OBJECT-ORIENTATION

Jorg Kienzle & Alfred Strohmeier

OOOOOOOOOOOOOOOOOOOOOOOOOO

OBJECT-ORIENTATION OVERVIEW

* Object
 Identity, State, Behaviour, Operations, Attributes

* Object Life Cycle
« Object Interface and Implementation

* Object Interactions

e Object System

e Class

* Type

e Generalization / Specialization (subtyping)
e Polymorphism

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 2

FOUNDATIONS OF OBJECT-ORIENTATION

e Abstraction
* Extraction of essential properties while omitting inessential details.

* Information hiding (encapsulation)

e Separation of the external view from the internal details.
* Aspects that should not affect other parts of the system are made
inaccessible.

 Modularity

* Decomposition into a set of cohesive and loosely coupled units; i.e.
purposeful structuring.

e Classification

 Ability to group objects according to common properties.
 Ability for an object to belong to more than one classification.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 3

OBJECT

* An object represents an individual, identifiable item, unit,
or entity, either real or conceptual, with a well-defined
role in the problem domain or in a system.

e In a computer-based system, an object may stand for
itself, e.g. a window or a menu item, or it may represent,
be a surrogate of, a real-world object, like a person or a

car.
* This distinction is not always clear-cut, see e.g. a bank account.

 When an object models a real-world entity, it is an
abstraction of this entity. What is essential and what is
accidental will depend on the application and system.

e A property is an inherent or distinctive characteristic,
trait, quality, or feature of an object.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

OBJECT EXAMPLES

* The printer Neo, of type Phaser 4400N, made by
Xerox, located in room McConnell 322...

* Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married to Mrs.
Dufour, ...

e The bank account of Mr. Rich with the Swiss
Union Bank...

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

OBJECT EXAMPLES

* The printer Neo, of type Phaser 4400N, made by
Xerox, located in room McConnell 322...

* Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married to Mrs.
Dufour, ...

e The bank account of Mr. Rich with the Swiss
Union Bank...

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

GRAPHICAL REPRESENTATION IN UML

object name [: Class name]

paul : Person
/\
(lower case)

: Person

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 7

PROPERTIES OF AN OBJECT

identity output message

put message @ >
o A output message
‘ >

Object = Identity + State + Behaviour

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 8

OBJECT IDENTITY

* [dentity is the property that distinguishes an

object from all others

 |tis always possible to distinguish
two objects, even if they have the
same state

* The identity of an object cannot be

changed

e The name or a reference should not be
confused with an object’s identity

* In a computer system, the identity of an object
may be implemented by its storage address, or a
special attribute

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

STATE AND BEHAVIOUR

* The state of an object is its memory. Since an object
has a state, it takes up some amount of space, be it
In the physical world or in computer memory.

* The behaviour is how an object acts on its own
Initiative and how it reacts to external stimuli, i.e.
events or messages, in terms of its state changes

and output messages.

* The behaviour of an object usually depends on its history; this time-
dependent behavior is due to the existence of state within the object.

e State and behavior are abstract concepits.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

10

DESCRIBING STATE AND BEHAVIOUR

* An object

 is denoted by a name or a reference,
e has attributes,
e provides a set of operations.

e Data (state, attributes, structure) and operations
(services, functions, subprograms) are gathered
together in an object.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 11

OPERATIONS ON OBJECTS

* An operation is an action that an object
performs on its own initiative or upon request.
* The operations describe dynamic properties of
the object; they are part of its behaviour.

* Object operations are ultimately responsible
for providing the expected behaviour.

* The set of operations an object is able to
perform is called its protocol or, in UML, it’s
called its interface.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 12

KIND OF OPERATIONS

e Constructors
« Create, build, and initialize an object

* Observers
* Retrieve information about the state of an object

* Modifiers
« Alter the state of an object

e Destructors
e Destroy an object

e Iterators (for objects that encapsulate a collection of

other objects)

» Access all parts of a composite object, and apply some action to each
of the parts

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

13

OBJECT ATTRIBUTES

 Attributes describe static properties of an object; they
retrieve or hold information about the state of the object;
the information may be a data value or a link to another
object.

e Avalue Is a characteristic that can be measured, or is
defined by agreement, and that has no existence by its
own, and therefore no identity.

e A value exists only when attached to an object, a
property of which it describes.

