
COMP-361 Serialization

Serialization
Jörg Kienzle & Alexandre Denault

COMP-361 Serialization © 2015 Jörg Kienzle

Serialization Overview
• Serializer Pattern
• Java Streams

• Example: Writing to a file using streams
• Issues with Deep Serialization
• Customizing Serialization
• Serialization and Evolution
• Serialization and Networking

• TCP/IP, IPs and Ports
• Sockets
• Setting Up A Connection
• Example: Echo Client and Server

• Serialization and Turn-Based Games

2

COMP-361 Serialization © 2015 Jörg Kienzle

Serialization
• Serialization is the process of taking

the memory data structure of an object
and encoding it into a serial (hence the
term) sequence of bytes

• In our context, serialization is useful for:
•Sending / receiving of objects / data over the
network

•Saving / loading of objects / data to a file

3

COMP-361 Serialization © 2015 Jörg Kienzle

Serializer Design Pattern

4

Writer

Write

Backend_1 Backend_N

Reader

<<call>> <<call>>

Concrete_Element_N

Concrete_Element_1

<<interface>>
Serializable

Read_From(Reader)
Write_To(Writer)
Create(Class_Id) Read

<<call>>

<<call>>

Concrete_Reader_1

Concrete_Writer_1

Concrete_Reader_N

Concrete_Writer_N

COMP-361 Serialization © 2015 Jörg Kienzle

Java Streams (1)
• Writing to a file
FileOutputStream out = new
 FileOutputStream("theTime");
ObjectOutputStream s = new
 ObjectOutputStream(out);
s.writeObject("Today");
s.writeObject(new Date());
s.flush();

• ObjectOutputStream is constructed on some other stream
• writeObject serializes the specified object, traverses its references to other

objects recursively, and serializes them as well
• writeObject throws a NotSerializableException 

if it is given an object that is not serializable

5

Java performs
Deep Serialization

COMP-361 Serialization © 2015 Jörg Kienzle

Java Streams (2)
• Reading from a file
FileInputStream in = new
 FileInputStream("theTime");
ObjectInputStream s = new
 ObjectInputStream(in);
String today = (String) s.readObject();
Date date = (Date) s.readObject();

• The objects must be read from the stream in the same
order in which they were written
• readObject deserializes the next object in the stream and traverses its

references to other objects recursively to deserialize all objects that are
reachable from it

• Reading creates new objects!

6

COMP-361 Serialization © 2015 Jörg Kienzle

Deep Serialization Example (1)

7

Train Tile
currentTile

1

class Train {
private Tile currentTile;
public void setPosition(Tile t) {

currentTile = t;
}

}

Map

0..*

class Map {
private Tile myTiles[][];
public Map() {

myTiles = new myTiles[3][3];
for (int y=0; y<3; y++) {

for (int x=0; x<3; x++) {
myTiles[x][y] = new Tile(x,y);

}
y++;

}
}
public Tile getTile(int x,y) {

return myTiles[x][y];
}

}

COMP-361 Serialization © 2015 Jörg Kienzle

tile10 tile11 tile12

tile20 tile21 tile22

tile00 tile01 tile02

Deep Serialization Example (2)

8

public main() {
Map theMap = new Map();
Train theTrain = new Train();
theTrain.setPosition(theMap.getTile(2,1));

theMap

theTrain

...
myOutputStream.writeObject(theTrain);

}

Both objects are serialized!

COMP-361 Serialization © 2015 Jörg Kienzle

Deep Serialization Example (3)

9

Train theTrain = myInputStream.readObject();

theMap

tile10 tile11 tile12

tile20 tile21 tile22

tile00 tile01 tile02

theTraintile12’A new copy of tile12 is created!

