
COMP-361 Structural Design

Structural Design

Jörg Kienzle & Alfred Strohmeier

COMP-361 Structural Design © 2014 Jörg Kienzle

Structural Design Overview

• Purpose and Process of Design
• Design Class Model

• Deriving the Design Class Model from the Interaction Model
• Refining the Concept Model

• Dependency Model
• Usage Dependencies / Transient References
• Navigable Associations / Permanent References

• Inheritance Model
• Detailed Design Process Summary

2

COMP-361 Structural Design © 2014 Jörg Kienzle

Design Models

Interaction Model

Design Class Model Inheritance Model

Dependency Model

Fondue Models: Design

3

UML Class Diagram,
describing the structure of the design

COMP-361 Structural Design © 2014 Jörg Kienzle

Design Models
• Interaction Model

• The Interaction Model shows how objects interact at run-time to support
the functionality specified in the Operation Model.

• Dependency Model
• The Dependency Model describes dependencies between classes and

communication paths between interacting objects.

• Inheritance Model
• The Inheritance Model describes the superclass/subclass inheritance

design structure.

• Design Class Model
• The Design Class Model is composed of the contents of all design

classes, i.e. their (value) attributes and methods, all the navigable
associations between design classes, and the inheritance structure.

4

Describes the Complete System Behaviour

Describes the Complete System Structure

COMP-361 Structural Design © 2014 Jörg Kienzle

The Design Process in a Nutshell

5.Develop the Interaction Model
1.Develop communication diagrams for all System Operations
2.Derive a consistent architecture assigning responsibilities to classes
3.Revise the communication diagrams, yielding the Interaction Model

6.Develop the Dependency Model based on the Interaction Model
1.All communication designed in the Interaction Model result in

dependencies
7.Develop the Design Class Model

1.Develop a first version of the Design Class Model based on the
Interaction Model

2.Factor out common properties of classes and build the Inheritance
Model

3.Update and build the final Design Class Model

5

COMP-361 Structural Design © 2014 Jörg Kienzle

Design Class Model (1)
• The Design Class Model shows the static structure

of the system
• Design classes with their attributes and methods
• Relationships between classes and in which direction they are

navigated during execution
• The classes in the design class model must capture

all the concepts specified in the concept model
• Some concept classes are imported into the design class model
• Some concept classes are split into several design classes
• Some concept classes disappear, e.g. because they are implemented

as enumeration types, or because they are transformed into attributes
• Some new classes appear

• To implement relationships, especially ternary associations, if any
• To provide design-related functionality as described in the Interaction Model

6

COMP-361 Structural Design © 2014 Jörg Kienzle

Building the Design Class Model (1)

• Elaborate a first draft of the Design Class Model
by adding all the design classes discovered while
elaborating the Interaction Model
• Add the designed operations to the appropriate classes
• Add value attributes

• Since the Concept Model was used as a basis to
inspire the design of the Interaction Model, the
Design Class Model and the Concept Model are
related
• The Concept Model is an abstraction of the Design Class Model
• The Design Class Model is a solution-specific refinement of the

Concept Model
• Attributes of classes of the Concept Model might need to be moved to

attributes in the Design Class Model

7

COMP-361 Structural Design © 2014 Jörg Kienzle

addElement(File)
sort()

Building the Design Class Model (2)

• For each multiobject in the Interaction Model, add
an aggregation class to the class model.
• Add the operations and value attributes required by the interaction

model to the classes realizing multiobjects.

