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quantum machine to date. We give a complete characterization of the lan-
guages recognized by LQFA and by Boolean combinations of BPQFA. It is a
surprising consequence of our results that LQFA and Boolean combinations
of BPQFA are exactly equal in language recognition power.
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1 Introduction

In the classical theory of finite automata, it is unanimously recognized that
the algebraic point of view is an essential ingredient in understanding and
classifying computations that can be realized by finite state machines, i.e.
the regular languages. It is well known that to each regular language L can
be associated a canonical finite monoid (its syntactic monoid, M (L)) and
unsurprisingly the algebraic structure of M (L) strongly characterizes the
combinatorial properties of L. The theory of pseudo-varieties of Eilenberg
(which in this paper will be called M-varieties for short) provides an elegant
abstract framework in which these correspondences between monoids and
languages can be uniformly discussed.

Finite automata are a natural model for classical computing with finite
memory, and likewise quantum finite automata (QFA) are a natural model
for quantum computers that use a finite dimensional state space as memory.
Quantum computing’s more general model of quantum circuits [16] gives us
an upper bound on the capability of quantum machines, but the fact that
several years have passed without the construction of such circuits (despite
the efforts of many scientists) suggests that the first quantum machines are
not going to be this strong. Thus it is not only interesting but practical to
study simpler models alongside of the more general quantum circuit model.

There are several models of QFA [14,12,7,4,8,6] which differ in what
quantum measurements are allowed. Independently, [8] and [6] showed that
QFAs can recognize all regular languages if they are permitted to make
unrestricted transformations and measurements. In contrast, if only one
measurement is allowed at the end, the power of QFAs is then equal to that
of permutation automata [14,7] (i.e. they recognize exactly those languages
whose syntactic monoid is a group). In intermediate models [12,7,4], more
than one measurement is allowed but the form of those measurements is
restricted. In this case, the language recognition power of QFAs lies between
[14] and [8,6], but has not been characterized exactly, despite considerable
effort [3,2]. The most general definition of QFAs describes what is achievable
in principle according to laws of quantum mechanics while some of the more
restricted definitions correspond to what is actually achieved by current
implementations of quantum computers.

In view of the enduring success of the algebraic approach to analyze
classical finite state devices, it is natural to ask if the framework can be
used in the quantum context as well. The work that we present here an-
swers the question in the affirmative. We will analyze two types of QFA: one
introduced in [7], (which we call BPQFA) and a new type of QFA (which
we call LQFA) whose definition is motivated by the properties of nucleo-
magnetic resonance (NMR) quantum computing. Among various physical
systems used to implement quantum computing, liquid state NMR has been
the most successful so far, realizing physical implementation of a quantum
computer with 7 qubits [20]. Liquid state NMR imposes restrictions of what
measurements can be performed, and the definition of LQFA reflects this.
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In both cases we are able to provide an algebraic characterization for the
languages that these models can recognize. It turns out that the class of
languages recognized by these two models coincide almost exactly (that is,
up to Boolean combinations), which is quite surprising considering the dif-
ferences between the two definitions (for example, the latter allows mixed
states while the former does not). It is a pleasant fact that the M-variety
that turns up in analyzing these QFA is a natural one that has been exten-
sively studied by algebraists.

In addition to algebra, our arguments are also based on providing new
constructions to enlarge the class of languages previously known to be rec-
ognizable in these models, as well as proving new impossibility results using
subspace techniques (as developed in [3]), information theory (as developed
in [15]), and quantum Markov chains (as developed in [1]). In particular,
we show that BPQFA cannot recognize the language aX* (it is already
known [12] that X™a is not recognizable), and that LQFA cannot recognize
aX* or YX*a.

The paper is organized as follows. In Section 2 we give an introduction
to the algebraic theory of automata and we give all of the necessary QFA
definitions. In the next two sections we give our results on the two models
we introduced, and in the last section we outline some open problems.

2 Preliminaries
2.1 Algebraic theory of automata

A language L C X* is said to be recognized [17] by the monoid M if there
exists a homomorphism ¢ : £* — M and a set F' C M such that ¢! (F) =
L. Tt can be easily shown that a language is recognized by some finite monoid
if and only if it is regular. Given a regular language L, we can construct a
canonical finite monoid M (L) recognizing L, which is called the syntactic
monoid. Let ~1 be the congruence on X* defined by v ~p w if, for all z,y,
zvy € L & zwy € L. Then M (L) is the quotient set induced by ~.

