communication Multiplicities (3)

• There are many identical ATMs connected to the banking system.
They generate input messages belonging to the same types, but
the banking system has to send output messages to the right
ATM. Each input message carries as a parameter its originating
ATM, which can be used for sending back an output message.!
• During design, a concrete mechanism for identifying the ATMs must be devised.

18

: Bank
0..*

: ATM

*
0..1

: Client

*

10..1

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Actor and Communication Multiplicities (4)

• The manager triggers some operation, and as a result all
or some clients are sent a message.!
• The Bank Concept Model then must contain a class, e.g. Customer,

representing the client actors, and an <<id>> stereotyped association
between the two. This association is used for identifying the actor instances
to whom messages are sent to.

19

: Bank 0..*

: Client

*
0..*

: Manager

*

0..1

<<system>>	

Bank

Customer * 1

Client

*
1

<<id>>
Represents

Concept Model:

Environment Model:

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Iterative Development
• Often, the first iteration of the environment model depicts

messages at a high level of abstraction!
• The system might still directly interact with human actors, as specified in the use

cases!

• Interaction needs to be refined until the system interface is
concretely defined!
• Replace human actors with facilitator actors (e.g. hardware devices) that are used to

interact with them!
• Map high level messages to the corresponding device messages!
• When a collection of message instances needs to be sent, a single dispatching actor

can be used for distribution!
• The message to the dispatcher must contain information from the representation class

instances that can be used to identify the message destination actor.!
• Example: postal address or an e-mail address

20

: Bank 0..*

: Client

*
0..*

: Client

*

: PostalService
or : EmailService

1

: Bank 1

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Terminal Question
• Provide declarations for the entities needed to

describe the exchange of information by
messages between a system and a terminal
“actor”.!
• On a terminal, characters can be input, one at a time!
• A terminal can display characters, one at a time, in three modes:

regular, inverted, and underlined.

21

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Printer Question
• The printer “actor” provides printing lines of characters, one line

at a time, and informs the system when printing of a line is
terminated. The printer also informs the system when an incident
makes it impossible to continue printing. Some possible problems
are: out of paper, paper jam, lack of ink, and some other cases
that will be defined later on during the project, and which should
be easy to add when time comes. When an incident arises, the
system must acknowledge the error, deciding if the current
printing should be canceled or if the printer should retry.!

1.Establish an Environment Model!
2.Provide message declarations for both the input and output

messages. If needed, provide also data type declarations.

23

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Concept Model (1)
• The Concept Model contains the set of classes

and associations modelling the system’s
conceptual state!

• The Concept Model must contain all conceptual system state needed
in order to provide the required system functionality!
• For each system operation, reflect on what conceptual state is

needed to execute its functionality!
• Often, new concepts need to be added to the Concept Model once the

behavioural specification models (Operation Model) are being
developed!

• The Concept Model should not contain state that is not needed to
provide the required system functionality

26

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Domain Model ➙ Concept Model

• Classes and relationships from the Domain Model
can specify concepts belonging to the system itself,
as well as to its environment.!

• The Concept Model only contains the classes and
relationships of the Domain Model that relate to the
system to be built.!

• The Concept Model is built by delimiting in the
Domain Model what is inside of the system from
what is outside of it. The Concept Model is therefore
formed by excluding all the objects, classes and
relationships that belong exclusively to the
environment.

27

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Concept Model (2)
• Actors, for example, belong to the environment.

Associations connecting them to the system correspond
to communication paths between actors and the system.!
• When a class is outside of the system boundary, and if its instances interact

with the system, then these instances are in fact actors.!
• If an association is in the Concept Model, then all

connected classes must also be in the model (well-
formed class model)!
• Hence actors that interact with the system directly are included in the

Concept Model!
• If everything is in the system, then the system is a

simulation model (no interaction with the environment).

28

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Concept Model (3)
• The Concept Model is a class diagram, where the

system is shown explicitly as a composite class
(stereotyped <<system>>) with a single instance, using
graphical nesting of all the entities belonging to the
system. As a consequence, all classes in the system get
an explicit multiplicity that shows the number of
instances within the system.!