8

contents : Filecontents : File
addElement(f)

contents : Filecontents : File
sort()

CollectionOfFiles

0..*

File

COMP-361 Structural Design © 2014 Jörg Kienzle

UML Template Classes (1)
• Collection classes are very common:

• List, Queue, Stack, Set, Sorted... , Blocking... , HashMap
• Modern programming languages often provide

generic implementations of collections
• Java generics
• C++ templates

• UML provides templates
• Allows model elements to be parameterized
• Formal parameters are shown in a dashed rectangle, usually in the

top right corner of the model element

9

Set
Element

COMP-361 Structural Design © 2014 Jörg Kienzle

UML Template Classes (2)
• A parameterized UML model element is a reusable

model element
• It can be instantiated by specifying a binding, which

assigns actual parameters to the formal parameters
• Element → File
• Or visually:

10

Set
Element

CollectionOfFiles

<<bind>> <Element → File>

COMP-361 Structural Design © 2014 Jörg Kienzle

Dependency Model (1)
• When developing the Interaction Model, objects

interact with each other by invoking methods
• Decisions are made on how the communication

paths in the system are realized
• Who calls whom?
• How does one object know about the other?
• Who has permanent references to other objects?
• When are object references passed as parameters?

• The Dependency Model focusses on the
reference structure of the classes in the system
• A Dependency Diagram is a class diagram, but only a subset of the

class diagram notations is used

11

COMP-361 Structural Design © 2014 Jörg Kienzle

Dependency Model (2)
• An object must have a reference to another

object when it wants to communicate with it.
• The server object must be visible to the client object when the

client sends a message to the server.
• The reference might be transient

• The result is a Usage Dependency between the classes.
• The reference might be permanent

• The result will be a Navigable Association.
• The decision, transient or permanent, is recorded

in the Dependency Model

12

COMP-361 Structural Design © 2014 Jörg Kienzle

Usage Dependency (1)
• A usage dependency is a situation in which a class

A, called the client class, depends on a class B,
called the server class, for its correct implementation
or functioning.
• Usage corresponds to a transient link, that is, a connection between

instances of classes that is not meaningful or present all the time, but
only in some context, such as the execution of a method.

• A usage dependency is depicted by a dashed arrow
from the client to the server, with the keyword
<<use>>.
• The arrowhead is on the independent class, and the tail on the

dependent class.

13

COMP-361 Structural Design © 2014 Jörg Kienzle

Usage Dependency Types
• <<call>>

• The client class calls a method of the server class.
• <<instantiate>>

• The client class creates an instance (object) of the server class.
• <<parameter>>

• An operation of the client class has a parameter belonging to the
server class.

• <<use>> is the superset of all transient
dependencies, including call, instantiate and
parameter

14

COMP-361 Structural Design © 2014 Jörg Kienzle

Transient Reference
• The client only needs to message a server in the

context of a single method invocation
• Access is given through a parameter, or the object is

created by the invoking method
• The result is a usage dependency
• Example

• A compiler needs to know the source file to process:
operation Compiler::compile(f: File)

15

Compiler! File!<<parameter>>!

COMP-361 Structural Design © 2014 Jörg Kienzle

From Interactions to Dependencies (1)

16

: Directory
addFile(f)

FileDirectory
<<parameter>>

Interaction Model:

Dependency Model:

COMP-361 Structural Design © 2014 Jörg Kienzle

Navigable Association (1)
• Navigability indicates whether it is possible to traverse a

binary association to obtain the object (multiplicity 0 or
1) or the collection of objects associated with an
instance of the class.

• A Navigable Association is shown by adding an
arrowhead to the association end.

• Arrowheads may be attached to zero, one or both ends
of an association.
• No arrowhead means not navigable
• Non-navigable associations are never used, i.e., they are typically not

needed in a design, and therefore do not have to be implemented

17

Person Company
employer

0..1

COMP-361 Structural Design © 2014 Jörg Kienzle

Navigable Association Example

• From a View object it is possible to navigate to its contents, an
object of the class DrawingArea. It is also possible to navigate to
its frame, a Border object.

• Neither the drawing area nor the border “know” about their view.
• Perhaps it is possible to find the view of a drawing area, but it

must be searched for by means not part of the DrawingArea
class.

