
COMP-361 Implementation

Implementation
(Mapping to Java)

Jörg Kienzle & Alfred Strohmeier

COMP-361 Implementation © 2015 Jörg Kienzle

Overview
• Datatype
• Enumeration
• Class

• Attribute
• Association
• Inheritance
• Method

• Visibility

• Collections

2

COMP-361 Implementation © 2015 Jörg Kienzle

Data Type (1)
• A datatype is mapped to a primitive type or to a

programmer-defined class
• Use primitive type

• Java has only a limited set of predefined primitive type
• The programmer cannot define new primitive (sub)types. For example,

there is no way of defining Positive or Natural à la Ada.
• Approximate with a predefined type, necessarily more permissive

• In all methods using a parameter of the datatype, perform checks on the
parameter

• Use a full-fledged class

3

COMP-361 Implementation © 2015 Jörg Kienzle

Data Type (2)
• Money represents a positive amount of money in Canadian Dollars

• It is used to ensure that an amount parameter, e.g. in withdrawCash, is positive

public class Money {
// Positive amount in dollars
private final int amount;
public Money (int dollars) {

if (dollars < 0) {  
 throw new IllegalArgumentException  

("negative amount of money");  
}  
this.amount = dollars;

 }
 public int toInt() {
 return amount;
 }
}

4

COMP-361 Implementation © 2015 Jörg Kienzle

Enumeration Type
• An enumeration type can be mapped to a Java

enumeration type (only for Java 5.0 or higher)

enum TransactionKind  
 {WITHDRAW, DEPOSIT, TRANSFER}

5

<<enumeration>>!
TransactionKind!

withdraw!
deposit!
transfer!

COMP-361 Implementation © 2015 Jörg Kienzle

Class and Associations (1)
• A class is mapped to a Java class

• An abstract class is mapped to an abstract class
• An attribute is realized by a private field, having the same name as the attribute, and

selector and modifier methods, called getters and setters in Java
• Default visibility for getters and setters is protected. Getters and setters should only be

made public if required in the design
• At least one constructor should be provided with each class, defining values for all

fields
• For all associations, we have to decide how we implement

them
• An association end that is not navigable is NOT implemented
• A navigable association end with single multiplicity, i.e. 0..1 or 1, is realized by a

reference field
• The name of the reference is the role name and its class is the target class of the

association end
• If the multiplicity of the navigable association end is 1, the constructor of the class

should enforce that the reference is initialized correctly
• If an association is bi-directional, the constructor should make sure that the inverse

association is initialized as well

6

COMP-361 Implementation © 2015 Jörg Kienzle

Class and Associations (2a)
public class Account {

private final int number;
private int balance;

 Customer owner;

public Account (Customer theOwner) {
if (theOwner == null) {  

throw new IllegalArgumentException ("no owner");  
}
theOwner.setMyAccount(this);
this.number = AccountManager.getUniqueAccountNumber();
this.balance = 0;
this.owner = theOwner;

}
…

7

Account Customer{frozen }1
owner

myAccount
0..1

COMP-361 Implementation © 2015 Jörg Kienzle

Class and Associations (2b)
public class Account {

private final int number;
private int balance;

 Customer owner;

public Account (Customer theOwner) {
if (theOwner == null) {  

throw new IllegalArgumentException ("no owner");  
}
theOwner.addAccount(this);
this.number = AccountManager.getUniqueAccountNumber();
this.balance = 0;
this.owner = theOwner;

}

8

Account Customer1
owner

Set
AccountmyAccounts 1

content 0..*

COMP-361 Implementation © 2015 Jörg Kienzle

Class and Associations (3)
public int getNumber() {

return number;
}
protected int getBalance() {

return balance;
}
protected void setBalance(int newBalance) {

if (newBalance < 0) {  
throw new IllegalArgumentException (“negative balance");  

}
balance = newBalance;

}
}

9

COMP-361 Implementation © 2015 Jörg Kienzle

Inheritance
• Inheritance (both generalization/specialization

and implementation inheritance) is mapped by
"extending" a class
 class Checking extends Account {…}

• Multiple inheritance is only available for interface
inheritance: a class can implement several
interfaces
 class Checking extends Account implements  
 Serializable, Printable, Sortable {…}

10

COMP-361 Implementation © 2015 Jörg Kienzle

Method
• A method maps to a Java method
• A method called in the interaction model by objects of a

different class becomes a public Java method

public class Account {
 public void depositCash(Money amount) { … }

• An internal method becomes a protected Java method

public class Account {
 protected void applyInterestRate() { … }  

11

COMP-361 Implementation © 2015 Jörg Kienzle

Collections
• The package java.util contains an extensive range of

collection classes

• Collection Interfaces
• Collection  

The root interface in the collection hierarchy
• Iterator 

An iterator over a collection

12

Collection!

Set!List! Queue!

SortedSet!

Map!

SortedMap!

COMP-361 Implementation © 2015 Jörg Kienzle

Java Collections
• Set: A collection that contains no duplicate elements

• HashSet
• SortedSet: A set traversed by an iterator in ascending order, for some

specified order of the elements
• TreeSet: Implements SortedSet

• List: An ordered collection, aka a sequence
• ArrayList: Resizable-array implementation of List
• LinkedList: Linked list implementation of List

• Map: An object that maps keys to values
• HashMap
• SortedMap: A map that is in ascending key order

• TreeMap: Red-Black tree based implementation of SortedMap.

13

COMP-361 Implementation © 2015 Jörg Kienzle

Collections: Use Generics
• Java 5.0 defines generics. They ensure type

safety.
import java.util.*; ...
private List<Customer> customerList = new ArrayList<Customer>();
// Add a new customer
customerList.add(customer);

• CustomerList can only contain Customers!
// Iterate over the ArrayList customerList:
ListIterator<Customer> c = customerList.iterator();
while (c.hasNext()) {
Customer customer = c.next();
// no typecast needed
}

14

COMP-361 Implementation © 2015 Jörg Kienzle

Questions?

15

? ??
?

??

? ?
?