A monoid M divides N (we write M < N) if M is a morphic image of a
submonoid of N. The division relation is transitive. If M recognizes L and
M < N, it follows that L also recognized by N. The syntactic monoid is
the smallest monoid recognizing L with respect to the division relation.

An M-variety is a class of finite monoids which is closed under tak-
ing submonoids, surjective homomorphisms, and direct products. Given
an M-variety V, to each finite alphabet X~ we associate the class of reg-
ular languages V(X*) = {L C X* : M(L) € V}. It can be shown that
V(X*) is a Boolean algebra closed under quotients (i.e. if L € V(X*)
then for all w € X* we have w 'L = {z : wzx € L} € V(X*) and
Lw! = {z : zw € L} € V(X*)) and inverse homomorphisms (i.e. if
¢ : X* — X* is a homomorphism and L € V(X*), then ¢ 1(L) € V(X*)).
Any class of languages satisfying these closure properties is called a *-variety
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of languages. A theorem of Eilenberg [9] says that there is a 1-1 correspon-
dence between M-varieties and *-varieties of languages: a driving theme of
the research in automata theory has been to find explicit instantiations of
this abstract correspondence.

The M-variety that plays the key role in our work is the so-called block
groups [18], classically denoted BG. This variety is ubiquitous: it appears
in topological analysis of languages [18], in questions arising in the study of
non-associative algebras [5] and in constraint satisfaction problems [11]. It
can be defined by the following algebraic condition: M is a block group iff
forany e =e? and f = f2in M, eM = fM or Me = M f implies e = f.
For any language L, M (L) is a block group iff L is a Boolean combination
of languages of the form Lgai L .. .ax Ly, where each a; € ¥ and each L; is
a language that can be recognized by a finite group: this class of languages
is the largest x-variety that does not contain aX* or X*a for arbitrary
alphabet satisfying |X| > 2 [18].

2.2 Models

We adopt the following conventions. Unless otherwise stated, for any ma-
chine M where these symbols are defined, @ is a finite set of states with
|Q| = m, X is the input alphabet, go is the initial state, and Qgec C @
(Qrej C Q) are accepting (rejecting) states. If Qe and Qre; are defined
then we require QqccNQre; = 0. Also, each model in this paper uses distinct
start and endmarkers, ¢ and $ respectively. On input w, M processes the
characters of ¢w$ from left to right.

A superposition over a finite set () is a mapping 1) :  — C™ that satisfies

lll2 = /32, ¥(9)? = 1. We say 4(q) is the amplitude with which ¢ is in g.

Superpositions can be expressed mathematically as vectors in C". For each
q € () we uniquely associate an element of the canonical basis of C*, and we
denote this element |g). Now the superposition can be written as the vector
> (@)

For all QFA in this paper, the state of the machine M at any given time
is a superposition over (). Note that this is different from the notion of state
for DFAs, so some care is required to avoid confusion.

In the case of LQFA, the state of the machine after reading some prefix
is, in general, a random variable. In other words, the state is taken from a
probability distribution of superpositions {(p;, 1;)}, each 1; with probability
pi- In this case we say the system is in a mized state. Mixed states can be
expressed in terms of density matrices [16], and these are usually denoted
p- If the distribution is trivial, we say that the machine is in a pure state.
A more detailed discussion of mixed states will be given in Section 3.2.1.

A quantum transformation is a linear unitary transformation. We say
that A € C"*™ is unitary if A* = A=, where A* is the Hermitian conjugate
of A and is obtained by taking the conjugate of every element in A Unitary
transformations are length preserving, and they are closed under product.
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Let By @ -- @ E; be a partition of C* into orthogonal subspaces. A pro-
Jjective measurement of a superposition 9 w.r.t. E; @ - -- @ E; has the effect
of probabilistically projecting (or collapsing) v into exactly one E;, accord-
ing to the distribution outlined below. For all i, let P; be the projection
operator for F;. Then the probability of projecting into FE; while measur-
ing w.r.t. By @--- @ Ej is || P;||3. When such a measurement is made on a
quantum state, the index of the projection is communicated to the observer.
Measurements are the only way in which an observer can obtain a priori
information about a quantum state, thus the output of QFAs are based on
the outcome of some measurement.