18

View DrawingArea
content

1

Border
0..1 frame

COMP-361 Structural Design © 2014 Jörg Kienzle

From Interactions to Dependencies (2)

19

: Account
c := getOwner()

Interaction Model:

Dependency Model: CustomerAccount owner
1

COMP-361 Structural Design © 2014 Jörg Kienzle

Permanent Reference
• A permanent reference is needed when an object

needs the same reference in many contexts, e.g. when
the reference to the server object must persist
between method calls

• A permanent reference results in a navigable
association
• In the implementation, a permanent reference will become an object

attribute of the class, sometimes called a pseudo-attribute
• If a class is able to return a reference to an object or a

collection of objects (without messaging other objects),
then each instance has to store a permanent reference

20

COMP-361 Structural Design © 2014 Jörg Kienzle

Bound Life Time
• If the lifetime of the server is enclosed within that

of the client, i.e. the lifetime of the server cannot
start before that of the client, and the server
cannot outlive the client, then the permanent
reference is then said to be bound
• A composition association in the concept model often leads to a

reference with a bound lifetime
• A collection implementing a navigable association end of multiplicity

“many” often has a bound lifetime
• Beware, it does not mean that the members of the collection have a

bound lifetime

21

COMP-361 Structural Design © 2014 Jörg Kienzle

Bound Life Time Example
• A view knows about its border. The border is created

when the view is created, and can not outlive the view.
• The border knows about its title bar and scrollbars. They are created when

the border is created, and can not outlive the border.

22

View DrawingArea
content

1

Border
0..1 frame

TitleBar
title
0..1

Scrollbar
horizontal

0..1
vertical 0..1

COMP-361 Structural Design © 2014 Jörg Kienzle

Changeability
• If a reference cannot be changed after initialization, then

the corresponding association link is said to be frozen.
• Default is changeable

• It is the link that is frozen, the object itself is usually
changeable, i.e. its attribute values can change.

• Example
• The mother / father of a person cannot be changed.

23

Person!

{frozen} father!

{frozen} mother!
0..1!

0..1!

Person

COMP-361 Structural Design © 2014 Jörg Kienzle

Categories of Reference Relationships

Reference lifetime
Transient reference,

shown by a dependency relationship
Permanent reference

shown by a navigable association
Server binding

Unbound lifetime (default)
Bound lifetime, composition association

Changeability (mutability)
Frozen (constant), property (tag) {frozen}
changeable (mutable) (default)

24

COMP-361 Structural Design © 2014 Jörg Kienzle

Mutual References
• There are often pairs of links in the Dependency Model

which are the inverse of each other
• Such links can stem from the same association in the Concept Model
• To ensure consistency of the underlying association, referential integrity of the

links must be enforced by the implementation.
• Replace the two navigable associations by a single two-

way navigable association

25

Account! Customer!
owner!

1!
property!
0..1!Account Customer

Account! Customer!owner!
1!property!

0..1!Account Customer

COMP-361 Structural Design © 2014 Jörg Kienzle

Multiobjects and Associations

• Multiobjects are usually the realization of
association ends with multiplicity “many”

• As already said, for every multiobject, an
aggregation class must be added to the class
model
• This class is often an instantiation of a common template collection

class
• The “many” association end is then replaced by

a navigable association end of multiplicity 1 or
0..1 that connects to the collection.

26

COMP-361 Structural Design © 2014 Jörg Kienzle

Multiobject Example
• Interaction Model: “insert a product into an order”
• Concept Model: Orders are composed of line items, each being

related to a product.

27

IM:

CM:

DM:

Order! Product!lineItem!
1..*!0..*!

: Product!: Order!
1.1: insert(p)!1: add(p)!

: Order

Order Product

Order

Product

List
ProductorderedProducts

1

1..* content
<<parameter>>

COMP-361 Structural Design © 2014 Jörg Kienzle

“Many” Roles Example

28

IM:

File!CollectionOfFiles!

remove(f : File)!
iterate()!

