
COMP-361 Requirements Elicitation with Use Cases

Requirements Elicitation
with Use Cases

Jörg Kienzle & Shane Sendall!
School of Computer Science!

McGill University, Montreal, QC, Canada

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Overview
• Use Case Definition!
• Actors!
• System Boundary!
• Textual Template!
• Granularity!
• UML Use Case Diagram!
• Use Case Process!
• Use Case Checklist!
• Exercises

2

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Activity

• Discover the requirements of the system to
develop!
• Users and Stakeholders!
• Goals and Softgoals!
• User expectations!
• Functional requirements!
• Non-functional requirements / qualities!

• Distribution!
• Security!
• Safety!
• Reliability!
• Fault Tolerance!
• Availability

3

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Models

Domain Model Use Case Model

Fondue Models: Requirements Elicitation

4

UML Class Diagram,	

describing the concepts of the problem

domain and their relationships

UML Use Case Diagram + textual template,	

describing the different ways users / stakeholders

interact with the system

Start with either one, or establish them simultaneously

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

What are Use Cases Good For?

• Discover and document the functional
requirements of the desired system!
• In a way that all important participants of a project can

understand!
• In a way that is clearly related to the motivation for the

system (e.g., business vision)!
• In a complete, consistent, and verifiable manner

5

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Cases
• Use Cases capture interactions between the

system and the environment to achieve user goals !
• Use cases capture who (actor) does what (interaction)

with the system, with what purpose (goal), without
dealing with system internals. !

• A complete set of use cases specifies all the different
ways to achieve a goal with the system, and thus
defines all behaviour required of the system, bounding
the scope of the system.!

• Designed to be understood by non-technical parties

6

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Case Life Cycle
• Jacobson (1992):!

• A use case is a sequence of transactions performed by a
system, which yields an observable result of value for a
particular actor.!

• A transaction consists of a set of actions performed by a
system. A transaction is invoked by a stimulus from an
actor to the system, or by a timed trigger within the system.!

• A transaction consists of 4 steps:!
• 1. The primary actor sends the request and the data to the

system; !
• 2. The system validates the request and the data; !
• 3. The system alters its internal state; !
• 4. The system replies to the actor with the result.

7

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Case Comments
• Being a black-box view of the system, use cases

are a good approach for finding the What rather
than the How!

• A black-box matches users view of the system:
things going in and things coming out!

• Use cases force one to look at exceptional as well
as normal behaviour!

• Helps us to surface hidden requirements !
• Use cases can help formulate system tests: !

• “Is this use case built into the system?”

8

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Actors: What Are They?
• “The actors represent what interacts with the

system.” [Jacobson ‘92]!
• An actor represents a role that an external entity

such as a user, a hardware device, or another
system plays in interacting with the system!

• A role is defined by a set of characteristic needs,
interests, expectations, behaviors and
responsibilities [Wirfs-Brock ‘94]

9

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Actor Comments
• An actor communicates by sending and receiving

messages to/from the system under
development.!

• A use case is not limited to a single actor. !
• Sources, i.e. how to discover actors:!

• People: Workshops, Meetings, etc.!
• Documentation: user manuals and training guides are often

directed at roles representing potential actors!
• Domain Model

10

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

How to Find Actors
• Look for external entities that interact with the

system!
• Which persons interact with the system (directly or indirectly)?

Don’t forget maintenance staff!!
• Will the system need to interact with other systems or existing

legacy systems? !
• Are there any other hardware or software devices that interact with

the system? !
• Are there any reporting interfaces or system administrative

interfaces?

11

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Actor Categories
• Jacobson (1992) categorized actors into two

types:!
• Primary Actor !

• Actor with goal on system (sometimes off-stage)!
• Obtains value from the system!
• Sometimes, primary actors interact with the system through facilitator

actors!
• Secondary Actor!

• Actor with which the system has a goal!
• Supports “creating value” for other actors!

• Facilitator Actor!
• Actor or device that is used by a primary actor or secondary actor to

communicate with the system

12

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

System Boundary
• The system boundary defines the separation

between the system and its environment !
• Clear definition is extremely important !