We will consider two modes of acceptance. For a probabilistic machine
M, we say M recognizes L with bounded (two-sided) error if M accepts any
w € L and rejects any w ¢ L with probability at least p > % We say M
recognizes L with bounded positive one-sided error if any w € L is accepted
with probability p > 0 and any w ¢ L is rejected with probability 1.

We consider three models of QFAs. The first is motivated by liquid state
NMR. Liquid state NMR technology has been used to physically realize a
7-qubit quantum computer [20]. NMR uses nuclei of atoms as quantum bits,
and the state of the machine is a molecule in which 7 different atoms can be
individually adressed. One of the features of NMR is that quantum trans-
formations are simultaneously applied to a liquid containing 10%! molecules.
Thus, we have the same quantum computation carried out by 10%! identi-
cal quantum computers. Applying a measurement is problematic, however.
On different molecules, the measurement can have a different result. We
can determine the fraction of molecules that produce each outcome, but
we cannot separate the molecules by the measurement outcome. Because
of that, the operations performed cannot be conditional on the outcome of
a measurement. On the other hand, measurements which do not affect the
next transformation are allowed. This situation is reflected in the definition
of our new model, given below:

Latvian QFA (LQFA). An LQFA isatuple M =(Q, X, {4, },{Ps}, 90, Qace),
where {A,} are unitary matrices, and {P,} are measurements (each P, is
specified by a partition E; @ --- @ E; of C™ into orthogonal subspaces).
We define Qrej = Q\Qacc and we require that Py is a measurement w.r.t.
Eoce ® Erej, where Eqec = span{|q) : ¢ € Qacc} and E,.; = span{|q) : g €
Qrej}- Let 1) be the state of M after reading some partial input. On input o,
1) is transformed by A, and then measured w.r.t. P,. Note that the outcome
of the measurement is probabilistic, so the state after the measurement is
a random variable. At the end of the input, M accepts or rejects according
to the outcome of the Py measurement. The acceptance mode for LQFA is
bounded error.

Also in [10], a probabilistic automata model related to LQFA was in-
troduced, which they called ‘1-way probabilistic reversible C-automata’ (we
abbreviate this to PRA). A PRA is a tuple M = (Q,X,{A4,}, 40, Qace),
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where each A, is a doubly stochastic matrix. A matrix is doubly stochastic
if the sum of the elements in each row and column is 1. The acceptance
mode for PRA is bounded error. The two models are related in the fol-
lowing way: If M is a LQFA such that each P, measures with respect to
@D ,cq span{lq)} for every o € X, then M can be simulated by a PRA.
Conversely, a PRA can be simulated by a LQFA if each A, of the PRA
has a unitary prototype [10]. A matrix U = [u;;] is a unitary prototype for
S = [si;] if for all 4,5: |u; ;|* = s;,;. When S has a unitary prototype it is
called unitary stochastic [13]. This relationship between LQFA and PRA is
helpful in proving that certain languages are recognized by LQFA.

LQFAs were introduced as QRA-M-C in the classification of QFAs pro-
posed in [10]. A superset of the LQFA model has been studied in [15,4].

The first and most studied model of QFA was defined by Kondacs and
Watrous in [12] (we will call these KWQFAs). A KWQFA is defined by a
tuple M = (Q, X, {As}, 90, Qace, @re;j) Where each A, is unitary. The state
sets Qgee and Qre; will be halt/accept and halt/reject states, respectively.
We also define Qnon = Q\(Qacec U Qrej) to be the the set of nonhalting
states. Lastly, for u € {acc,rej,non} we define E, = span{Q,}, and P,
to be the projection onto E,. Let ¢ be the state of M after reading some
partial input. On input o, ¢ is transformed by A, and the outcome is
measured w.r.t. Egee ® Erej @ Epop. If the outcome of the measurement
is acc or rej, then M halts and accepts or rejects accordingly. Otherwise,
the state becomes ¢ = PponAs/||Prondsp||2 and M continues. We re-
quire that after reading $ the state is in FE,,, with probability 0, so that
Pr[M accepts w]+ Pr[M rejects w] = 1. The acceptance mode for KWQFA
is bounded error.

BPQFAs were introduced in [7] as a natural restriction of KWQFA
model. We define BPQFAs below.