0..*!

printName()!

Directory! 1!
contents!

contents: File!: Directory!
1: remove(fn)!

f: File!: Directory!
1*: printName()!

*! : Printer!

1.1: print(f.name)!

DM:

: Directory

: Directory : Printer

COMP-361 Structural Design © 2014 Jörg Kienzle

Multiobjects and Qualified Associations

• Multiobjects are often used for retrieving an object based on some
search criteria. It is useful to show this kind of navigation by a
qualified navigable association.
• The implementation can then use a map or dictionary for realizing the navigable

association end.

29

contents: File!: Directory!
1: find(fn)!

File!CollectionOfFiles!

find(fn: String)!

0..1!Directory! 1!
contents!

fn: String!

IM:

DM:

: Directory

COMP-361 Structural Design © 2014 Jörg Kienzle

Multiobjects and Bi-directional Associations

• Associations with multiplicity “many” from the
Concept Model that are navigable in both directions
create cyclic associations in the Design Class Model.
• Use OCL to clarify the relation between the different associations.

30

Person! Company!WorksFor!
0..*! 0..1!
employee! employer!CM:

Person!Staff! 0..*!Company! 1!
personnel! member!

0..1 employer! 0..1 employee!

DM:

Person Company

COMP-361 Structural Design © 2014 Jörg Kienzle

Reference Properties of Collections

• For a collection, the reference properties apply to the
collection, and not to its members.

• For a collection, the case: frozen and bound is the
most frequent.

• Example
• The personnel of a company remains the same during the whole lifetime

of a company, but its content, i.e. the employed persons don’t remain the
same. The personnel’s lifetime is bound to that of the company.

31

Person!Staff! 0..*!Company! 1!
{frozen} personnel! member!

COMP-361 Structural Design © 2014 Jörg Kienzle

Dependency Model Process (1)

• For each message in every interaction diagram, a
communication path is needed from the client
class to the server object
• If the server object is a parameter or is instantiated, then we report

that the client class has a usage dependency on the server class
• If a message yields an object (or collection of objects), the server

object must hold a permanent reference to the object (or collection),
either directly, or through a permanent reference to an intermediate
object
• This shows up as a navigable association in the Dependency Model

• If the server as part of the operation calls objects that are not passed
into the operation as a parameter, then the server object must hold a
permanent reference to the object

32

COMP-361 Structural Design © 2014 Jörg Kienzle

Dependency Model Process (2)

• For all navigable associations, determine if the
association is already in the Dependency Model
• If no, add it

• When there are two or more associations between the
same classes navigable in the opposite directions,
determine if they are inverse associations of each other

• The same analysis should be performed on navigable
associations leading to cycles

• Annotate navigable associations with the aggregation or
composition diamond and the reference property
{frozen}, if appropriate.

33

COMP-361 Structural Design © 2014 Jörg Kienzle

Simplifying the Dependency Model

• Permanent references are “stronger” than temporary ones
• If there is a navigable association between two classes, then the source class is

always dependent on the target class, and usage dependency does not have to
be shown explicitly

• Some entities are used all over the system. For readability
reasons, we propose to drop them from the Dependency
Model
• Look out for unique system-wide objects, a.k.a. singletons, which are used, and

therefore visible, from all classes.
• Look out for system-wide classes, which are used, and therefore visible, from

all classes.
• Document this decision, e.g. by annotating / stereotyping

the classes using the <<system-wide>> stereotype in the
Design Class Model

• System-wide objects show up in the Design Class Model as classes stereotyped
<<system-wide>> with multiplicity 1

34

COMP-361 Structural Design © 2014 Jörg Kienzle

Dependency Model Questions
A, B and C are three classes; OA is an object (role name) of class A, and OB is an
object (role name) of class B. For each statement below, decide if it is correct or
not. Then justify your answer.
1.If OA messages OB, and OB is a system-wide object, then no navigational

association from A to B has to be shown on the Dependency Diagram.
2.If OB is a system-wide object, and OA messages OB, then there is a usage

dependency of A on B.
3.A navigable association from A to B in the Dependency Diagram includes any

usage dependency of B on A (UML uses a dashed arrow from B to A to show it).
4.If there is a navigable association from A to B, and a navigable association from

B to C, then any navigable association from A to C can be dropped.
5.If there is a navigable association from A to B, and a navigable association from

B to C, then any usage dependency of A on C can be dropped from the
Dependency Diagram.