* The attributes of an object remain the same, but their
values may change.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

14

ATTRIBUTE AND OPERATION EXAMPLES

* Neo has already printed 5614 b/w pages. The
toner has to be replaced soon.

* Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married to Mrs.
Dufour, ...

* Mr. Rich has 36,880 CHF in his checking
account. It is time to transfer part of it to his
savings account.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 195

ATTRIBUTE AND OPERATION EXAMPLES

* Neo has already printed 5614 b/w pages. The
toner has to be replaced soon.

* Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married to Mrs.
Dufour, ...

e Mr. Rich has 36,880 CHF in his checking
account. It is time to transfer part of it to his
savings account.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 16

COMPUTER-BASED IMPLEMENTATION

* The state of an object is implemented by data
fields or a data structure encapsulated in the
object.

* The operations are implemented by methods
(sometimes called subprograms, operation
bodies, etc.).

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

17

B ECI 1IFE C YOI F

* An object has a life cycle:

e |tis created,
* |t lives and evolves,
e |tis destroyed.

* The object keeps its identity during its whole life
cycle.

* During its life cycle, the state of the object may
change, the values of its attributes may change,
the effects of its operations may change, but the
set of operations it provides remain the same.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

18

OBJECTS AS MACHINES

* The existence of state within an object means
that the order in which operations are invoked is
Important.

e Each object is like a tiny, independent machine.

* The behaviour of an object can be modelled in
terms of an equivalent finite state machine.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

19

INTERFACE AND IMPLEMENTATION (1)

* The interface of an object provides its outside
view. It comprises all methods applicable to the
object and may include fields as well. It
emphasizes the abstraction while hiding its
internal structure and the secrets of its internal
working.

e Abstraction allows us to write complex software
without having to know how parts of it actually
work.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 20

INTERFACE AND IMPLEMENTATION (2)

Interface

Possible
Implementations

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 21

OBJECT INTERACTIONS

* An object (client) may ask another object (server)

to provide a service by sending a message to it.
The message specifies:

e A destination: a reference to the server object

« A selector: the name of the service, operation or method to be
performed

« Parameters: additional information needed for specifying the
request or for performing the service, including returning results.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

22

OBJECT INTERACTION EXAMPLES

e Mr. Rich withdraws one million dollars from his
account with the Swiss Union Bank

e A car driver may:

e Speed up,
e Consult the speedometer,
e Turn right by 30 degrees, efc.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 23

UML COMMUNICATION DIAGRAM

synchronous)

Server

[asynchronous

mailbox

message()
) —
client
2. letter := pickup()
—
subscriber
ostman
poStnan S

1. drop(letter)

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

1. buy
: Customer : Grocer
@
2. pay
character := read()
. —
interpreter keyboard
insert(character)
. h
interpreter keyboard

24

OBJECT SYSTEM (1)

* An object system or an object-oriented model is

composed of:

e a set of objects,
 interactions between these objects.

* The dynamics of the object system is determined
by its behaviour at run-time: the operations
performed by the objects, the ordering of these
operations, the interactions between objects, etc.

* The structure of communication between objects
Is flat, i.e. a network.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 295

OBJECT SYSTEM (2)

m1() 1. m2() 1.1 m3()
1-14370 1.2 m3()
2. m4() l T 05
_’ 03 — o4
id entity output message

input message

—

—

—

output message

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

26

CLASS (1)

* A class groups objects in such a way that:

e the similarities can be promoted,
« and the differences ignored.

* Whereas an object is a concrete entity that exists
In time and space, a class represents only an

abstraction, the “essence” of an object, as it were.

e Aclass can be made of all the objects having the same internal
structure, or a similar internal structure, and the same behaviour, or
a similar behaviour.

e Aclass can be made of all the objects having the same attributes
and providing the same operations, or having similar attributes and
providing a similar set of operations.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 27

CLASS (2)

* The concept of a class has an economic interest

e During analysis and design, instead of describing each object
individually, it suffice to describe their classes.

e During implementation, the implementation of a class can be
shared by all its objects.

* Aclass is a template from which objects can be
iInstantiated, i.e. created. We also say that an
object is an instance of a class.

* Notice that the identity and the state belong to
each individual object.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 28

CLASS EXAMPLES (1)

* Despite differences between individual objects,
all are trees

Sy i W .