• Actors are modelled like classes belonging to the
environment, together with their multiplicity in the
environment, as viewed by the system.!
• Associations (often unnamed) depict the flows of messages between the

system and the actors.

29

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Concept Model (4)
• Actors may be mirrored in the system by classes; this

happens especially when the system needs to record
state information about the actor.!
• In order to send a message to an actor, for example, it is often necessary

to identify the actor using its representation in the system. Fondue defines
an association stereotype <<id>> that can be used, and only used, to
connect a class instance to an actor instance for this purpose. The
multiplicity of an <<id>> association is exactly 1 for the role of the actor.

30

<<system>>	

Bank

Customer * 1

Client

*
1

<<id>>
Represents

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Concept Model Example (1)

31

Employee

Manager Clerk

Bank
0..*
employee

Account Client

Transaction ATM

Owns
0..* 1

Manages TalksTo

Uses
0..* history
1..2

System

1

We’re developing the
software for one bank,
hence we don’t need to

include this concept

We want to store information
about clients, but clients also

interact with the system, hence
we need to split clients into two

separate concepts

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

<<system>>	

Bank

Concept Model Example (2)

32

Account Customer

Transaction

Owns
0..* 1

0..* history
1..2

1

Client

*
1<<id>>

Clerk

*

Manager

*

ATM

*

**

* Calendar 1

We need to keep track of the
current date in order to

correctly initialize the date
fields of the Transaction class

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Concept Model Example (3)

33

Transaction
date: DateType	

amount: Integer

Account
number: String	

balance: Integer	

interestRate: Integer

Customer
name: String	

address: String

+ OCL Constraints, if needed

Calendar
currentDate: DateType

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Questions?

34

? ??
?

??

? ?
?

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Gas Station Problem Statement

A gas station is to be set up for fully automated operation.
Payment is done by credit card only. The interaction with the
pump is as follows: Drivers insert their credit card into a reader
connected to the pump, the card is verified by communication
with a credit card company computer and a credit limit is
granted (sufficiently high to fill up any car). If the
validation succeeds, the fuel gun is unlocked, and the driver
may then take fuel. When fuel delivery is complete and the fuel-
dispensing gun is returned to its holster, the driver’s credit card
account is debited with the cost of the fuel taken. The credit
card is returned after debiting. If the card is invalid, it is returned
by the pump and the fuel gun remains locked in the holster.

35

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Gas Station Question
• Elaborate an Environment Model for the gas station system. To

simplify the problem, you can assume that there is a single pump
only. Here are additional requirements / tips:!
• It is important that you depict all external actors that are directly connected to the system, e.g.

the Fuelgun. Indirect actors, e.g. the Driver, do not have to show up in the Environment
Model.!

• You might have to “discover” additional actors / hardware that do not show up in the description.
The only way your software can affect the “real world” is by sending output messages to actors. !

• Handling credit cards is part of the gas station system. There is no additional credit
card machine between the gas station and the credit card company.!

• Don’t forget to add multiplicities to the actors.!
• State ALL necessary input, output and time-triggered messages that are needed to provide the

functionality specified in the problem statement. Remember that all system functionality has to
be triggered by an input or time-triggered message.!

• You do not have to take into account hardware and communication failures. You can safely
assume reliable communication.!

• Specify message parameters for each message, together with any necessary type declarations.

36

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Auction System Environment Question

• Develop an Environment Model for the Auction System.
It must contain all input messages (and time-triggered
messages, if needed) that are needed to provide the
functionality stated in the problem statement.!

• You are also asked to give at least five output messages
that can be derived from the problem statement.

39

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Auction System (1)
Your team has been given the responsibility to develop an online
auction system that allows people to negotiate over the buying and
selling of goods in the form of English-style auctions (over the
Internet). The company owners want to rival the Internet auctioning
sites, such as, eBay (www.ebay.com), and uBid (www.ubid.com). The
innovation with this system is that it guarantees that all bids are
solvent.!
All potential users of the system must first enroll with the system;
once enrolled they have to log on to the system for each session.
Then, they are able to sell, buy, or browse the auctions available on
the system. Customers have credit with the system that is used as
security on each and every bid. Customers can increase their credit
by asking the system to debit a certain amount from their credit card.