• Movement of the system boundary often has a
large effect on what should be built!

• A common area of conflict between stakeholders
arises when they assume different system
boundaries, and hence refer to different systems!

13

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

System Boundary Example

14

Customer

DeliveryFactory

Order Taker

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Case Description
• Use cases are primarily textual descriptions!
• Use case steps are written in an easy-to-

understand structured narrative using the
vocabulary of the application domain!

• A use case description includes!
• How the use case starts and ends!
• The context of the use case!
• The actors that interact with the system!
• All the circumstances in which the primary actor’s goal is

reached and not reached!
• What information is exchanged

15

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Structured Use Cases
• Fondue provides a use case template!

• Use Case Name!
• Scope!
• Level!
• Intention in Context!
• Multiplicity!
• Primary Actor!

• Secondary Actors!
• Main Success Scenario!

• Sequence of Interaction Steps!
• Extensions & Exceptions!

• Additional / Alternative Interaction Steps

16

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Interaction Steps
• An interaction step either!

1.Refers to a lower level use case!
2.Describes a base interaction step between the system and the

environment!
• A base interaction step must always contain the word System

and (at least) an actor and!
• Describes an input interaction, when an actor sends an input event to the system,

or!
• Describes an output interaction, when the system sends an output event to an

actor!
3.Describes an optional system processing step or communication

happening in the environment that is included for clarity, or to properly
describe the control flow of actions.!

• Interaction steps are numbered to reflect their sequencing!
• The “.” notation, i.e. “3.1”, denotes sequential “sub”steps!
• Letters, i.e. “3a”, denotes alternatives to a step!
• The “||” symbol denotes parallelism

17

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Single-Cabin Elevator Example
Use Case: TakeElevator!
Scope: Elevator Control System!
Primary Actor: User!
Intention: The intention of the  
User is to take the elevator  
to go to a destination floor.!

Level: User Goal"
Multiplicity: Many Users can  
take the elevator  
simultaneously.!

Main Success Scenario: !
" 1. User Call[s]Elevator!
" 2. User Ride[s]Elevator !
Extensions: "
" 1a. Cabin is already at 
 User’s floor…"

" 1b. User is already inside…  

Use Case: CallElevator!
Primary Actor: User!
Intention: User wants to call...!
Level: Subfunction!
Main Success Scenario: !
" 1. User pushes button,
indicating to System in which
direction she wants to go.!
2. System acknowledges User’s
request.!

3. System schedules
ElevatorArrival for the floor
the User is currently on.!

Extensions: "
" 2a. The same request already
exists. System ignores the
request…

18

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Elevator Arrival Example
Use Case: ElevatorArrival !
Intention: System wants to move the elevator to the User’s

destination floor. "
Level: Subfunction"
Multiplicity: The elevator system having only one cabin, there can

only be one instance of ElevatorArrival executing at a given
time. !

Main Success Scenario: !
1. System asks Motor to start moving in the direction of the

destination floor."
2. Floor Sensor informs System that elevator is approaching

destination floor."
3. System requests Motor to stop."
4. System requests Door to open.

19

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Granularity of Use Cases
• Summary Level!

• Are large grain use cases that encompass multiple lower-level, user goal
use cases; they provide the context (lifecycle) for those lower-level use
cases!

• They can act as a table of contents for user goal level use cases!
• User Goal Level!

• Are usually done by one actor, in one place, at one time; the (primary) actor
can normally go away happy as soon as this goal is completed!

• Achieve a single, discrete, complete, meaningful, and well-defined task of
interest to an actor!

• Subfunction Level!
• Provide “execution support” for user-goal level use cases; they are low-level

and need to be justified, either for reasons of reuse or necessary detail!
• Often it is not clear who the primary actor of a subfunction-level use case is!

