
COMP-361 Software Engineering and Modelling

Software
Engineering

and ModelLing
 Tr

Jörg Kienzle!

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Overview
• What is Software Engineering?!
• Software Development Processes!
• Software Development Phases!
• Model-Driven Engineering!
• Object-Orientation!
• UML!
• Overview of Process we will use!

• Background on Fondue, Fusion, etc...!
• Overview of Models that we will build

2

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

What is Software Engineering

• Software:!
• Computer programs, procedures, and

possibly associated documentation and
data pertaining to the operation of a
computer system

3

• Software Engineering:!
• The application of a systematic, disciplined, quantifiable

approach to the development, operation, and
maintenance of software!

• In other words: the application of engineering to software

According to!
the IEEE

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Increasing Complexity

4

• Scope, complexity and pervasiveness of
computer-based and controlled systems
continue to increase!

• Software assumes more and more responsibility

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

• 1960’s: Cope with software correctness!
• Milestone: Floyd ‘assigning meaning to programs’!

• 1970’s: Cope with project size!
• Milestone: Parnas, Yourdon: modularity & structure!

• 1980’s: Cope with variability in requirements!
• Milestone: Jackson, Meyer: modeling, object orientation!

• 1990’s: Cope with distributed systems and mass
deployment:!
• Milestone: Szyperski: product-lines & components!

• 2000’s: pervasive software integration, system of
systems, accelerating technological changes !
• Milestone: ?

Challenges for SE

5

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Long-Term Availability
• AIRBUS A300 Life Cycle!

• Program began in 1972, production stopped in 2007!
• 2007-1972 = 35 years... !
• Support will last until 2050!

• 2050-1972 = 78 years !!

6

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Dependability
• Consequences of systems failing!

• Annoying to catastrophic!
• Opportunities lost, businesses failed, security breaches, systems

destroyed, lives lost

7

On June 4, 1996 an Ariane V!
rocket launched by the!
European Space Agency!
exploded just forty seconds!
after lift-off

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Software Development Process

• A well-defined and well-managed software
engineering process!
• Provides guidance as to the order of a team’s activities, !
• Specifies what artifacts should be developed, !
• Directs the tasks of individual developers and the team as a whole,

and !
• Offers criteria for monitoring and measuring a project’s products

and activities.

8

Are we on
Track?

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Software Process Activities
• Primary activities!

• Development!
• Operation!
• Maintenance!

• Supporting activities!
• Documentation!
• Configuration management!
• Quality assurance!
• Verification and validation!
• Training!

• Process-related activities!
• Management!
• Infrastructure!
• Tailoring!
• Process assessment 

9

Systematic guidance on
how to do this is called a

development method

We will focus
on this!

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Classic Waterfall Model

10

Requirements Elicitation

Specification & Analysis

Architecture Design

Detailed Design

Implementation

Why?

What?

How?

How exactly?

Discover functionality / user expectations!
Non-functional requirements / qualities

Produce a complete / unambiguous!
description of the problem domain and!
the requirements

Elaborate a system architecture that!
fulfills the requirements

Allocate responsibilities to modules!
Design how functionality is achieved at!
run-time

Elaborate low-level algorithms!
Implement your modules

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Software Development V Model

11

Implementation

Detailed Design

Architecture Design

Req. Spec. & Analysis

Requirements Elicitation System in Use

Production
Phase

Assembly
Phase

System Testing

Integration Testing

Component Testing

Unit Testing

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Importance of “Good” Requirements

• Faults / omissions
made at the
requirements stage are
expensive to fix later !
• Stated requirements might

be implemented, but the
system is not one that the
customer wants!

• Need to determine and
establish the precise
expectations of the 
customer!

12

Requirements
Design
Coding

Unit Test
Acceptance Test

Maintenance

1
5
10
20
50
200

Relative Cost to Repair a Defect
at Different Lifecycle Phases [Davis 93]

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Iterative Software Development

13

Requirements Elicitation

Req. Spec. & Analysis

Architecture Design

Detailed Design

Implementation

Testing

Inception Elaboration Construction Transition

Time

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Spiral Methodology

14

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Why Modelling?

