MEDIEVAL WARFARE

Jorg Kienzle

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE




GAME OVERVIEW

* Turn-based, multiplayer, resource gathering,
strategic game

* Players start with a preset amount of land
* Each region controls a village

* Villages can train villagers, that can take over
other land tiles or gather wood

 Goal: take over the entire island

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




ISLAND MAP

* At least 300 hexagon tiles

* Any shape, surrounded by
sea tiles

* Tiles colored with #players +

1 colors

* One color represents neutral territory

* Regions with less than 3 tiles are
always neutral

e 20% of tiles contain trees
* 10% of tiles contain
meadows

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE 3




VILLAGES (1)

* Each region of at least 3 tiles
always contains a (randomly
placed) village

« Each village has a treasury of gold
and a wood pile

At the start of each turn, each land tile generates 1

gold for the village it belongs to
» Meadow tiles generate 2 gold, tiles with a tree don’t generate any gold

* Then, the village has to pay the wage of all its
villagers. If a village has insufficient funds to pay his
villagers, all the villagers of the region under control
of the village perish

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




VILLAGES (2)

* Villages can be upgraded

* Hovel: initial state (no cost)
e Can recruit peasants and infantry

* Town: 8 wood

e Can recruit peasants, infantry and soldiers
« Can build towers

e Fort: built town and 8 wood

e Can recruit peasants, infantry, soldiers and knights
« Can only be invaded by a knight

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




VILLAGERS

* Avillage can spend gold to train a villager

e Peasant: 10 gold, upkeep 2
e Can’t invade enemy territory
e Can cultivate meadows

 Infantry: 20 gold, upkeep 6
e Can’tinvade villages

e Soldier: 30 gold, upkeep 18

e Knight: 40 gold, upkeep 54
« Can’t ride through the forest
e Tramples meadows
« Won't do any labor

e Upgrading / combining villagers is possible

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




MOVING VILLAGERS

* A villager commands the tile it is on, as well as the
6 adjacent tiles

e A tile can only hold one villager, structure or tree
at a time

e Each turn, a villager can move to any place on his
region provided there is a path leading from his
current position to the destination position, until he

performs one of the following actions:
* Acquiring New Land

* Gathering Wood

* Clearing a Tombstone

* Cultivating a Meadow

* Building a Road

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




INVADING (1)

* Peasants can only acquire neutral land

e The color of the tile changes

 If there is a tree on the tile, wood is collected

* If two regions of the same color are connected, the two villages
“join”
 The most advanced village is kept (or else the one commanding the

biggest region), and the resources are joined
« The other village is removed

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




INVADING (2)

* Villagers of the rank of infantry or higher can

iInvade enemy territory

* An infantry can only invade enemy territory if it is not protected (1
hex distance) by an infantry of equal rank or higher

 If aregion can no longer support a village after being invaded, the
village is turned into a tree and the land converted to neutral
territory

vmw_*__ . .
e

o 83

14

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE




INVADING VILLAGES

* Avillage can be invaded by a soldier or knight

* In this case, all the gold and wood of the village is transferred to

the village of the invader
* The village is destroyed (and a new hovel is recreated somewhere

else, if the remaining region is big enough)

s e e ————————mO
LA

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

10




STRUCTURES

e A town or fort can build a tower
e Towers cost 5 wood
* Once built, towers can not be moved

* Towers act just like an immobile soldier,
but with no upkeep

e —— L ———————O

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

11




TURN OVERVIEW

1. Tree Growth Phase

2. Player Phase: For each player (in

predetermined order) iterate through:

. Tombstone Phase

. Build Phase

Income Phase

Payment Phase

. Death Phase

. Move & Purchase Phase

OUAWN =

B e e S R

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

12




ADDITIONAL REQUIREMENTS

e Ul Assistance for looking at your villages / army
 Make it playable!

e | oadable or Random Islands

e Distribution

e Game Server

e Three players should be able to play against each other on three
different machines connected over a network

e Saving
e You must allow players to save the current game state in order to
continue playing at a later time

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE 13




PROJECT MILESTONES

* Final grade divided into

3% for the user interface sketch (mid October)
15% for the requirements models (late November)
12% for the design models (early January)

15% for the demo (early March)

20% for the acceptance test (April)

e Groups of maximum 5 students
e Same grade for all members of a group

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

14




USER INTERFACE SKETCH

* Prepare a sketch (hand drawn or printout) of the
main screens of your application

e Should allow the player to trigger all functionality

described in the requirements document

 Interaction with the game server

 How does a player see the island?

 How does he control his villages?

« How does he move his villagers?

 How does he build structures?

 How does he build upgrades?

 How are functions such as saving accessed?

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE 195




REQUIREMENTS MODELS

* Requirement models unambiguously specify the
functionality that your game design/

iImplementation needs to provide

e Use case model, to specify interactions with the system

e Concept model, to specify conceptual game state stored within the
system

* Environment model, to specify the interface that the system
provides to the environment

* Operation model, to specify the effects of individual system
interactions

e Protocol model, to specify the supported system interaction
scenarios

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

16




DESIGN MODELS

* Design models that provide a detailed blueprint
the structure (classes) and behaviour (methods)

of your implementation

e Design class model
* Interaction model

* Focus is only on the part of the design that deals

with the game state / the game rules / moves

* No graphics-related classes
 No network / communication-related classes

e - —— R

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

17




DEVELOPMENT ENVIRONMENT

* Whatever programming language you like

 Must be object-oriented

 We will support
e Java/ Minueto

 The demo and acceptance Test will be held
either in the Trottier building

* Bring your laptops / PDAs / game consoles / desktops, if
necessary

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

18




DEMO

* | will provide you with a list of functionalities that

you need to demo

* You are allowed to demo more
* You run the show, we sit there and observe

* 80% of the grade is based on correct
implementation of the requested functionality
(and no crashes / visible bugs)

* 5% for the presentation quality
* 15% for additional functionality

B e e - - e—————R

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

19




MAINTENANCE PHASE

e After the demo week, there will be some slight

changes to the game rules.
o Simulates “real-life” software development

e Write structured, modular, extensible code!

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

20




ACCEPTANCE TEST

« WE are in control! We run the show, you sit and
observe.

* We’'ll use your software, trying to detect bugs / wrong
iImplementations of the game rules

* We will test for ALL the functionality specified in the
requirements

* Correct (and playably fast) implementation
= A- (800/0)

« Additional points for ease-of-use, coolness,
innovation, additional features, PLAYABILITY (20%)

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

21




FLEXIBILITY

* Change properties of units
« Change movement rules
 Add new units / structures
 Add new upgrades

 Add new resources

e Add “races”
* Make the game “real-time”

* Document your changes and discuss them with me

* No “last minute” changes
(in the Winter semester, no big changes will be accepted)

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE

22




SOME SUGGESTIONS

« Start working early.

* First strive for a simple, correct implementation. Later (if there is
time enough), add more sophistication.

e Always keep the deadlines in mind. For the demo you must
have a functional, convincing application. Do not make big
changes on the day that precedes the demo or the acceptance
test (or else be sure to have a functional copy on a safe
backup...)

« Keep everyone in the group in “a good mood”.

« Come up with an initial architecture of the application, then
assign responsibilities to group members. Have regular group
meetings to consolidate your work.

 Testing takes time.
 Plan for the unpredictable!
« Start working early!

COMP-361 SOFTWARE ENGINEERING PROJECT © 2014 JORG KIENZLE 23




QUESTIONS?

0
e
i ey