35

COMP-361 Structural Design © 2014 Jörg Kienzle

Simplify Question

38

Person! Company!

Country!

worksFor! 0..1!

<<parameter>>!

supplier!

0..*!employee!
0..*!

base!
1!

<<instantiate>>!<<call>>!

livesIn!

Person Company

Country

COMP-361 Structural Design © 2014 Jörg Kienzle

Use of Dependency Model
• The Dependency Model is mainly there to provide

insight into your design during development
• Can be used to assess the coherence of the design

• Are creational responsibilities coherently modularized?
• Is the design of each class in line with the responsibilities assigned to it?

• Encapsulation of state
• Provision of behaviour

• Exposes unnecessary coupling / circular dependencies
• Is it really necessary that everyone depends on certain classes?
• Can restructuring of a specific interaction design break circular dependencies?
• Can refactoring be applied to decrease coupling?

• Can help plan the software development
• Strongly related classes should be designed / implemented by the same team /

individual

• The Design Class Model is the blueprint of the
implementation

40

COMP-361 Structural Design © 2014 Jörg Kienzle

From Dep. Model to Design Class Model

• To build the Design Class Model
• Transfer all classes and all navigable associations from the

Dependency Model to the Design Class Model
• Transfer bound and frozen constraints
• Supply a role name for each navigable association end
• Remove the usage dependencies
• Identify attributes that store the state needed for the behaviour

described in the Interaction Model
• The Design Class Model is the blueprint of the

implementation
• Can easily be used to generate code skeletons

41

COMP-361 Structural Design © 2014 Jörg Kienzle

From Concept Model to Design Class Model

• The Design Class Model is a refinement of the
Concept Model

• The developer needs to:
• Remove associations that are never used (i.e. navigated over) in

the Interaction Model
• Add navigable associations from the dependency model
• Add role names to all navigable association ends
• Remove actors together with the associations they are connected

to
• Remove the system object (you can make it a package)

• Or transform it into a SystemProtocolEnforcer class that takes care of
enforcing the constraints defined by the Protocol Model

42

COMP-361 Structural Design © 2014 Jörg Kienzle

Inheritance vs. Gen./Specialization

• Specialization/generalization defines a semantic
relationship between two classes. This semantic
relationship is inherent in the application domain.

• Specialization/generalization are properties of the
domain model and not of the system design or
implementation.

• At design, an inheritance relationship is a property of
the design classes, and not necessarily of the domain
• Inheritance can be used as a design construct for specialization
• Inheritance relationships at design are prescriptive, whereas

specialization/generalization relationships at requirements specification
are descriptive

• Inheritance may be used for efficiency reasons or code reuse

43

COMP-361 Structural Design © 2014 Jörg Kienzle

Inheritance Model Process
• The Inheritance Model shows the inheritance

relations of the design

• Look out for common functionality and common
structure between classes. The commonalties
can be extracted to build new ancestor classes.
• Note: Common functionality and common structure can also be

factored out by genericity (template classes)
• Integrate the changes into the Design Class

Model
• The notation for inheritance is the same as for generalization/

specialization

44

COMP-361 Structural Design © 2014 Jörg Kienzle

Design Class Model Summary
• The Design Class Model contains all classes which are

controllers and (direct or indirect) collaborators of
system operations.

• The design classes provide methods.
•The design classes do not have object attributes or navigation methods.
•We want to show associations graphically!