40

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Auction System (2)
A customer that wishes to sell initiates an auction by informing the
system of the goods to auction, together with a minimum bid price and
reserve price for the goods, the start period of the auction, and the
duration of the auction, e.g., 30 days. The seller has the right to cancel
the auction as long as the auction's start date has not been passed, i.e.,
the auction has not already started.!
Customers that wish to follow an auction must first join the auction. Note
that it is only possible to join an active auction. Once a customer has
joined the auction, he/she may make a bid, or post a message on the
auction's bulletin board (visible to the seller and all customers who are
currently participants in the auction). A bid is valid if it is over the
minimum bid increment (calculated purely on the amount of the previous
high bid), and if the bidder has sufficient funds, i.e. the customer's credit
with the system is at least as high as the sum of all pending bids.

41

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Auction System (3)
Bidders are allowed to place their bids until the auction closes,
and place bids across as many auctions as they please. Once
an auction closes, the system calculates whether the highest
bid meets the reserve price given by the seller (English-style
auction reserve price), and if so, the system deposits the
highest bid price minus the commission taken for the auction
service into the credit of the seller (credit internal with the
system).!
The auction system is highly concurrent — clients bidding
against each other in parallel, and a client placing bids in
different auctions and increasing his/her credit in parallel.

42

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

2. Summery-Level Use Case (1)

Use Case: Buy and Sell Goods by Auction !
Scope: Auction System!
Level: Summary!
Intention in Context: The intention of the User is
to buy and sell goods by auctions over time.!
Multiplicity: Multiple users can interact with the
auction system concurrently. A User can be
involved in multiple auctions at any one time.!
Primary Actor: User (becomes Customer, once s/
he has identified him/herself with the System)

43

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

2. Summery-Level Use Case (2)
Main Success Scenario:!
All Users must first enrol with the System before they have the right to use the system!
1. User enrols with System, providing System with registration information.!
Steps 2-5 can be repeated many times.!
2. User identifies him/herself to System.!
3. System presents Customer with a welcome message.!
The user-goal level use cases of step 4 can be performed in parallel and individually
repeated. A customer may bid and sell in many auctions at any one time.!
4. Customer increases credit with System!
! or Customer buys an item on auction!
! or Customer sells an item by auction!
5. Customer exits System.!
6. Customer requests to cancel his/her enrollment. !
Extensions:!
3a. System fails to identify User; use case continues at step 2.

44

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

3. Auction System Use Case Diagram

45

Auction System

<<include>>

Customer

Enrol

<<include>>

Close
Auction

<<include>>

<<include>>

Search for
Auction Item

<<
in

cl
ud

e>
>

Sell Item by
Auction

Buy Item on
Auction

Identify
<<include>>

Transfer
Credit

<<
in

cl
ud

e>
>

<<inclu
de>>

Buy and Sell Goods
by Auction

Credit Card
Company

*

*

0..*

0..*

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

4. Buy Item Use Case (1)
Use Case: Buy Item on Auction !
Scope: Auction System!
Level: User Goal !
Intention in Context: The intention of the Customer is to follow
the auction, which may then evolve into an intention to buy an
item by auction, i.e., he/she may then choose to bid for an item.!
Multiplicity: Several Customers can place bid simultaneously.
A given Customer may bid in many different auctions at any
one time.!
Primary Actor: Customer !
Precondition: The Customer has already identified her /
himself to the System

46

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

4. Buy Item Use Case (2)
Main Success Scenario:!
Customer may leave the auction and come back again later to look at
the progress of the auction, without effect on the auction; in this case,
the Customer is required to join the auction again. !
1. Customer searches for an item under auction. !
2. Customer requests System to join the auction of the item. !
3. System presents a view of the auction to Customer. !
Steps 4-5 can be repeated according to the intentions and bidding
policy of the Customer.!
4. Customer makes a bid on the item to System. !
5. System validates the bid. !
6. System closes the auction with a winning bid by Customer.