“Modeling, in the broadest sense, is the cost-effective use of
something in place of something else for some cognitive
purpose. It allows us to use something that is simpler, safer
or cheaper than reality instead of reality for some purpose.”!
!

Jeff Rothenberg!
The Nature of Modeling!

John Wiley & Sons, August 1989

15

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Why Modelling?

“A model represents reality for a given purpose; the model is an
abstraction of reality in the sense that it cannot represent all
aspects of reality. This allows us to deal with the world in a
simplified manner, avoiding the complexity, danger and
irreversibility of reality.”!
!

Jeff Rothenberg!
The Nature of Modeling!

John Wiley & Sons, August 1989

16

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Modelling and Software Development

• A Model is a simplified representation of an aspect of the world
for a specific purpose !

• We use models to better understand a system!
• For a observer A, M is a model of an object O, if M helps A to answer questions about

O. (Minsky)!

• A model helps to understand, communicate and build!
• Modelling and engineering: model something not yet existing!

17

M0 - The World

M1 - Modelling Space
Normal

Red Green YellowswitchG switchY

switchR

switchB

switchN

Blinking

YellowOn YellowOff

after(1s)

after(1s)

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Model-Driven Engineering
• A unified conceptual framework in which software

development is seen as a process of model
production, refinement and integration!

• Models are at the centre of the development
activities!
• Models are built representing different views of a software system

using different formalisms, i.e., modelling languages, at different
levels of abstraction, for different purpose!

• Models are connected by model transformations!
• High-level specification models are refined / combined / transformed to

include more solution details until the produced models can be executed!

• Tools are of major importance to effectively
create, manipulate and transform models

18

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Example Models

19

Requirements Elicitation

Elevator Control System

Take

Elevator

Call

Elevator

Ride

Elevator

Elevator

Arrival

<
<
in

cl
ud

e>
> <

<
include>

>

<
<
in

cl
u
d
e
>
>

<
<
include>

>

User

Door

Motor

Exterior

FloorButton

Interior

FloorButton

Floor

Sensor

2..*

0..*

2..*

2..*

1

1

Use Case Diagram

CRC CardsText Documents

Use Cases

Use Case: TakeElevator!
Scope: Elevator Control System!
Primary Actor: User!
Intention: The intention of the

User is to take the
elevator to go to a
destination floor.!

Level: User Goal!
Main Success Scenario: !
! 1. User Call[s]Elevator!
! 2. User Ride[s]Elevator!
Extensions: !
! 1a. Cabin is already at

User’s floor…!
! 1b. User is already inside…!

Generated Artifacts

Why?

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Example Models

20

Requirements Elicitation

Specification & Analysis

Generated Artifacts

Z or B or OCL Specification

: User

: Elevator
Control System

Call Elevator

: Motor

MoveDown

: FloorSensor

FloorReached

Stop

Environment Model

currentDate: Date

creditDetail: CreditInfo

<<system>> AuctionSystem

description: GoodsInfo

startingDate: Date

duration: Period

startingPrice: Money

reservePrice: Money

minIncrement: Money

/started: boolean

closed: boolen

Auction

ArePlacedIn

0..*

 0..* 0..*

joinedAuctions currentMbrs

JoinedTo

/HasHighBid

0..1

amount: Money

Bid

0..1highBid

seller

10..*

myAuctions SellsIn

customerDetail: CustomerInfo

loggedOn: boolean

Customer

Has

wins actualBalance: Money

creditDetail: CreditInfo

/guaranteedBalance: Money

Account

1

11bidder

0..*

myBids

Makes

Concept Model
What?

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Example Models

21

Requirements Elicitation

Specification & Analysis

Architecture Design

Generated Artifacts

ADL Code

archInstance {!!
 componentInstance {!
 description = "Component 1"!
 interfaceInstance{...}!
 }!!
 connectorInstance{!
 description = "Component 1"!
 interfaceInstance{...}!
 }!!
 linkInstance{!
 description = "Comp1 to

Conn1 Link"!
 point {!
 (link) anchorOnInterface =

"#comp1.IFACE_BOTTOM"!
 }!
 }!
}!!

Component Diagram

Package Diagram

How?

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Example Models

22

Requirements Elicitation

Specification & Analysis

Architecture Design

Detailed Design

Generated Artifacts

State Diagram

Class Diagram

How exactly?