• The interaction step at one level of abstraction forms the
“Why” for the next level down

20

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Case Hierarchy

21

Summary Level

User-Goal LevelUser-Goal Level User-Goal Level

Subfunction LevelSubfunction Level Subfunction Level

Subsubfunction Level

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Summary Level Example
Use Case: Manage Funds By Bank Account!
Scope: Bank Accounts and Transactions System!
Level: Summary !
Intention in Context: The intention of the Client is to manage his/her funds by way of a
bank account. Clients do not interact with the System directly; instead all interactions go
through either: a Teller, a Web Client, or an ATM, which one depends also on the service.!
Multiplicity: Many Clients may be performing transactions and queries at any one time.
Each Client performs its transactions sequentially.!
Primary Actor: Client!
Main Success Scenario:!
1. Client opens an account.!
2. Client identifies with System.!
Step 3 can be repeated according to the intent of the Client!
3. Client performs task on account:!
! deposit money, withdraw money, transfer money, get balance.!
4. Client closes his/her account.!
Extensions:!
3a. System fails to identify the client; use case continues at step 2.

22

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

User-Goal Use Case Example

Use Case: Deposit Money !
Scope: Bank Accounts and Transactions System !
Level: User Goal!
Intention in Context: The intention of the Client is to deposit money on an account.
Clients do not interact with the System directly; instead, for this use case, a Client
interacts via a Teller.!
Multiplicity: Many Clients may be performing deposits at any one time. A Client only
requests one deposit at a given time.!
Primary Actor: Client!
Facilitator Actor: Teller!
Main Success Scenario:!
Client requests Teller to deposit money on an account, providing sum of money.!
1. Teller requests System to perform a deposit, providing deposit transaction details.!
2. System validates the deposit, credits account with the requested amount, records
details of the transaction.!
3. System informs Teller that deposit was successful.!
Extensions:!
2a. System ascertains that it was given incorrect information:!
 2a.1 System informs Teller about error; use case continues at step 1.

23

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Subfunction Level Use Case Example (1)

Use Case: Identify Client!
Scope: Automatic Teller Machine (ATM for short)!
Level: Sub-Function!
Intention in Context: The intention of the Client is to identify him/herself to
the System. A project (operational) constraint states that identification is
made with a card and a personal identification number (PIN).!
Multiplicity: Only one client can use the ATM for identification at a given
time.!
Primary Actor: Client!
Secondary Actors: Card Reader, Bank Server, Numeric Keyboard!
Main Success Scenario:!
Client inserts card into Card Reader.!
1. Card Reader informs System of card details.!
2. System validates card type.!
3. Client provides PIN to System using the Numeric Keyboard.!
4. System requests Bank Server to verify identification information.!
5. Bank Server informs System that identification information is valid.!

24

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Subfunction Level Use Case Example (2)

Extensions:!
(1-5)a. Client informs System that he wants to cancel the identification process.!
 (1-5)a.1. System requests Card Reader to eject card; use case ends in failure.!
2a. System ascertains that card type is unknown:!
 2a.1. System informs Client and requests the Card Reader to eject the card; 
 the use case ends in failure.!
3a. System times out on waiting for Client to provide PIN:!
 3a.1. System requests Card Reader to eject card; use case ends in failure.!
5a. Bank Server informs System that password is incorrect:!
 5a.1a. System informs Client and prompts him/her to retry; use case continues at
step 3.!
 5a.1b. System ascertains that Client entered an incorrect PIN for the third time:!
 5a.1b.1. System instructs Card Reader to swallow the card.!
 5a.1b.2. System informs Client to contact bank for further details; 
 use case ends in failure.!
5b. System is unable to communicate with Bank Server:!
 5b.1. System requests Card Reader to eject card.!
 5b.2. System informs Client that it is now out of service; use case ends in failure. !

25

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Cases in UML
• UML provides a graphical representation for

use cases called the use case diagram!
• It allows one to graphically depict: !

• actors,!
• use cases, !
• associations, !
• dependencies, !
• generalizations,!
• packages,!
• and the system boundary.

