IMPLEMENTATION

(MAPPING TO JAVA)

Jorg Kienzle & Alfred Strohmeier

COMP-361 IMPLEMENTATION




OVERVIEW

e Datatype
e Enumeration

e Class

e Attribute
* Association

* Inheritance

 Method
« Visibility
e Collections

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE




DATA TYPE (1)

* A datatype is mapped to a primitive type or to a
programmer-defined class

e Use primitive type
e Java has only a limited set of predefined primitive type

» The programmer cannot define new primitive (sub)types. For example,
there is no way of defining Positive or Natural a la Ada.

e Approximate with a predefined type, necessarily more permissive

* In all methods using a parameter of the datatype, perform checks on the
parameter

e Use a full-fledged class

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE




DATA TYPE (2)

* Money represents a positive amount of money in Canadian Dollars
* It is used to ensure that an amount parameter, e.g. in withdrawCash, is positive

public class Money {
// Positive amount in dollars
private final int amount;
public Money (int dollars) {
if (dollars < 0 ) {
throw new IllegalArgumentException
("negative amount of money");

}

this.amount = dollars;

}
public int toInt() {

return amount;

D e e e e —————

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE




ENUMERATION TYPE

 An enumeration type can be mapped to a Java
enumeration type (only for Java 5.0 or higher)

<<enumeration>>
TransactionKind

withdraw
deposit
transfer

enum TransactionKind
{WITHDRAW, DEPOSIT, TRANSFER}
I e L ————— OO

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE




CLASS AND ASSOCIATIONS (1)

* A class is mapped to a Java class

* An abstract class is mapped to an abstract class
* An atiribute is realized by a private field, having the same name as the attribute, and
selector and modifier methods, called getters and setters in Java

 Default visibility for getters and setters is protected. Getters and setters should only be
made public if required in the design

* At least one constructor should be provided with each class, defining values for all
fields

* For all associations, we have to decide how we implement

them

* An association end that is not navigable is NOT implemented
* A navigable association end with single multiplicity, i.e. 0..1 or 1, is realized by a
reference field

* The name of the reference is the role name and its class is the target class of the
association end

« If the multiplicity of the navigable association end is 1, the constructor of the class
should enforce that the reference is initialized correctly

* If an association is bi-directional, the constructor should make sure that the inverse
association is initialized as well

e —— T T = - ee———— SRR

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE 6




CLASS AND ASSOCIATIONS (2A)

public class Account {
private final int number;
private int balance;

Customer owner;

public Account (Customer theOwner) {

if (theOwner == null) {
throw new IllegalArgumentException ("no owner");

}
theOwner.setMyAccount (this);

this.number = AccountManager.getUniqueAccountNumber();

this.balance = 0;
this.owner = theOwner;

B s e S — R

mvAccount
Account € 0 yl trozen } 1 >
. owner

Customer

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE




CLASS AND ASSOCIATIONS (2B)

public class Account {
private final int number;
private int balance;

Customer owner;

public Account (Customer theOwner) {

if (theOwner == null) {
throw new IllegalArgumentException ("no owner");

}
theOwner.addAccount (this);
this.number = AccountManager.getUniqueAccountNumber();

this.balance = 0;
this.owner = theOwner;

}

B e s~ - R

1
Account > Customer
owner

content T0..*

myAccounts Il preTTT 5

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE




CLASS AND ASSOCIATIONS (3)

public int getNumber() {
return number;
}
protected int getBalance() {
return balance;
}
protected void setBalance(int newBalance) {

if (newBalance < 0) {
throw new IllegalArgumentException (“negative balance");

}
balance = newBalance;
}
}
e S — L ————

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE o)




INHERITANCE

* Inheritance (both generalization/specialization
and implementation inheritance) is mapped by
"extending" a class

class Checking extends Account {..}

e Multiple inheritance is only available for interface
inheritance: a class can implement several
interfaces

class Checking extends Account implements
Serializable, Printable, Sortable {..}

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE

10




METHOD

A method maps to a Java method

A method called in the interaction model by objects of a 5
different class becomes a public Java method

public class Account {
public void depositCash(Money amount) { .. }

* An internal method becomes a protected Java method

public class Account {
protected void applyInterestRate() { .. }

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE 11




COLLECTIONS

* The package java.util contains an extensive range of

collection classes

e Collection Interfaces

* Collection
The root interface in the collection hierarchy
* lterator
An iterator over a collection
e~~~ o r————ER
Collection Map
L A
List Set Queue SortedMap
SortedSet

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE

12




JAVA COLLECTIONS

e Set: A collection that contains no duplicate elements

* HashSet
* SortedSet: A set traversed by an iterator in ascending order, for some

specified order of the elements
* TreeSet: Implements SortedSet

* List: An ordered collection, aka a sequence
* ArrayList: Resizable-array implementation of List
* LinkedList: Linked list implementation of List

 Map: An object that maps keys to values

* HashMap

* SortedMap: A map that is in ascending key order
* TreeMap: Red-Black tree based implementation of SortedMap.

e e—— L ——————pO

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE

13




COLLECTIONS: USE GENERICS

e Java 5.0 defines generics. They ensure type
safety.

import java.util.*; ...
private List<Customer> customerList = new ArrayList<Customer>();

// Add a new customer
customerList.add(customer);

e CustomerList can only contain Customers!

// Iterate over the ArraylList customerList:
ListIterator<Customer> c¢ = customerList.iterator();
while (c.hasNext()) {

Customer customer = c.next();

// no typecast needed

COMP-361 IMPLEMENTATION © 2015 JORG KIENZLE 14




QUESTIONS?

15 JORG KIENZLE