Brodsky-Pippenger QFA (BPQFA). A BPQFA M is a KWQFA where M is
not permitted to halt in an accepting state until § is read, and the acceptance
mode is changed to bounded positive one-sided error.

In [7], it was shown that BPQFA recognize positive Boolean combina-
tions (unions and intersections) of X*a;X*as...arX*. In this paper we
generalize these results and give nearly tight upper bounds.

3 Latvian QFA

Our main result for this model is a complete characterization of the lan-
guages recognized by LQFA:

Theorem 1 LQFA recognize exactly the class of languages whose syntactic
monoid is in BG.
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To prove this result, we first show that the class of languages recognized
by LQFA forms a x-variety of languages. Then, we give tight upper and
lower bounds on the languages recognized by LQFA. Before we begin the
proof of this theorem, let us establish a few simple properties:

Lemma 1 Given LQFA M recognizing L with probability p > %, we can

construct M' recognizing L with probability 1 — € for any € > 0.

Proof Let M = (Q, %, q0,{As},{Ps}, Qacc)- Our boosting strategy is to
construct a single machine that simulates m copies of M in parallel using a
single machine M’ and accepts only if the majority of the copies accept. By a
Chernoff argument, we can always find an m that will give the desired prob-
ability of acceptance. Let M’ have state set Q™, initial state (go, . --,qo), set
of transitions {@);-, A, }scx, similarly defined measurements, and accept-
ing state set {(qzy;---em) : [{de; € Qacc}| > %} This machine simulates
m trials of M as required. O

Claim 1 Consider a sequence of | finite transformations and measurements
operating on o finite space E. These operations can be simulated by one
transformation and one measurement on a (possibly larger) finite subspace
E'.

Proof Assume we have a sequence of [ unitaries U; on a space E, each of
them followed by a measurement E;; @ - - - @ Eji,,. Define a new space E' of
dimension (dim E) - [], k;. It is spanned by states |¢)|j1)...|j), [¢) € E,
ji € {0,...,(ki-1)}. Each U; can be viewed as a transformation on E' that
acts only on the |¢) part of the state. Replace the measurements by unitary
transformations V; defined by:

Vilo)i) - -1da) - - |3y = VilMin) - | (Gi + ) mod ki) ... |jz)

for |¢) € E;;. We claim that the unitary operation V;U; ... V1 Uy, followed by
the measurement operation that measures all of j, ..., j;, will simulate the
[ transformations and measurements as required. It is sufficient to consider
the case where the system is currently in a pure state . Applying the
original sequence, we arrive a mixed state {(p;, 1;)}, each 1; with probability
p;. Now consider our simulation of the original sequence. We start in state
[#)[1) - - - |5:) and then move to {(pj;,...;:, [¥)71)---14]))}, where pjy; s is
the probability that, for all ¢, the ith measurement caused a projection into
E; (jt—j:) mod k;- Thus when we restrict our attention to the E part of the
state, the behaviour of the original sequence and our simulation is effectively
equivalent. O

Now to prove that the languages recognized by LQFA form a variety, it
is sufficient to show:

Theorem 2 The class of languages recognized by LQFA is closed under
union, complement, inverse homomorphisms, and word quotient.
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Proof For any LQFA M recognizing L, we can trivially construct M rec-
ognizing L by swapping the accept and reject states. This proves closure
under complement.

Next we show closure under union. Let M; and M2 be LQFA recog-
nizing L; and Lo with probability p; and ps, respectively. W.l.o.g. assume
pL > % and ps > 3 . Now to compute the union of L; U Lo, construct the
tensor product M' of M; and M, as in Lemma 1 but set Q.. = {(¢:,¢;) :
gi € Qi,ace V qj € Q2,acc}- It is easy to check that M' recognizes L with
probability at least

Closure under inverse homomorphisms follows from the claim. Finally,
we prove closure under quotient. Let M be an LQFA recognizing L. We can
construct M’ recognizing w'L as follows. Note that the operation A
in M can be performed by |w| unitary transformations and one measure-
ments. Use Claim 1 to simulate these with one unitary transformation and
measurement, and make these to be the new Ay and P operation. Make
all other operations in M’ the same as in M. Clearly M' will recognize
{z : wz € L}. Right quotient is similar. O

3.1 LQFA Lower bounds

We will now proceed to show that LQFA recognize any language whose
syntactic monoid is in BG. We begin with the following simpler result:

Theorem 3 LQFA can recognize languages of the form X*ay X* ... .apX*.