26

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Example Use Case Diagram

27

Elevator Control System

Take

Elevator

Call

Elevator

Ride

Elevator

Elevator

Arrival

<
<
in

cl
ud

e>
> <

<
include>

>

<
<
in

cl
u
d
e
>
>

<
<
include>

>

User

Door

Motor

Exterior

FloorButton

Interior

FloorButton

Floor

Sensor

2..*

0..*

2..*

2..*

1

1

Actor Multiplicity
Actor

System and
System Boundary Use Case

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Case Model

• A Use Case Model consists of:!
• (At least one) use case diagram and !
• Use case textual template for each “ellipse”

28

Open Account

Use Case: Open Account	

Scope: Bank System 	

Level: User Goal	

Intention in Context: The
intention of the Client is to...

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

<<include>> Relationship
• An <<include>> relationship means that the

base use case explicitly incorporates the
behaviour of another use case at a location
specified in the base.

29

Use Case: Place Order	

...	

Main Success Scenario:	

1. Customer supplies
customer data to System	

2. …	

Place Order

Supply
Customer Data

<<include>> Hyperlink

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

• Explicitly incorporating a “super use case”
results in incorporating any child use case

Generalization/ Specialization

30

Place Order

<<include>>

Supply
Customer Data Order Product Arrange Payment

Pay Cash Use Credit Card

<<
inc

lud
e>

> <<include>>

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

• An <<extend>> relationship means that the extending use
case adds new interaction steps to the base use case at
locations specified in the extending use case.

<<extend>> Relationship

31

Place Order Request Catalog
<<extend>>

Use Case: Place Order	

...	

Main Success Scenario:	

1. ...	

Step 2 can be repeated.	

2. Customer orders a
product.	

3. Customer arranges
payment.	

Use Case: Request Catalog
extends Place Order	

...	

Main Success Scenario:	

2.1 Customer informs
System that he would like to
receive a catalog with the
order.	

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (1)

• Task 1: Actors!
• Brainstorm actors and primary actor goals taking

into account the questions for identifying Primary
and Secondary actors, and Initiators, and
Facilitators.!

• To decide on how much technical details should be
considered when defining actors ask yourself:!
• Is this actor / facilitator part of the requirements? If yes, then it

should be included.!
• Is this actor / facilitator a possible solution of interaction with the

system? If yes, then it should be omitted.!
• Make a list with each primary actor and its goals.

32

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Actor Descriptions

33

Actor Role Brief Description

Client Primary
A customer of the bank that will use the system to
perform transactions and queries on his/her
accounts.

Bank Primary ...

Printer Secondary ...

Teller Facilitator ...

Actor Goals

Client

Open Account	

Deposit Money	

Withdraw Money	

Transfer Money	

Close Account	

!Bank Manager ...

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (2)

• Task 2: Use Case Outlines!
• Construct (summary and/or user-goal) use cases briefs for each

actor goal on the system, making the actor the primary one.!
• Always ask “why” in order to find the next level up!!
• Questions:!

• What measurable value/service is needed by the actor?!
• What are the actors intentions?!
• Why do the actors do what they do?

34

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

• Prioritize use cases to:!
• Determine on which functionality to work on first,

especially when doing iterative development / prototyping!
• Support decision making when tradeoffs have to be made

Prioritized Use Case List

35

Actor Goal Description Business Need Priority #
Client Open a savings

account
… Medium 3 1

Open a high
transaction
account

… Top 1 2

Deposit money
on an accout

… Top 2 3

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (3)

• Task 3: Use Case Bodies!
• Capture each actor’s intent and responsibility— from trigger to

goal delivery.!
• For each use case, fill in the main success scenario before the

extensions.!
• Extensions!

• Think of alternate ways of achieving the user goal.!
• Think of exceptional situations!

• What situation prevents the successful completion of a user goal?!
• What situations take priority over the user goal?!
• What would happen if this step fails / is omitted?!

• Make sure that you clearly state if at the end of an extension the
use case fails or continues (at step x).

36

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (4)

• Task 4: Use Case Structuring!
• For each use case: !