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Example Models

23

Requirements Elicitation

Specification & Analysis

Architecture Design

Detailed Design

Implementation

Generated Artifacts

Deployment Diagram

Java Code

public class Asteroid!
 extends Model {!!
 //position!
 float xPos;!
 float yPos;!!
 //dynamics!
 float speed;!
! !
 public Asteroid() {!
 xPos = ConstantWORLD_MAX_X;!
 yPos = 0;!
 }!
! !
 public void moveAsteroid() {!
 xPos = xPos - speed;!
 }!!
 public boolean outOfBounds() {!
 return xPos < 0;!
 }! ! ! !
}

Configuration File

<?xml version="1.0"?>!
<config version="1.0" serial="137"
timestamp="1145938502.12">!
 <Lib>!
 <Account>!
 <LastUsed>1145938465</LastUsed>!
 <LocalData>4215</LocalData>!
 <Migration>63</Migration>!
 </Account>!
 <Call>!
 <IncomingPolicy>everyone</IncomingPolicy>!
 <MicVolume>96</MicVolume>!
 <SkypeInPolicy>everyone</SkypeInPolicy>!
 </Call>!
 <UI>!
 <Profile>!
 <LastOnlineStatus>2</LastOnlineStatus>!
 </Profile>!
 </UI>!
</config>!

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Requirements Elicitation

Specification & Analysis

Architecture Design

Detailed Design

Implementation

Models are created at the right
level of abstraction using the most

appropriate modeling formalism

Model transformations map
models at one level to models at

another level of abstraction

24

Model-Driven Engineering

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Modern MDE

25

Requirements Elicitation

Req. Spec. & Analysis

Architecture Design

Detailed Design

Implementation

Inception Elaboration Construction Transition
Time

Time

= Model

= Tool Support / Automated
= Refinement / Model Transformation

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

On Modelling
• The choice of models and diagrams has a profound

influence upon how a problem is attacked and how
a corresponding solution is shaped!

• Abstraction is a key to learning and communicating!
• Every complex system is best approached through

a small set of nearly independent views of a model;
no single view is sufficient!

• Every aspect of a system may be expressed at
different levels of abstraction / fidelity

26

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Object-Orientation
• Object-orientation is based on old principles!

• Abstraction!
• Information hiding and encapsulation!
• Modularity!
• Classification!

• Object-orientation is based on a few concepts!
• Object!

• Groups together state and behaviour!
• Class!
• Inheritance!
• Polymorphism

27

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Object-Orientation and SE
• Object-Orientation stems from object-oriented

programming, but can be applied within the whole
software development life cycle!
• Requirements Elicitation and Specification!
• Design!
• Implementation!
• Testing !

• Object-Orientation is a way of thinking about problems
using models organized by real-world entities!

• Object-Orientation is an engineering method used to
create a representation of the problem domain and
map it into a software solution

28

Experience has
shown that OO

alone is not enough!

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Scope of UML
• The Unified Modeling Language (UML) is 

a language for specifying, constructing, 
visualizing, and documenting the artifacts of 
a software-intensive system!

• UML fuses the concepts of the Booch, OMT, and OOSE
methods!

• UML is a single, common, and widely usable modelling
language!

• UML incorporates the object-oriented community’s
consensus on core modelling concepts!

• UML allows deviations to be expressed in terms of its
extension mechanisms!

• Current version: UML 2.4.1

29

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

UML Diagrams

30

UML 2.3
Diagram

Structure
Diagram

Behavior
Diagram

Class
Diagram

Object
Diagram

Package
Diagram

Component
Diagram

Composite
Structure Diagram

Deployment
Diagram

Profile
Diagram

Use Case
Diagram

Activity
Diagram

State
Diagram

Interaction
Diagram

Sequence
Diagram

Communica-
tion Diagram

Interaction
Overview Diagram

Timing
Diagram

Notations Used
in this Class

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Outside the Scope of UML

31

• Programming Languages!
• UML is not intended to be a visual programming language!

• Tools!
• UML does not define a tool interface, storage, or run-time model

(which could be used by CASE tool developers)!
• Process!

• UML is intentionally process independent!
• Processes by their very nature must be 

tailored to the organization, culture, and 
problem domain at hand!