COMP-361 Serialization © 2015 Jörg Kienzle

Customizing Serialization
• Make a class serializable by implementing Serializable

public class MySerializableClass implements Serializable 
 {...}

• Default implementation deep-serializes everything except
• Transient and static fields are not serialized

• Custom serialization by overriding writeObject and readObject
private void writeObject(ObjectOutputStream s) 
 throws IOException {
 s.defaultWriteObject();
 // customized serialization code
}

10

COMP-361 Serialization © 2015 Jörg Kienzle

Serialization and Evolution

• Imagine the following scenario:
• A program writes an object a of class A to a file f
• Class A is modified, for instance by adding a new field
• The program attempts to read a from the file f

• The Java run-time verifies that the classes are
compatible with respect to serialization, and if
not, throws a InvalidClassException

• How is this done?

11

COMP-361 Serialization © 2015 Jörg Kienzle

Serial Version ID
• Java stores a 64-bit value with your object

• It’s a hash computed based on the class signature
• You can specify this value for class by defining

static final long serialVersionUID = 1234L;

• Default behavior
• Deleted fields are ignored
• New fields remain uninitialized

• It’s probably best to customize serialization

12

COMP-361 Serialization © 2015 Jörg Kienzle

TCP/IP
• Every machine has a unique IP address

• 132.206.51.234 (CS mail server)
• mail.cs.mcgill.ca (domain name)

• Every machine has a 65536 ports
• 0 - 1023: Well-known Ports

• 20/21 : File transfer protocol (FTP)
• 22 : Secure Shell (SSH)
• 23 : Telnet
• 25 : Simple Mail Transfer Protocol (SMTP)
• 80 : World Wide Web (HTTP)
• 137/138/139 : NetBIOS (Microsoft File Sharing)
• 143 : Internet Mail Protocol (IMAP)
• 443 : HTTP protocol over TLS/SSL

• 1024 - 49151: Registered Ports
• 49152 - 65535: Dynamic / Private Ports

13

COMP-361 Serialization © 2015 Jörg Kienzle

Sockets
• A socket is one endpoint of a two-way

communication link between two applications
• Sockets are bound to a port number

• Java.net provides Socket and ServerSocket
classes that hide the operating system details

14

COMP-361 Serialization © 2015 Jörg Kienzle

Setting Up a Connection (1)
• Server creates a socket, listens on a port
• Client creates a socket and connects to the server socket

15

COMP-361 Serialization © 2015 Jörg Kienzle

Setting Up a Connection (2)
• Upon connection, a new server socket is created

16

COMP-361 Serialization © 2015 Jörg Kienzle

Setting Up a Connection (3)
• A new socket is needed to allow the server to continue to listen on

the original socket

17

COMP-361 Serialization © 2015 Jörg Kienzle

Setting Up a Connection (4)
• A new socket is needed to allow the server to continue to listen

on the original socket

18

COMP-361 Serialization © 2015 Jörg Kienzle

Simple Example: Echo Client & Server

• Echo client
• Creates a socket and connects to the echo server
• Reads input from keyboard and forwards it to the server
• Displays all data sent by the server

• Echo server
• Receives data and sends it back to the client

19

COMP-361 Serialization © 2015 Jörg Kienzle

Echo Client (1)
import java.io.*;
import java.net.*;
public class EchoClient {

public static void main(String[] args) 
 throws IOException {

Socket echoSocket = null;
PrintWriter out = null;
BufferedReader in = null;

20

COMP-361 Serialization © 2015 Jörg Kienzle

try {
echoSocket = new Socket("taranis.cs.mcgill.ca", 4444);
out = new PrintWriter (echoSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader

(echoSocket.getInputStream()));
} catch (UnknownHostException e) {

System.err.println("Don’t know about host: taranis.");
System.exit(1);

} catch (IOException e) {
System.err.println("Couldn’t get I/O for the connection to: taranis.");
System.exit(1);

}

Echo Client (2)

21

connect to port 4444

COMP-361 Serialization © 2015 Jörg Kienzle

Echo Client (3)
String userInput;
BufferedReader stdIn = new BufferedReader
(new InputStreamReader(System.in));

while ((userInput = stdIn.readLine()) != null) {
out.println(userInput);
System.out.println("echo: " + in.readLine());