• If the main success scenario of the use case is greater
than 9 steps, collect steps that encapsulate a sub-goal of
the primary actor and create a new lower-level use case
with the steps. !

• Inversely, if the use case is smaller than 3 steps, think
about expanding it or putting it back in the calling use case.!

• The most important thing is that the steps of the use case
have a consistent level of description, no matter what the
level!!

• Iteration/refactoring is the key: use cases are always better
next time around.

37

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (5)

• Task 5: Checks!
• Review each use case:!

• Does it achieve a single, discrete, complete, meaningful, and well-
defined task of interest to an actor? !

• Is it written in a clear and precise way? !
• Is it written using the vocabulary of the application domain (see domain

model) and abstracts away from technology and solution? !
• Is it complete, correct, consistent, verifiable?!

• For each section of the template:!
• Title: Is the title an active-verb goal phrase, that expresses the goal of

the primary actor? Can the system deliver that goal?!
• Scope: Is the system boundary clear?!
• Context: Is the use case’s purpose and intent clear?!
• Multiplicity: Has it been clearly stated how many instances of this use

case the system needs to handle concurrently?

38

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (6)

• Task 5 continued:!
• Main Success Scenario: Does it run from trigger to success? Is it

written using the vocabulary of the application domain (see domain
model) and abstracts away from technology and solution? !

• Does it achieve a single, discrete, complete, meaningful, and well-
defined task of interest to an actor?!

• Does it have the right amount of steps (no more than 10)?!
• Extensions: Is this extension necessary? Can the system detect the

condition under which the extension becomes relevant?!
• For each step:!

• Is it either an input interaction, an output interaction, or a call to a
subfunction level use case?!

• Make sure that input or output interaction steps contain the word
“System”!!

• Does the process of achieving the primary actor’s goal move
distinctively forward after successful completion of this step?

39

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Requirements Elicitation Process (7)

• Obtain feedback from client, stakeholders and
users!

• Ask:!
• Is this what you want?!
• Will you be able to tell, upon delivery, whether you got this?

40

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Iterative Development
• Initially, use cases are written at a very high level of

abstraction!
• Human primary and secondary actors often interact with the system directly!
• Hardware devices / external software systems are secondary actors only if

their use is a requirement!
• As development continues, additional interaction

decisions are made in order to crystallize the system
interface!
• Human actors interact with the system by means of facilitator actors!
• All hardware devices / external software systems that the system needs to

interact with are determined!
• Optionally, the use cases can be updated / refined to

describe the interaction with facilitator actors!
• The low level details of the interaction, however, are required for the

Environment Model (see next lecture).

41

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Questions?

42

? ??
?

??

? ?
?

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Books on Use Cases
• F. Armour, and G Miller; Advanced Use Case Modeling. Object

Technology Series, Addison-Wesley 2001.!
• A. Cockburn; Writing Effective Use Cases. Addison-Wesley 2000.!
• D. Kulak and E. Guiney; Use Cases: Requirements in Context. ACM

Press, Addison-Wesley, 2000.!
• D. Lefffingwell, and D. Widrig; Managing Software Requirements: A

Unified Approach. Object Technology Series, Addison-Wesley 2000.!
• S. Robertson, and J. Robertson; Mastering the Requirements

Process. Addison-Wesley 2000.

43

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

References
• A. Cockburn; Structuring Use Cases with Goals. Journal of Object-Oriented Programming (JOOP

Magazine), Sept-Oct and Nov-Dec, 1997. !
• E. Ecklund, L. Delcambre and M. Freiling; Change cases: use cases that identify future requirements.

OOPSLA ‘96 - Proceedings of the eleventh annual conference on Object-oriented programming systems,
languages, and applications, 1996. pp. 342 - 358.!

• M. Fowler; Use and Abuse Cases. Distributed Computing Magazine, 1999. Available at http://
www.martinfowler.com/articles.html!

• M. Glinz; Problems and Deficiencies of UML as a Requirements Specification Language. Proceedings of
the Tenth International Workshop on Software Specification and Design, San Diego, 2000, pp. 11-22.!