(N

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

29

CLASS EXAMPLES (2)

* The printer Neo, of type Phaser 4400N,
made by Xerox, located in room
McConnell 322 ...

* Mr. Rich, business man, 42 years old,
living in Zug, Switzerland, married with
Mrs. Dufour, ...

* The bank account of Mr. Rich with the
Swiss Union Bank...

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

30

CLASS EXAMPLES (2)

* The printer Neo, of type Phaser 4400N,
made by Xerox, located in room
McConnell 322 ... (company)

* Mr. Rich, business man, 42 years old,
living in Zug, Switzerland, married with
Mrs. Dufour, ...(person, city, country)

* The bank account of Mr. Rich with the
Swiss Union Bank... (person, bank)

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

31

UML REPRESENTATION OF A CLASS

(upper case /_)
\V

Class name

attributes

operations

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

Person

firstname
lastname

birthdate

askQuestion(q)
hire()

32

INTENSION AND EXTENSION (1)

* There are two distinct possible views of a class:

e |ntension of a class

* The set of properties shared by all objects defines the meaning of the
grouping. The class is a template from which objects can be created
(instantiated).

e Extension of a class

« The set of all objects belonging to a class denotes a population. The
class is a collection of objects (instances).

R e S e~ - — R

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 33

INTENSION AND EXTENSION (2)

Person

firstname

lastname
birthdate

askQuestion(q)
hire()

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

julie : Person

laura : Person

1sabelle : Person

mira : Person

enya : Person

fox : Person

34

CLASS INSTANCES

 The instances of a class can be shown in a table,
the columns correspond to attribute values

e - RN
Class notation, Class table,
showing its intension showing a possible extension
Professor Professor

name name subject

subject Martin Robillard Software Evolution
Doina Precup Machine Learning
Luc Devroye Algorithms
Bruce Reed Percolation

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

CLASS INTERFACE

 The interface of a class is the same as the interface of
Its instances.

* The interface of a class captures its outside view,
encompassing the abstraction of the behaviour common
to all instances of the class, while hiding their internal
structure and the secrets of their internal working.

* The interface of a class comprises all operations
applicable to its instances; it may also include object
attributes, and other entities needed to complete the
abstraction.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

36

CLASS IMPLEMENTATION

* The implementation of a class is its inside view, which
encompasses the secrets of its behaviour.

e The implementation of a class comprises the mechanisms used
to store the state of an instance, as well as the mechanisms
used to achieve the behaviour of an instance.

* The implementation of a class primarily consists of the definition
of the internal data structure of its instances and of the
iImplementation of all of the operations defined in the interface of
the class.

e Each instance has its identity and carries its state, conforming to
the data structure defined by its class. When asked to perform
an operation, the implementation provided by the class is used.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 37

CLASS INTERFACE AND IMPLEMENTATION

attributes

operations

Person
firstname
lastname void hire() {
birthdate
askQuestion(String) | *
hire()
interface implementation

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

code

38

hire()

Person
firstname
lastname y void hire() {
birthdate (\ <o
. . ““'
askQuestion(String)*{*~.__
hire() OREELE o TTeeall
‘I - - < . \\ ~ o
1 LS
1 +—¥%
1 " 1
|“ ‘\'i
A enya : Person /%A fox : Person
“Enya7’ “FOX”
“Kienzle” “Kienzle”
2.3.2010 2.3.2010

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

TYPICAL EXECUTION ENVIRONMENT

39

INTERFACE OF A BANK ACCOUNT

class Account is

operation Create (Money initial)
precondition: initial > 0.0
postcondition: balance = initial

operation Deposit (Money amount)
precondition: amount > 0.0
postcondition: balance = old balance + amount

operation Withdraw (Money amount)
precondition: balance >= amount
postcondition: balance = old balance - amount

private

attribute Money balance
invariant

balance > 0.0

end class Account

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

40

CLASSES AS OBJECTS

e A class can be considered itself as an object.

* A class has sometimes a state; the
corresponding attributes are called “class

variables” in contrast to “instance variables.”

e For example, a class can keep track of the number of times it is
instantiated using a class variable

* A class may also provide “book-keeping”
operations for handling its instances, e.g. for
creating and destroying an instance.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

41

1 r

e Atype is a precise characterization of structural and
behavioural properties which a collection of entities all

share.