Proof To prove this result, we first give a construction of a PRA that rec-
ognizes X*a; X* ... a;X* with probability (%21)¥, for any n € N. Then, we
show that the transitions of this PRA can be simulated by an LQFA.

We construct our PRA inductively on the length of the subword. For
k =1 we construct M = (QM), g, X, {AS,I)}, Q,(llc)c) as follows. Let Q) =
{90,492, --,aqn}, A(l) =1 —1 (where 1 is a n x n matrix of all ones), Af,l) =1
for all o # a;, and Q((llc)C = QW\{qo}. It is easy to check that this machine
accepts any w € X*ay X* w1th probability (1) and rejects any w ¢ L*aX*
with probability 1.

Assume we have a machine M) = (Q(), g9, ¥, {AS ™M}, QD) rec-
ognizing inputs containing the subword a; ...a;1 with probability (Z2)#!,
we construct M) = (Q(i) 00,5, {4 Qgic)c) recognizing inputs contain-
ing the subword a; ...a; with probability (%= LYi, Our augmentation will
proceed as follows. First let QEJQC be a set of (n-1)% new states all distinct
from QUV, and let Q¥ = QU1 U Qacc For each q € Qacc we uniquely
associate n-1 states g2,...,qn € Qacc We leave gy unchanged.

It remains to define the A( ) transitions. Define A(z Y to be the trans-
formation that acts as A(Z Y on QY c Q) and as the identity elsewhere.
We let AS') = Aff_l)Bff), where Bf,) is an additional transformation that
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will process the a; character (note that the matrices are applied from right
to left). For all o # a; we define B(i) = I. For 0 = a; and we define Bgi) SO
that, independently for each ¢ € Qazcc), the transformation 1 —1is applied to
{¢,492,43,- - -, qn}- At the end we have a machine M = M ")y that recognizes
X*rar X, .. ap Xt

To simplify notation, we define Q(©) = S,‘? = {go} and B(l) = A(1 for
all o. The correctness of the construction follows from this lemma:

Lemma 2 Let w be any word. As we process w with M, for all 0 < i < k
the total probability of M being in one of the states of Q1 is nonincreasing.

Proof For any S C @, denote by P(S) the sum probability of being in one
of the states of S. Every nontrivial A, matrix can be decomposed into a
product of B( 9 matrices operating on different parts of the state space. All
of these matrices operate on the machine state in such a way that for all
j and for any {q,q¢'} C Q((fc)c, at any time there is an equal probability of
being in state ¢ or ¢'. Thus the distribution of the state at any time can be
completely specified by P(Q,(l%)c), ceey P(Qg’f:)c)

For all 0 < i < k the machine can only move from Q) to Q\Q® when

B((;Ll ) is applied, and this matrix has the effect of averaging the likelihood

of being in any given state of Qgic)c u Qaccl) Since |Qg’ctl)| = (n- 1)|Q,(fc)c| it

follows that a BT} operation will not increase P(Q¥) unless P(QS:") >

(n—l)P(Q,(jC)C). It can easily be shown by induction on the sequence of Bg)
matrices forming the transitions of M that this condition is never satisfied.
Thus P(Q) is nonincreasing for all i. O

First we show that any w ¢ L is rejected with certainty. The transitions
are constructed in such a way that M can only move from Q{™D to Q®
upon reading a;, and M cannot move from Q{1 to Q{t1) in one step (even
if a; = a;41). Next we show that any w € L is accepted with probability
(z1)*. After reading the first a1, P(Q\:) > (%) and by Lemma 2 this
remains satisfied until as is read, at which point M will satisfy P( 220)0) >
(=t ) Inductively after reading subword a, M satisfies P(Qacc) > (%)k
Thus M indeed recognizes X*a; X* ... apX*.

All that remains is to show that we can simulate each A, using LQFA
transformations. Recall that each A, is a product of B((l? matrices operating
) has a unitary prototype,
then each B,(;i) can be simulated by a single transformation followed by a
single measurement, and each A, could be simulated using the series of [
transformations and measurements. Thus by Claim 1, it is sufficient to show
that each Bg? has a unitary prototype.