• T. Korson; The Misuse of Use Cases. Object Magazine, May 1998.!
• R. Malan and D. Bredemeyer; Functional Requirements and Use Cases. June 1999. Available at http://

www.bredemeyer.com/papers.htm !
• J. Mylopoulos, L. Chung and B. Nixon; Representing and Using Nonfunctional Requirements: A Process-

Oriented Approach. IEEE Transactions on Software Engineering, Vol. 23, No. 3/4, 1998, pp. 127-155.!
• A. Pols; Use Case Rules of Thumb: Guidelines and lessons learned. Fusion Newsletter, Feb. 1997. !
• S. Sendall and A. Strohmeier; From Use Cases to System Operation Specifications. UML 2000 - The

Unified Modeling Language: Advancing the Standard, Third International Conference, York, UK, October
2-6, 2000, S. Kent, A. Evans and B.Selic (Ed.), LNCS (Lecture Notes in Computer Science), no. 1939,
2000, pp. 1-15.!

• R. Wirfs-Brock; The Art of Designing Meaningful Conversations. Smalltalk Report, February, 1994.

44

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Use Case Exercises
• Elevator Control System!
• Auction System!
• Drink Vending Machine

45

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Elevator Control System (1)

• Develop an elevator control system that is
aligned with the following descriptions:!
• There is only one elevator cabin, which travels between

the floors. !
• There is a single button on each floor to call the lift.!
• Inside the elevator cabin, there is a series of buttons, one

for each floor.!
• Requests are definitive, i.e., they cannot be cancelled,

and they persist; thus they should eventually be serviced.!
• The arrival of the cabin at a floor is detected by a sensor.

46

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Elevator Control System (2)
• The system may ask the elevator to go up, go down or

stop. In this example, we assume that the elevator's
braking distance is negligible.!

• The system may ask the elevator to open its door. The
system will receive a notification when the door is closed.
This simulates the activity of letting people on and off at
each floor.!

• The door closes automatically after a predefined amount
of time. However, neither this function of the elevator nor
the protection associated with the door closing (stopping it
from squashing people) are part of the system to realize.

47

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Elevator Control System Questions

1. Given the description of the Elevator Control
system, propose some fixes to version 1 of the
“Take Lift” user-goal level use case.!

2. The problems that were found with the first
version have been corrected in version 2. Is this
now an effective use case? 
If not, explain where this version could be
improved.

48

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case
Use Case: TakeLift !
Scope: Single-Cabin Elevator Control System!
Level: User Goal !
Intention in Context: The User intends to go from
one floor to another. !
Multiplicity: Several Users can take the lift
simultaneously. A given User can only take one lift at
a time.!
Primary Actor: User!

49

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case - Version 1
Main Success Scenario:!
1. The user requests a floor.!
2. The lift goes to pick-up the user.!
3. The lift pick-ups the user.!
4. The user asks to go to destination floor.!
5. The lift drops off the user.!
Extensions:!
(2-3)||a. The user leaves and takes the stairs.!
3a. The lift never reaches the source floor or the door does not open:!
! 3a.1 The user unhappily takes the stairs; the use case ends.!
4a. The user enters the lift but does not make a request: the use case ends.!
5a. The user changes his/her mind on the destination by requesting another destination.!
! 5a.1 The lift goes to the other destination as well.!
6a. The lift does not drop off the user at the destination floor, either because the door
doesn’t open or the lift never reaches the destination floor.!

6a.1 The user, by mobile phone, sues the company who made the lift
system (not automated); the use case ends.

50

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case - Version 2 (1)
Main Success Scenario:!
1. The User presses the call button, requesting the System for the lift
from a particular floor.!
2. The System switches the floor button light on; the System commands
the lift to go to the floor where the User called the lift to do a pick-up; and
the System places the request on the pending FIFO queue.!
3. The Floor Sensor informs the System that the lift has reached the
User's calling floor; the System commands the lift to stop and open its
Door; the System deletes the external request of the User from the
pending FIFO request queue; and the System turns the corresponding
floor light off.!
4. The User enters the lift. 
 (cont’d)!