* Notice that following this definition, events, methods, subprograms and
modules, e.g., may have a type.

e |If the entities are objects, then a type and a class are very
similar.

e The concept of a type places a different emphasis upon
the meaning of abstraction.

e Typing is the enforcement of the rule that entities of
different types may not be interchanged, or at the most,
may be interchanged only in very restricted ways.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 42

GENERALIZATION (1)

* There may be a partial ordering between

classes:

 All objects in class S have all the properties of class T
* S may have additional properties

* The class S is then said to be a subclass of class
T, which is its parent class or superclass

* The relationship between the two classes is

called generalization-specialization, subtyping, or
Inheritance

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

43

GENERALIZATION EXAMPLES

* The printer Neo, of type Phaser 4400N, made by
Xerox, located in room McConnell 322...

* Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married with Mrs. Dufour,

* The bank account of Mr. Rich with the Swiss
Union Bank...

B e e - - eeSt———— N

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 44

GENERALIZATION EXAMPLES

* The printer Neo, of type Phaser 4400N, made by

Xerox, located in room McConnell 322...

* Printer has the subclasses: laser printer, ink-jet printer, daisy printer,
etc.

* Mr. Rich, business man, 42 years old, living in

Lausanne, Switzerland, married with Mrs. Dufouir, ...
 Person has the subclasses man and woman.

* The bank account of Mr. Rich with the Swiss Union
Bank...

* Bank account has the subclasses: checking account, savings account,
fixed term deposit, etc.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 495

GENERALIZATION IN UML

Clock

currentTime

/\

Watch Chronograph
shortHand startTime
longHand stopTime

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 46

GENERALIZATION COMMENTS

* As defined, generalization-specialization is a concept
too general to be operational. Here are some more

concrete possible definitions:

* Principle of substitutability: S is a subclass of T, if and only if any instance
of T can be substituted by an instance of S, without any visible effect

* The objects of the subclass have all the attributes and operations of the
superclass (and perhaps others)

e Substitutability is important for reasoning.

* Inheritance in object-oriented programming languages
does not always enforce this property. Generalization
therefore corresponds to a restricted use of inheritance.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE a47

GENERALIZATION PARTITIONING

* The subclasses may partition the superclass: an
object belongs to exactly one of the subclasses.

* The subclasses may also overlap, and some
superclass objects may not belong to any of the
subclasses.

e ————— -
Person Athlete
{complete,|disjoint} {incomplete,|overlapping}
Woman Man Swimmer Skater

UML default 1s incomplete, disjoint

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 48

GENERALIZATION VS. CONSTRAINTS

e A parallelogram is a quadrilateral having parallel
opposite sides of equal length. A parallelogram with
a right angle is a rectangle. A parallelogram having
the four sides of equal length is a rhombus. A square
iIs a rhombus with a right angle, or a rectangle
having all sides of equal length.

* These statements express constraints!

* The subclasses don'’t really have additional properties (features), but
rather satisfy additional constraints.

* Becomes clear when thinking about operations: e.g., a rectangle can be
stretched, but not a square (without making it a rectangle).

* Don’t use generalization / specialization to model constraints like
these!

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 49

MULTIPLE SPECIALIZATION (1)

* Multiple specialization allows a subclass to be
defined as a specialization of several immediate
superclasses.

* The subclass inherits the attributes, operations
and associations of all its superclasses.

* Multiple specialization becomes a problem when
two or several superclasses have a common
ancestor class (diamond-shaped inheritance).

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE S0

MULTIPLE SPECIALIZATION (2)

e Atrainee is both a staff member and a student.

* As a staff member, a trainee gets a salary, and as a
student, s/he gets a grade.

e A trainee has two

IDs, a staff ID and Statf Student
student ID. idl id
Correct? sazary
/\ A
Professor Trainee

researchArea

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE S1

MULTIPLE SPECIALIZATION (3)

 Are the attributes inherited
Clock
from the common ancestor p—
duplicated, i.e. does the A
stopwatch have two
time attributes?

Watch Chronograph
shortHand startTime
longHand stopTime

StopWatch

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 852

POLYMORPHISM (1)

e Polymorphism is the ability of several classes of
objects to respond to the same message in a
similar way.

* The message sender does not need to know the
specific class of the receiver - only that the
semantics of the message will remain the same

across many similar classes.