• The Design Class Model contains all navigable
associations needed for object communication at run-
time.

• The Design Class Model integrates the Inheritance
Model, i.e., it shows inheritance relationships among
classes

45

COMP-361 Structural Design © 2014 Jörg Kienzle

Bank Design Example
• Establish a Dependency Model for the Bank

System based on the Transfer and
GenerateMonthly designs

• Establish a Design Class Model for the Bank
System

46

COMP-361 Structural Design © 2014 Jörg Kienzle

: TransferManager source :
Accounttransfer(source: Account, dest: Account

amount: Money, t: Terminal)

alt [proceed]
withdraw(amount)

t := create(source, dest, today, amount)

insert(t)

: Calendar

file(t)

proceed := canWithdraw(amount)

dest :
Account

deposit(amount)

today := getCurrentDate()

cs := getOwner() cs:
Customer

cd := getOwner()

: Transaction

insert(t)

cd:
Customer

: Transactionfile(t)

debitedCust := getName()

creditedCust := getName()

creditedCustAddr := getAddr()

t: Terminal

t: Transaction {new}

: Transaction: Transaction

display(debitedCust + " debit " + amount)

: Printer

printCreditNotice(creditedCust, creditedCustAddr, debitedCust, amount)

[else]
balance := getBalance()
display("Not enough funds. Current balance: " + balance)

Transfer Dependency Model

47

Account

TerminalCalendar

Customer

Transaction

<<parameter>>

<<call>>
<<instantiate>>

<<parameter>>

ListofTransactions

<<parameter>>
TransferManager

Printer

<<call>>

<<call>>

<<call>>

<<parameter>>

<<call>>

COMP-361 Structural Design © 2014 Jörg Kienzle

Transfer Design Class Model

48

{frozen} 1
owner

Account
balance: int

boolean canWithdraw(int amount)
int getBalance()
withdraw(int amount)
deposit(int amount)
Customer getOwner()

TransferManager

Transfer(Account source, Account dest,
 int amount, Terminal t)

<<system-wide>>
Calendar

today: Date
Date getCurrentDate()

Transaction

Transaction create(Account source,
 Account dest, Date d, int amount)

Customer
name: String
address: String

file(Transaction t)
String getName()
String getAddress()

ListOfTransactions

insert(Transaction t)

myTransactions 1

<<system-wide>>
Printer

printCreditNotice(String to, String toAddr,
 String from, int amount)

<<system-wide>>
Terminal

display(String text)

1

1

COMP-361 Structural Design © 2014 Jörg Kienzle

GenerateMonthly Dependency Model

49

CustomerServices Statement
<<instantiate>>

Customer

<<call>>

SetOfCustomers

<<parameter>>
<<call>>

: CustomerServices

generateMonthly(m: Month) 1*: create()

s: Statement {transient}

2.1: setDestination(c.name, c.address)

2*: prepareStatement(s, m)

c : Customer*

COMP-361 Structural Design © 2014 Jörg Kienzle

GenerateMonthly Dependency Model

50

CustomerServices Statement
<<instantiate>>

Customer

<<call>>

SetOfCustomers

<<parameter>>
<<call>>

TransactionListofTransactions

<<call>>

<<parameter>>
<<call>>

source: Account

t : Transaction*

2.2*:
addToStatement(s, m)

2.2.2: insertTransaction(t.kind, sn, dn, t.amount)

dest: Account

2.2.1: sn := getNumber()

2.2.1: dn := getNumber()

s: Statement {transient}

Account

COMP-361 Structural Design © 2014 Jörg Kienzle

GenerateMonthly Dependency Model

51

CustomerServices Statement
<<instantiate>>

<<call>>

Customer

<<call>>

SetOfCustomers

<<parameter>>
<<call>>

TransactionListofTransactions

<<call>>

<<parameter>>
<<call>>

Printer

<<call>>

s: Statement {transient}

Account

: Printer

: CustomerServices

3.1: print(s)