52

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case - Version 2 (2)
Main Success Scenario (cont’d)!
Steps 5 and 6 can happen in parallel (also implying any order)!
5. The System times-out on the door opening time and the System
commands the Door to close.!
6. From inside the cabin, the User presses a floor button, requesting the
System to go to a particular (destination) floor.!
7. The System turns on the light button; the System commands the lift to go
to the destination floor; and the System places the internal request on the
pending FIFO queue.!
8. The Floor Sensor informs the System that the lift has reached the User's
destination floor; the System commands the lift to stop and open its Door;
the System deletes the internal request of the User from the pending FIFO
request queue; and the System turns the corresponding light off.!
9. The User exits the lift.

53

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case - Version 2 (3)
Extensions:!
2a. The System ascertains that the lift is already at the source floor with the door open:!

2a.1. The System requests the Door to stay open; and the use case continues at step
4.!

2b. The System ascertains that the lift is already at the source floor with the door closed
and it is currently idle (not servicing another request):!

2b.1. The System commands the lift to open its Door; the use case continues at step
4.!

2c. The System ascertains that the lift is currently busy:!
2c.1. The System turns the floor button light on and the System places the external
request on the pending FIFO queue.!
2c.2a. The System ascertains that the lift has arrived at the floor of the requesting
User:!

2c.2a.1. The System commands the lift to stop and open its Door, and the System
deletes the external request of the User; the use case continues at step 4.!

2c.2b. The System ascertains that the lift has become available to service the
request:!

2c.2b.1 The System commands the lift to go to the destination floor; the use case
continues at step 3.!

(cont’d)

54

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case - Version 2 (4)
Extensions (cont’d):!
5a. The System commands the lift to close its Door, but it determines that something is
obstructing the Door from closing:!

5a.1. The System commands the lift to reopen its Door to secure the safety of its
users.!

6a. The User does not make a request: the use case ends.!
6b. The User presses numerous buttons for different floors:!

6b.1. The System turns on the light for each button; the System places all the
internal requests on the pending FIFO queue; and the System commands the lift to
go to the closest floor of the ones that was requested; the use case continues at
step 8.!

6c. From inside the cabin, the User presses a button for a (destination) floor, but the lift
Door is still open:!

6c.1. The System turns the light on and the System places the internal request on
the pending FIFO queue.!
6c.2. The System determines that the Door should be closed and it commands the
Door to close.!
6c.3. The System commands the lift to go to the requested floor; the use case
continues at step 8.!

(cont’d)

55

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

TakeLift Use Case - Version 2 (5)
Extensions (cont’d):!
7||. The User presses another button to go to a floor:!

7||.1. The System turns the light on and the System places the internal
request on the pending FIFO queue; the use case continues at step 8.!

7a. The System determines that the lift is already at the destination floor:!
7a.1. The System commands the lift to open its Door; the use case continues
at step 9.!

7b. The System acknowledges the internal request, but it continues to service
the current request, storing this request.!

7b.1. The use case continues at step 8.!
9a. The System ascertains that the User has other requests pending:!

9a.1. The System commands the lift to go to the next most suitable floor
requested. !

56

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Auction System (1)
Your team has been given the responsibility to develop an online
auction system that allows people to negotiate over the buying and
selling of goods in the form of English-style auctions (over the
Internet). The company owners want to rival the Internet auctioning
sites, such as, eBay (www.ebay.com), and uBid (www.ubid.com). The
innovation with this system is that it guarantees that all bids are
solvent.!
All potential users of the system must first enroll with the system;
once enrolled they have to log on to the system for each session.
Then, they are able to sell, buy, or browse the auctions available on
the system. Customers have credit with the system that is used as
security on each and every bid. Customers can increase their credit
by asking the system to debit a certain amount from their credit card.