47

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

4. Buy Item Use Case (3)
Extensions:!
2a. Customer requests System not to pursue item further; use case ends in failure.!
3a. System informs Customer that auction has not started: use case ends in
failure.!
3b. System informs Customer that auction is closed: use case ends in failure.!
5a. System determines that bid does not meet the minimum increment.!
! 5a.1. System informs Customer; use cases continues at step 4.!
5b. System determines that Customer does not have sufficient credit to guarantee 
! bid:!
! 5b.1. System informs Customer; use cases continues at step 4.!
6a. Customer was not the highest bidder:!
! 6a.1. System closes the auction; use case ends in failure.!
6b. Bid did not meet reserve price.!
! 6b.1. System closes the auction; use case ends in failure.!

48

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Elevator Environment and Concept Model

• You are to devise the Environment Model and the Concept Model
for the Elevator system based on the Use Case Model.
Remember that:!
• There is only one elevator cabin, which travels between the floors.!
• There is a single button on each floor to call the lift.!
• Inside the elevator cabin, there is a series of buttons, one for each floor.!
• Requests are definitive, i.e., they cannot be cancelled, and they persist; thus they should

eventually be serviced.!
• The arrival of the cabin at a floor is detected by a sensor.!
• The system may ask the elevator to go up, go down or stop. In this example, we assume

that the elevator's braking distance is negligible.!
• The system may ask the elevator to open its door. The system will receive a notification

when the door is closed. This simulates the activity of letting people on and off at each
floor.!

• The door closes automatically after a predefined amount of time. However, neither this
function of the elevator nor the protection associated with the door closing (stopping it
from squashing people) are part of the system to realize.

50

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Take Lift Use Case (1)
Use Case: Take Lift!
Scope: Elevator Control System!
Level: User Goal!
Intention in Context: The User intents to go from one floor to another.!
Multiplicity: The System has a single lift cabin that may service many

users at any one time.!
Primary Actor: User!
Main Success Scenario:!
1. User enters lift.!
2. User exits lift at destination floor.!
Extensions:!
1a. User fails to enter lift; use case ends in failure.!

51

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Enter Life Use Case (1)
Use Case: Enter Lift!
Scope: Elevator Control System!
Level: Subfunction!
Intention in Context: The User intends to enter the cabin at a certain floor.!
Primary Actor: User!
Secondary Actors: Floor Sensor, Motor, Door!
Main Success Scenario:!
1. User requests System for lift;!
2. System acknowledges request to User.!
3. System requests Motor to go to source floor.!
Step 4 is repeated until System determines that the source floor of the User has been reached!
4. Floor Sensor informs System that lift has reached a certain floor.!
5. System requests Motor to stop;!
6. Motor informs System that lift is stopped.!
7. System requests Door to open;!
User enters lift at source floor.!

52

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Enter Life Use Case (2)
Extensions:!
3a. System determines that another request has priority:!
 3a.1. System schedules the request; use case continues at

step 2.!
3b. System determines that the cabin is already at the

requested floor. 3b.1a System determines that the door is
open; use case ends in success.!

 3b.1b System determines that the door is closed; use case
continues at step 7.!

53

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Exit Life Use Case (1)
Use Case: Exit Lift!
Scope: Elevator Control System!
Level: Subfunction!
Intention in Context: The User intends to leave the cabin at a certain floor.!
Primary Actor: User!
Secondary Actors: Floor Sensor, Motor, Door!
Main Success Scenario:!
Steps 1 and 2 can happen in any order.!
1. User requests System to go to a floor.!
2. System acknowledges request to User.!
3. Door informs System that it is closed.!
4. System requests Motor to go to destination floor.!
Step 5 is repeated until System determines that the destination floor of the User has been reached.!
5. Floor Sensor informs System that lift has reached a certain floor.!
6. System requests Motor to stop.!
7. Motor informs System that lift is stopped.!
8. System requests Door to open.!
9. User exits lift at destination floor.

54

COMP-361 Specifying Structural Requirements © 2014 Jörg Kienzle

Extensions:!
(3-5)||a. User requests System to go to a different floor;!
 (3-5)||a.1 System schedules the request; use case continues

at the same step.!
4a. System determines that another request has priority.!
 4a.1. System schedules the request; use case continues at

step 4.!
9a. System determines that there are additional requests

pending; use case continues at step 3.!

Exit Lift Use Case (2)

55