• What works in one context would be a disaster 
in another!

• The selection of a particular process will vary greatly, depending on
such things like problem domain, implementation technology, and
skills of the team

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Methods We’re Using

32

Fondue

Fusion

OMT Booch OOSE

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

History of Fondue

33

Fondue

Fusion

OMT Booch OOSE

Object Modeling Technique,	

James Rumbaugh, 1991

Object-Oriented Software
Engineering, Ivar Jacobsen, 1992

Booch Method	

Grady Booch, 1993	

(Rational)

Derek Coleman, 1994 
(Hewlett Packard)	

!
• 2nd generation object-oriented

software development method
based on OMT, Booch, OOSE,
CRC Cards and formal methods	

• Covers analysis, design and
implementation of sequential
reactive systems

+ simple to learn (300 page book)	

+ right level of formality	

+ for small/medium size systems	

- does not use UML	

- no requirements elicitation	

- distributed, large systems	

- concurrency	

- missing user interface design	

- data base design

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

What is Fondue?
• Fondue is a development method that extends the

process and the models of the original Fusion method!
• Fondue uses the UML notation!
• Use cases are used during requirements elicitation!
• Operations are specified formally in operation

schemas by pre- and postconditions using the OCL!
• Fondue follows the philosophy of model-driven

engineering!
• For example: the domain model is refined into a concept model, then

into a design class model and finally an implementation class model

34

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Requirements Elicitation Models

Domain Model Use Case Model

Fondue Models: Requirements Elicitation

35

UML Class Diagram,	

describing the concepts of the problem

domain and their relationships

UML Use Case Diagram + textual template,	

describing the different ways users / stakeholders

interact with the system

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Requirements Specification / Analysis

• The analyst defines the intended behaviour of
the system!

• Models are produced, which describe!
• The concepts that exist in the system.!
• The relationships between concepts.!
• The boundaries of the system.!
• The operations that can be performed on the system.!
• The allowable sequences of those operations.!

• Fondue does not attach the operations to
particular classes during analysis.

36

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Fondue Models: Requirements Spec.

37

Requirements Specification and Analysis Models

Environment Model

Protocol ModelOperation Model

Concept Model

UML Class Diagram,	

describing the conceptual

state of the system

UML Communication Diagram,	

describing the system interface (i.e. system

boundary and input / output messages)

UML State or Sequence Diagram,	

describing the allowed sequencing of

system operations

OCL Pre- and Postconditions,
describing the desired effect of each

system operation on the conceptual state

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Design Activities
• The designer chooses how the system operations

are to be implemented by interacting objects at
run-time.!

• Different ways of breaking up a system operation
into interactions can/should be tried.!

• The operations are attached to classes.!
• The design phase delivers models that show:!

• How system operations are implemented by interacting objects.!
• How classes refer to one another (in order to achieve interaction).!
• How classes are related by inheritance.!
• The attributes and methods of classes.

38

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Design: How?

39

Design Models

Interaction Model

Design Class Model Inheritance Model

Dependency Model

UML Communication Diagram or Sequence
Diagram, describing how system operations are

implemented by communicating objects at run-time

UML Class Diagram, describing the
static structure of the design

UML Class Diagram, describing the inheritance
relationships among classes the design

UML Class Diagram,
showing inter-class

dependencies

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Stepwise Refinement
• Initially, some classes end up with lots of

responsibilities!
• Designers may need to investigate the substructures of some classes

and their operations!
• Hierarchical decomposition is used!

• The class is regarded as a subsystem!
• The analysis and design phases are applied to the subsystem!

• Commonalities between classes 
are discovered!
• Inheritance is used to refactor common 

structure and behaviour

40

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Implementation: Build It
• The design is mapped to a particular

programming language.!
• Fondue provides guidance on how this is done:!

• Inheritance, attributes, and methods are implemented in classes (if
the construct is provided by the programming language).!

• Object interactions are implemented as calls to methods belonging
to classes.!

• The permitted sequences of operations are recognized by a finite
state machine.!

• Result: Implementation Class Model 
! (Class Diagram / Text / Code)

41

COMP-361 Software Engineering and Modelling © 2014 Jörg Kienzle

Questions

?
??

?
??

? ?
?

42