Observe that any block diagonal matrix such that all of the blocks have
unitary prototypes is itself a unitary prototype, and that unitary prototypes
are trivially closed under permutations. Each B[(L? can be written as a block

on different parts of the state space. If each B(
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diagonal matrix, where each block is the 1 x 1 identity matrix or the %1
matrix, so it remains to show that there is a unitary prototype for %1
matrices. Coincidentally the quantum Fourier transform matrix [16], which
is the basis for most efficient quantum algorithms, is a unitary prototype
for L1. Thus, A, can be simulated by an LQFA. This completes the proof
of Theorem 3. O

We can generalize Theorem 3 as follows:

Theorem 4 LQFAs recognize any language whose syntactic monoid is in
BG.

Proof We give a PRA construction recognizing the language L defined by
w € L if and only if w = woayws .. . agwy where for each i, woaiw; ... w; €
L; for some prespecified group languages Lo, ..., L. By the cancellative
law of groups, this is sufficient to show that PRA recognize any language
of the form Lgai L1 ...ar L. We will see that each transition matrix has a
unitary prototype, thus there is an LQFA recognizing this language as well.
This along with the closure properties of LQFA is sufficient to prove that
any language whose syntactic monoid is in BG is recognized by an LQFA.

For all i let G; = M(L;). Also let ¢; : X* — G; and F; be such that
(pz._l(Fi) = L;. We compose these groups into a single group G = Gg X - - - X
Gy with identity 1= (1,1,...,1).

Let M = (Q,90,%,{As},Qacc) be a PRA recognizing the subword
ay - ..ap constructed as in Theorem 3. From M we construct an LQFA
M =(Q', 4, %, {AL}, Q),..) recognizing L. We set Q' = Q@ x G, gj = (go, 1),

tee = Qace X (G1 X -+ x Gp1 x Fy), and Ag = Ag = I. For each 0 € X
define A as follows. Let P, be the permutation matrix that maps (g, g)
to (¢,90) for each ¢ € Q and g € G. For each 1 < i < k let A, be the
matrix that, for each f € Gy X --- X Fi-y X G; X - -+ X Gy, acts as the trans-
formation BS on Q™ x {f} and as the identity everywhere else. Finally,
Al =P,A, .. A,

The A! are constructed so that M’ keeps track of the current group
element at every step. If M is in state (g, g), then after applying A},..., A}
it remains in @ x {g} with probability 1. The P, matrix ‘translates’ all of
the transition probabilities from @ x {g} to @ x {go}. Initially M is in
Q@ x {1}, so after reading any partial input w, M will be in @ x {1w} with
probability 1. In this way M will always keep track of the current group
element.

Each Al matrix refines A, from the X*a; X*a5...apX* construction in
such a way that, on input o after reading w, we do not move from Q")
to Q® (the action performed by B((f)) unless ¢ = a; and w € Fi_;. This
is exactly what we need to recognize L. The transition matrices can be
simulated by LQFA by the same argument as in Theorem 3.

Lemma 3 Let w be any word. As we process the characters of w in M, for
all 0 < i < k the total probability of being in one of the states of Q¥ x G is
NONINCreasing.
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Proof Same argument as in Lemma 2 holds. 0O

We claim that every w ¢ L is rejected with certainty. The PRA M does
not move out of Q¥ x G unless some prefix woa; with wy € Lo is read.
Inductively, we do not move into Q.. unless we have read each subword
letter on the correct context and the current state corresponds to a group
element f € Fy.

Now suppose w € L. Rewrite w as woay - - - apwg. Clearly M does not
move out of Q© x G while reading wq. The character a; is now read, and
M moves to (@) x G)\(Q® x G) with probability L. By the previous
lemma, this probability does not decrease while reading w;. So now af-
ter reading woa;w; we will be in lec)c x G with probability %L, If aj is
read we move to @® with probability (%2)2. By induction after reading
woay . .. wy_1ar we move to (QF) x G)\(Q*Y) x G) with total probability
at least (“1)*. Finally, after reading wi we move to Q). with total proba-
bility at least (%=1)*, and so we accept any w € L with this probability. By
choosing a suitable n we can recognize L with arbitrarily high probability.
This completes the proof of Theorem 4. O

3.2 LQFA upper bounds

Next, to prove that LQFA cannot recognize any language whose syntactic
monoid is not in BG, we need to show that LQFA cannot recognize X*a or
aX*. We note that LQFA are a special case of Nayak’s EQFA model [15],
and EQFAs cannot recognize X *a. The proof that LQFAs cannot recognize
aX™ is considerably harder.