3*: print()

COMP-361 Structural Design © 2014 Jörg Kienzle

Transfer+Generate Design Class Model

52

{frozen} 1
owner

Account
balance: int
number: int

TransferManager

Transfer(Account source, Account dest,
 int amount, Terminal t)

Customer
name: String
address: String
file(Transaction t)
String getName()
String getAddress()
prepareStatement
 (Statement s, Month m))

ListOfTransactions

insert(Transaction t)
resetIterator()
Transaction getNext()

myTransactions 1

<<system-wide>>
Terminal

display(String text)

<<system-wide>>
Printer

printCreditNotice(String to, String
 addr, String from, int amount)
print(Statement s)

1

<<system-wide>>
Calendar

today: Date

Date getCurrentDate()

1

SetOfCustomers

resetIterator()
Customer getNext()

CustomerServices

generateMonthly(Month m)

Statement

Statement create()
addDestination(String name, String addr)
addTransaction(TransactionKind k,
 int s, int d, int amount)
print()

Transaction

Transaction create(Account source,
 Account dest, Date d, int amount)
addToStatement(Statement s, Month m)

amount: int
kind: TransactionKind

myCustomerBase 1

{frozen} to
0..1

from 0..1 {frozen}

boolean canWithdraw(int amount)
int getBalance()
withdraw(int amount)
deposit(int amount)
Customer getOwner()
int getNumber()

COMP-361 Structural Design © 2014 Jörg Kienzle

Principles of Good Design (1)

• Design with the aim to support future change
• It is clear though that we must bias certain futures in that we cannot

cover all futures, thus good designers are often good predictors.
• Develop modular systems
• Maximize module coherence
• Minimize module coupling, e.g. object interaction
• Minimize data and functional dependencies
• Cleanly separate functionality

53

COMP-361 Structural Design © 2014 Jörg Kienzle

Principles of Good Design (2)

• Distribute responsibilities evenly between classes
• Avoid the extremes, i.e. “dumb” and “god” objects

• Have one class, one abstraction, with the right name
• Strive for class cohesion

• A class should engage in just one general type of responsibility
• Concentrate on the responsibilities of a class rather than the data it must

encapsulate, because it will often lead you to a more extensible design

• Strive for method cohesion
• A method should carry out a single specific function. This is analogous to

functional cohesion in structured design.

• Be sure an abstraction is a class and not simply a
role played by an object

54

COMP-361 Structural Design © 2014 Jörg Kienzle

Principles of Good Design (3)

• Encapsulate representation
• Remember that the state of an object can only be changed through its

public interface.

• Delegate rather than enquire
• A client object tells a service object what it wants that object to do, rather

than asking for information from that object so that it can do it
• Remember data and related behaviour should be encapsulated together.

• Use inheritance wisely!
• Obey the Liskov Substitution Principle (LSP):

• Derived classes must be usable through the base class interface without the
need for the user to know the difference.

• Develop shallow inheritance hierarchies
• Most root classes should be abstract

55

COMP-361 Structural Design © 2014 Jörg Kienzle

Additional Design Process Activities

• System Architecture Design for Distributed Systems
• Start drafting an architecture of the system before entering the design

process.
• Divide system-wide responsibilities between the client(s) and the server.
• Divide responsibility for the system operations between the client(s) and the server.

• User Interface Design
• Determine the mechanisms used by the user interface to call system

operations, to provide values and objects for the system operations, and to
report error messages to the user.

• How should Exceptional Situations be Handled?
• If not specified in the operation model, determine how the system should

react to exceptional situations
• Determine the responsibilities of the finite state machine implementing the

Protocol Model

56

COMP-361 Structural Design © 2014 Jörg Kienzle

Splitting the Work
• After having agreed on an architecture, it is possible to

divide work among team members
• Determine the main classes by designing the

communication diagrams for some important
(orthogonal) system operations
• Each team member may perform this task for some system operations
• It might be worthy to have several designs for the same (important) operation.
• The designs are then compared and consolidated.