}
out.close();
in.close();
stdIn.close();
echoSocket.close();

}
}

22

read from keyboard

read from server

send to server

display on screen

COMP-361 Serialization © 2015 Jörg Kienzle

Echo Server (1) - Listening
• The server uses two types of sockets

• A ServerSocket to listen for new connection
• Regular Socket to communicate with the client

• Example: setting up a server socket and waiting for
incoming connections on port 4444

 
try {

serverSocket = new ServerSocket(4444);
catch (IOException e) {

System.out.println("Could not listen on port: 4444");
System.exit(-1)

}

23

COMP-361 Serialization © 2015 Jörg Kienzle

Echo Server (2) - Accepting
• A call to accept() blocks until a connection is established
• Accept() hands back a new Socket reference, that can then

be used for communication with the client
 
Socket clientSocket = null;
try {

clientSocket = serverSocket.accept();
} catch (IOException e) {

System.out.println("Accept failed: 4444");
System.exit(-1);

}

24

COMP-361 Serialization © 2015 Jörg Kienzle

Echo Server (3) - Closing
• Once the server socket is closed, the server will not

accept any new incoming communication attempts
 
serverSocket.close();  

• This call does not affect sockets that are already
established.

• To disconnect clients from the server, each socket
must be individually closed

25

COMP-361 Serialization © 2015 Jörg Kienzle

Supporting Many Clients
• The echo server we described can listen for and handle a

single connection request
• New client connection requests are queued at the port, so the

server must accept the connections sequentially
• The server can service them simultaneously through the use

of threads - one thread for each client connection
 
while (true) {
 accept a connection ;
 create a thread to deal with the client ;
}

26

COMP-361 Serialization © 2015 Jörg Kienzle

Networking and Turn-Based Games

• Movements of players have to be sent over the
network
• From client to server, or
• From peer to peer

• Object-oriented solution (Command pattern)
• Define a class hierarchy of actions
• Each action knows how to validate and execute itself, which results

in updating the game state
• Uses serialization, works with both Sockets or RMI

27

COMP-361 Serialization © 2015 Jörg Kienzle

1 myTrain

Action Hierarchy

28

Action

isValid()
execute()

Abstract class (or interface)

UnloadPassengers

isValid()

int number

Train

AddCar

Car

Subclasses (or classes implementing interface)

public AddCar extends Action {

public AddCar(Train t, Car c) {
myTrain = t;
myCar = c;

}

public void execute() {
myTrain.addCar(myCar);

}
}

myTrain 1 1 myCar

isValid()

COMP-361 Serialization © 2015 Jörg Kienzle

Action Execution in Peer-2-Peer Setting

• On current player’s computer
• GUI handles player input until it determined what action the player

wants to execute
• GUI instantiates the corresponding action
• GUI verifies if action is valid by calling isValid()
• isValid() calls the appropriate verification methods on the model (i.e.

package / classes containing the game state)
• GUI gives action to the action executor
• Executor executes action on the game state by calling execute()
• Action is sent to the other players’ computers

• On other computers
• Action instance is read from the network and given to executor
• Executor executes action on the game state by calling execute()

29

COMP-361 Serialization © 2015 Jörg Kienzle

Action Execution in Client-Server Setting

• On current player’s client computer
• GUI handles player input until it determined what action the player wants to

execute
• Optional verification (only possible if the client knows about relevant game state)

• GUI instantiates the corresponding action
• Action is sent to server

• On server
• Action instance is read from the network and given to executor
• Executor validates action by calling isValid() (if not already done on the client)
• Executor executes action on the game state by calling execute()

• If no previous verification, and if action invalid, exception is sent back to client
• Otherwise, “action effect” is sent to all players

• On all player’s client computers
• Action effects are displayed

30

COMP-361 Serialization © 2015 Jörg Kienzle

Questions?

31

? ??
?

??

? ?
?