Theorem 5 LQFAs cannot recognize aX*.

The focus of the remainder of the section will be the proof of this result.

3.2.1 Mized states, density matrices and CPSOs This section provides def-
initions and properties needed for the proof of Theorem 5 which we give in
the next section. For more information, see [16].

Mixed states: A mixed state {(p;, [¢3))},0 < p; <1,% . p; =1,is aclassical
probability distribution over quantum states |¢;) (which will be called
pure states). The quantum system described by a mixed state is in the
state |t¢;) with probability p;.

Density matrices: A density matrix of a pure state |¢) is [¢)(¢)|. A density
matrix of a mixed state is p = >, pi|1;)(1;|. We often identify the mixed
state with its density matrix.

Unitary transformations and measurements: Definitions of unitary trans-
formations and measurements extend naturally to mixed states. For
example, a unitary transformation U maps a mixed state {(p;,|¥:))}

to {(ps, Uls))}-
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This can be described in terms of density matrices. If, before U, the
system was in a mixed state with a density matrix p, the state after the
transformation is the mixed state with the density matrix UpUT.

If we measure a state with density matrix p with respect to E1 & - -® Ej,
the result is ¢ with probability TrP;p, Tr being the trace of a matrix

(sum of its diagonal entries). The remaining state is P;pP;/TrP;p.

Completely positive superoperators: Transformations allowed by quantum
mechanics are various combinations of unitary transformations and mea-
surements. Any such transformation E has the following properties:

1. Let p be a d x d density matrix and let Ep be the density matrix of
the state which results if we apply E. The transformation p — Ep is
a linear transformation on the d?-dimensional space of d x d matrices.

2. FE is trace-preserving: TrEp = Trp.

3. E is completely positive, i.e. for any additional space H', the trans-
formation E ® I is a positive map on H ® H'.

A transformation satisfying those requirements is called a trace-preser-

ving CPSO (completely positive superoperator). Any trace-preserving

CPSO can be constructed from unitary transformations and measure-

ments [16]. Therefore, these three properties can be taken as an alterna-

tive definition of a “transformation permitted by quantum mechanics”.
Kraus decomposition: For any trace-preserving CPSO A there exists k ma-

trices Aq,..., Ay such that Ele AiA;r =T and Ap = Ele AipAI.
Distance between density matrices: A natural measure of the distance be-

tween two density matrices is the trace distance. The trace norm of a

matrix A is Tr|A| where |A| is the positive matrix square root of AA*

and Tr is the sum of the diagonal entries of a matrix. The trace dis-
tance between po and p; is just the trace norm of po — p1. We will use
the following properties of the trace distance:

1. Trace distance describes distinguishability of quantum states. For
any po and p;, there is a measurement that, given an unknown p;,
produces ¢ with probability at least % + M.

2. The trace distance is nonincreasing. For any CPSO A, we have || Apo—

Apille < llpo — pulle-

3.2.2 Proof of Theorem 5 We start with a proof outline. During this out-
line, we will state 3 lemmas (Lemmas 5, 6, 7) and prove the theorem, as-
suming these lemmas. Then, we will prove the lemmas.

Let E be a sequence Uy, P, Us, Ps, ..., Uy, P;, with the U;s being unitary
transformations and the P;s being measurements (for example, E could be
the unitary transformation + measurement corresponding to reading a letter
or it could be a sequence of unitaries and measurements corresponding to
reading a word). We view E as one operation mapping (mixed) quantum
state p to (mixed) quantum state Ep. E is a particular case of the CPSOs
(completely positive superoperators).

In our case, we have an additional constraint on E. Not every CPSO can
be represented as a sequence Uy, Py, Us, P, ..., U;, P,. For example, a map-
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ping that replaces any quantum state by a fixed state (say, |0)) is a CPSO.
However, it cannot be represented as a sequence Uy, Py, Us, P, ..., Uy,
P, (and is not allowed in NMR, implementations of quantum computing as
well). This constraint is nicely captured by a quantity called Von Neumann
entropy. (The Von Neumann entropy S(p) is defined as — >~ A;log, A;, with
A; being the eigenvalues of p. For this proof, three properties of S are suffi-
cient. These properties are given by Lemmas 4, 8, 9.)