• Allocate classes and system operations to team
members.
• A team member is responsible for all design models for his/her classes and

system operations.

57

COMP-361 Structural Design © 2014 Jörg Kienzle

Work Breakdown
• Alone

• Design communication diagrams /
sequence diagrams

• Prepare questions and suggestions,
• Rework communication diagrams

(yours or those of others).

• Group work
• Consolidate individual work
• Discuss variants
• Walk-throughs

58

Ti
m

e

COMP-361 Structural Design © 2014 Jörg Kienzle

Detailed Design Process (1)
• Preliminary decisions:

• Decide on system architecture, e.g. client/server
• Decide on communication means between system and

environment for each message, if not already done
• Decide how to identify object parameters (i.e. instances of classes of the

Concept Model) in messages
•During design, a class will need to be developed that is responsible of

mapping from the identification means to the design class implementing
the concept and vice versa.

59

COMP-361 Structural Design © 2014 Jörg Kienzle

Detailed Design Process (2)
1. Design the Interaction Model

• Develop a communication diagram or sequence diagram for each
system operation in the Operation Model
• Identify relevant objects involved in the computation
• Establish role of each object in the computation:

• Identify controller
• Identify collaborators

• Decide on messages (and parameters) and control flow between objects
• At the end, make the following checks:

• Consistency with the Requirement Model
•Check that the design-equivalent of each class in the Concept Model is

used in at least one interaction diagram.
• Verification of functional effect

•Check that the functional effect of each interaction diagram satisfies the
specification as defined by the operation schema in the Operation Model.

60

COMP-361 Structural Design © 2014 Jörg Kienzle

Detailed Design Process (3)
2. Dependency Model

• Record class dependencies resulting from the design in the Dependency
Model
• For each message in the Interaction Model, a communication path is needed

from the client class to the server object
•Decide on the kind of communication path required, taking into account: its

lifetime, the server binding, and reference changeability.
• Make the following checks:

•Completeness: All message passing in the Interaction Model must be realized
in the Dependency Model.

•Consistency with the Concept Model: Trace back navigable design associations
to requirements associations. Look out for requirements associations not
realized in the Dependency Model.

•Referential Integrity: Look out for multiple associations between the same
classes. Are they synonyms? Also: mutual inverse associations must be unified.

•Use the Dependency Model to evaluate your design / explore other
options

61

COMP-361 Structural Design © 2014 Jörg Kienzle

Detailed Design Process (4)
3. Design Class Model

• The Design Class Model is derived from the Interaction and Dependency
Models.
• Classes from the Dependency Model
• Methods and parameters from the Interaction Model
• Value attributes from the Interaction Model (look also at the Concept Model)
• Navigable associations from the Dependency Model
• Inheritance relationships from the Inheritance Model (see next slide)

• Perform the following checks:
• All classes needed by the Interaction Model appear in the Design Class Model.
• All methods of the Interaction Model are realized in the Design Class Model.
• All associations shown in the Dependency Model appear in the Design Class

Model.
• There are no non-navigable associations in the Design Class Model.
• Each navigational association end has a role name.
• The Design Class Model is consistent with the Inheritance Model.

62

COMP-361 Structural Design © 2014 Jörg Kienzle

Detailed Design Process (5)
4. Inheritance Model

• Build the Inheritance Model
• The inheritance structure is built by identifying commonalities between

classes and discovering abstractions. Identify superclasses and
subclasses and construct the inheritance diagrams.

• Examine generalizations and specializations in the Concept Model
• Look out for methods common to several classes
• Look out for navigable association ends common to several classes

• Use the Inheritance Model to update the Design Class Model

63

COMP-361 Structural Design © 2014 Jörg Kienzle

Questions?

64

? ??
?

??

? ?
?