« Again, OO languages typically do not enforce preservation of
semantics for overridden methods.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

53

POLYMORPHISM EXAMPLE (1)

« A payroll system typically will process all employees one after
another.

e Suppose there are two kinds of employee: regular or hourly. Each
has its own way of computing its pay.

* The payroll system simply sends the computePay message to
each employee in turn, and the employee takes care of computing
its own pay according to the implementation of the operation.

* [f a new kind of employees comes along, such as a contract
worker, it would have its own way of computing its pay. This new
employee could be mixed in with all other employees, and the
payroll system will not have to be modified to account for this new
employee type.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 854

POLYMORPHISM EXAMPLE (2)

Employee

computePay

/\

RegularEmployee HourlyEmployee

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 895

POLYMORPHISM (3)

Employee

1* s ;= e*.computePay()

-
computePay() ~4
¢
)
i
A
]
¢
sl
Le e
——ﬂ " 'l
_—‘— 4 4 []
_____ . %
o . ’ i e
S @ ¢' 3.
o = P o 2N
- P A "1
- L 4 -
-) ’ P A
11 . ’ - Lhesiry
" L 4 ’ L 4
. . P ., WSS
P L’ ¢ ’ . .
4 A ¢ L4 . s
’ ’ ’ 24 . .
1 P ' g A
. ! S
1 .] .
1 , 1 L .
1 4 1 !
' ’ 1 ,'
Y '
N L '

‘$| el : RegularEmployee k==~ “7Ale3: RegularEmployee {

1
1
\
\

‘*9 e2 : HourlvEmployee p======"="

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

RegularEmployee

computePay'@’)

j }

float computePay() {

P |
¥

-

.-~ ' HourlyEmployee

" X4

comptf{ePay()' .

¥ fipat computePay() {

e5 : HourlyEmployee (-

56

O-O SUMMARY (1)

* Object-orientation is based on old principles

e Abstraction

« Information hiding and encapsulation
e Modularity

e Classification

* Object-orientation is based on a few concepts
e Object
« Groups together state and behaviour
e Class
e |Inheritance
e Polymorphism

R e ——— e ——

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

57

TRADITIONAL (NON-OO) SYSTEMS

* Conventional approaches distinguish between
operations and data, and generally emphasize one
or the other in their decomposition of the problem.

« Structured Analysis & Design

* Focuses on operations (functions) first, deriving the data structures as
a secondary activity. The value is in the functionality. The data are
prepared in a form suitable for processing.
 Information Engineering

* Places a higher priority on data, and drives the development from the
perspective of the data to be managed. The data are the main value.
Algorithms are trivial as long as all data are available.

e Global data structures shared among modules

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE S8

OO SUMMARY (2)

* An object system or object-oriented model is

composed of:

e a set of objects,
 interactions between these objects.

* An object combines both operations and data.

* The object implementations are hidden behind
stable interfaces.

* Any change to a data structure only affects the
object that encapsulates it.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

59

WHY OBJECT-ORIENTATION?

e Software development is a complex task.

* There is a gap between the problem domain and
Its computerized support system.

* Humans naturally apply an object-oriented view
to the world. Objects are more natural than
functions or data.

* An object-oriented model bridges the gap
between a problem domain and its software
solution.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 60

OBJECT-ORIENTATION AND SE

e Object-Orientation stems from object-oriented
programming, but can be applied within the whole

software development life Cycle e
* Requirements Elicitation and Specification i Experience has

* Design t shown that OO |
* Implementation : alone is not enough' ;
* Testing A ————

* Object-Orientation is a way of thinking about problems
using models organized by real-world entities

* Object-Orientation is an engineering method used to
create a representation of the problem domain and
map it into a software solution

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

61

QUESTIONS?

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

HOMEWORK

e Savings Account Interface
* Extension or Intension

* Professors and Students
s ETR 407

B e S ———— R

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

63

INTERFACE QUESTION

* Find interface attributes for a savings account.

* Find interface operations for a savings account.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

64

INTERFACE SOLUTION

* Interface attributes for a savings account:

attribute Natural balance

attribute Range 0..100 interestRate
attribute String number

attribute String owner (2?)