58

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Auction System (2)
A customer that wishes to sell initiates an auction by informing the
system of the goods to auction, together with a minimum bid price and
reserve price for the goods, the start period of the auction, and the
duration of the auction, e.g., 30 days. The seller has the right to cancel
the auction as long as the auction's start date has not been passed, i.e.,
the auction has not already started.!
Customers that wish to follow an auction must first join the auction. Note
that it is only possible to join an active auction. Once a customer has
joined the auction, he/she may make a bid, or post a message on the
auction's bulletin board (visible to the seller and all customers who are
currently participants in the auction). A bid is valid if it is over the
minimum bid increment (calculated purely on the amount of the previous
high bid), and if the bidder has sufficient funds, i.e. the customer's credit
with the system is at least as high as the sum of all pending bids.

59

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Auction System (3)
Bidders are allowed to place their bids until the auction closes,
and place bids across as many auctions as they please. Once
an auction closes, the system calculates whether the highest
bid meets the reserve price given by the seller (English-style
auction reserve price), and if so, the system deposits the
highest bid price minus the commission taken for the auction
service into the credit of the seller (credit internal with the
system).!
The auction system is highly concurrent — clients bidding
against each other in parallel, and a client placing bids in
different auctions and increasing his/her credit in parallel.

60

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Auction System Questions
1. Given the description of the auction system, identify actors,

stakeholders and their principal interests. !
2. Propose a summary goal level use case for “buy and sell goods by

auction”. Make use, when appropriate, of the following sub-”use
cases” (e.g. user-level or subfunction level use cases):!

• enrol with system!
• buy item on auction!
• sell item by auction!
• transfer credit!
• search for auction item!
• close auction!
• identify user!

3. Draw the UML use case diagram that contains all the use cases
mentioned in question 2.!

4. Write the complete use case “buy item under auction”.

61

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (1)
A drink vending machine is a simple but non-trivial kind of reactive
system. The physical machine consists of several components:
drink shelves, a sensor that detects when a drink has been
delivered, drink selector buttons, lights indicating drink availability,
a display, a coin slot, a cancel button, and a money box that
stores the coins inside the machine. Inside the machine, there is
also a small terminal for use by the service person. Human
interaction takes place between a customer or service person and
the physical components when, for example, the customer selects
a drink, or when the service person replenishes a shelf or
changes the price of a drink. Finally, software coordinates the
physical components, receiving messages from them and
sending commands to them.

70

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (2)
During an informal talk with the vending company it has been
determined that the interaction between a customer and the
machine should be as follows: the customer first selects a
drink, then inserts coins, and when the inserted amount
reaches or exceeds the price for the drink, the drink is provided
together with the change.!
Also, due to the constraints of the hardware, some decisions
had to be made. They are summarized below:!

71

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (3)
The money box is actually composed of three different
collectors: the first one keeps coins until the sale is complete or
cancelled, the second one receives the coins from the first one
once the drink has been distributed, and the third one contains
coins used for change. The money box accepts 25 cents, 1
dollar and 2 dollar coins. It is assumed that the first collector is
big enough to hold as many coins as needed to buy the most
expensive drink and more. The second collector, although very
big, has a limited capacity and must be emptied by the service
person now and then. If the moneybox is full, the vending
machine goes out of service. The third collector contains a fixed
amount of 25 cent coins used for change. If there is no change
left and a client does not insert the right amount, “no change” is
displayed and the money is returned to the client.

72

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine (4)
Drinks are stored on shelves. Each shelf is associated with a
beverage kind and a price. Prices are all multiples of 25
cents. The number of shelves of the machine is fixed, and
the capacity of each shelf is fixed as well. Initially, there are
no drinks in the shelves.!
If for some reason a selected drink can not be delivered, the
sale is cancelled.!
Only authorized personnel is allowed to service the machine.

73

COMP-361 Requirements Elicitation with Use Cases © 2014 Jörg Kienzle

Drink Vending Machine Questions

1. Write the complete use case BuyDrink.!
2. Write the complete use case ServiceMachine.!
3. Propose a use case diagram that includes the

two main use cases of the system: BuyDrink
and ServiceMachine. 
(You do not have to add more use cases...)

74