* Interface operations for a savings account.

operation Natural getBalance()
operation withdraw(Positive amount)
operation deposit(Positive amount)
operation computelnterest()

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

65

EXTENSION OR INTENSION QUESTION

* For each statement, say if it is about the
“Intension” or the “extension” of a class, attribute

or operation.

e A professor has a name and teaches a subject.

e JOrg is a professor.

* He teaches software engineering.

* Yesterday, he asked John, a junior student, to explain the
difference between the extension and the intension of a class.

 Since John is a clever student, he was able to answer the
guestion.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 66

EXTENSION OR INTENSION SOLUTION

* A professor has a name and teaches a subject.
 Intension

e JOrg is a professor.
» Extension

* He teaches software engineering.
* Extension. The value of the attribute subjectis “software engineering”.
* Yesterday, he asked John, a junior student, to explain the
difference between the extension and the intension of a class.

* Extension. The professor instance Jorg sends a message answerQuestion to the
student instance John.

* Since John is a clever student, he was able to answer the
question.

* Extension. The impression attribute value of John is “clever”. Difficult to
model the sentence “he was able to answer the question”.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 67

PROFESSORS AND STUDENTS QUESTION

* Professors can ask students questions.

1. What are the consequences for the interfaces of the classes
Professor and Student? Sketch these interfaces using your
favourite object-oriented programming language.

2. Show on an example how professor JOrg can ask the student
John a question.

e S e S ——————— R

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 68

PROFESSORS AND STUDENTS SOLUTION

1.No impact on the interface of the Professor class. The Student
class must provide in its interface an operation answerQuestion:

class Student
operation answerQuestion(String question) return String

end class Student

2.answer = john.answerQuestion
(“Difference between Intension and Extension?”)

* One cannot show that professor JOrg asks the question, and John
cannot know that Jorg is asking. Somewhere in the behaviour (code),
professors may send this message, call this operation, but other
classes may also ask questions to students.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 69

ETR QUESTION

Find classes, objects and attributes in the following description:

The 407 Express Toll Route is a highway that runs east-west

just north of Toronto, and was one of the largest road

construction projects in the history of Canada. The road uses

a highly modern Electronic Toll Collection (ETC) system

constructed by Raytheon.

The ETR technology allows motorists to pass through toll routes without stopping or

even opening a window. To make this happen, each highway entry and exit point is

equipped with a gantry.
The most cost-efficient way to pay for highway use is to open an
account with the 407 ETR system. Registered vehicles require a
small electronic tag, called a transponder, to be attached to the
windshield behind the rear-view mirror. Transponders are leased for
a small monthly fee. The registration includes the owner's personal
data, and venhicle details.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

70

ETR SOLUTION

 Classes

« Highway, City, Country, Company, Motorist, Gantry, Account,
Vehicle, Transponder

e Objects
e 407 ETR, Toronto, Canada, Raytheon

e Attributes

 Motorist.name, Motorist.address, Transponder.monthlyFee,
Vehicle.brand, Vehicle.serialNumber

* Not clear
* Registration, Entry/Exit Point, History

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE

71

VIDEO SLOTMACHINE QUESTION

Find classes, objects and attributes in the following description:

The game is played by wagering credits on the spinning reels. The player can buy
credits by inserting coins, bills or tickets in the corresponding acceptors of the video
slotmachine at any time. Credits wagered are subtracted from the player credit meter,
and subsequent winnings are added to it. At any time, the current credits meter is
displayed on the screen, as well as the credits bet for the current game, the last game
outcome, and the credits won in the last game. Before playing, the player can select
options such as bet level or which paylines should be active.

When pressing a play button, the game starts and the
outcome is decided by a random number generator. This
outcome is displayed as spinning reels, that successively
stop spinning. Prizes for winning combinations can be
looked up on a paytable screen, and some prizes are
also displayed in the advertising glass readily visible on
the machine. A special combination awards a progressive
prize controlled by the server of the casino. The player
can request to cash his credits out of the machine
whenever the reels are not spinning.

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 72

VIDEO SLOTMACHINE SOLUTION

e Classes
« Machine, Reel, Game, Button, Player

* Objects

« “the current game”, “the play button”, “the casino server”

e Attributes

* Machine.currentCredits, Reel.position, Game.currentBet

* Not clear
« Combination, Outcome, Payline, Paytable

COMP-361 OBJECT-ORIENTATION © 2014 JORG KIENZLE 73