Lemma 4 [}] Let E be a sequence Uy, Py, Us, Ps, ..., U, P, with U;
being unitary transformations and P; being measurements. Then, for any p,
S(Ep) = S(p)-

From this moment, we assume that the transformation corresponding to
each letter z is a CPSO E with the property that S(Ep) > S(p).

We study the effect of repeatedly applying E to a (mixed) quantum
state p. We would like to study the sequence p, Ep, E?p, .... However, this
sequence might not converge (for example, if E is a unitary transformation

10
7=(0).

this sequence is periodic with period 2). To avoid this problem, define E'
as an operation consisting of applying E with probability 1/2 and applying
identity otherwise.

Note 1. This is similar to making a periodic Markov chain aperiodic by
adding self-loops.

Note 2. A similar periodicity problem comes up in quantum walks [1].
There, it is solved by a different approach (Cesaro limit). We think our
approach (introducing E') gives results that are similar to Cesaro limit. In
this paper, we choose to introduce E' instead of using Cesaro limits because
this seems to make analysis of our problem simpler.

Lemma 5 1. For any CPSO E such that S(Ep) > S(p) and any mized
state p, the sequence E'p, (E')?p, ..., (E")ip, ... converges.

2. Let Eygy be the map p — limi_oo(E')'p. Then, Eyy is a CPSO and
S(Eiimp) > S(p) for any density matriz p.

Lemma 6 Let A, B be two sequences of unitary transformations and mea-
surements. Let C = Ayiym Biim and D = Biim Aim . Then, Ciim = Diim.

Assume that we are given an LQFA M. We show that M does not
recognize the language aX'™*.

Let A, B be the transformations corresponding to reading letters a, b.
We also consider Ayim, Biim, C' = AtimBiim, D = Biim Atim, Ciim and Dy,

Intuitively, Aym (Biim) corresponds to reading a long sequence of letters
a (b), with the length being a random variable. Cii, (Diim) corresponds to
a long sequence of a’ and b’ alternating with a’ at the beginning (b7 at the
beginning) If QFA is correct, it must accept if Cy;,, is applied to the starting
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state and reject if Dy;y, is applied. However, by Lemma 6, Cjimn = Diim
which causes a contradiction.

More formally, let p, be the (mixed) state after reading the word z. We
consider two sets of mixed states Q, and @Qp. The set @, (Qp) consists of
all probabilistic combinations of states pas (pbz). Let Qq, Qs be closures of

Qa and Qb-

L_emma 7 Let p bi the state after reading the start marker ¢. Then, Cyimp €
Q. and Dyjp € Qp-

We consider applying the right endmarker and the final measurement to
the state Cpimp = Dyimp. This state belongs to Q.. Therefore, it is a limit
of a sequence p1, p2, ... with each p; being a probabilistic combination
of final states of M on words which belong to aX™*. If M accepts aX*,
applying the right endmarker and the final measurement to any such p;
must cause acceptance with probability at least p. Therefore, M must accept
with probability at least p. On the other hand, since C;mp = Dyimp also
belongs to Qy, M must reject with probability at least p as well. This is a
contradiction, proving that M does not recognize aX*.

To prove the theorem, it remains to prove Lemmas 5, 6 and 7.

Proof: [Lemma 5] Let H(p) = —plog, p — (1 — p)log,(1 — p) be the usual
Shannon entropy and S(p) be Von Neumann entropy of a mixed quantum
state p.

Lemma 8 [] Let 19, 11 be two density matrices and 7 = %T() + %7'1. If there
is a measurement that, given 7;, outputs i correctly with probability at least

p, then
1
S(r) > §(S(T0) +8(m)) +1— H(p).
Lemma 9 [16, Theorem 11.8] For any mized state p in d dimensions,
S(p) < log,d, with the equality if and only if p is a d-dimensional com-
pletely mized state.

Lemma 10 [16, Theorem 11.6] Let 19, 71 be two density matrices and € =
[[7o — 71||¢, € < 1/3 Then,

|S(10) — S(m1)| < €logy d — €log, €.

Let po be the initial state and p;4.1 = E’p; be the sequence we are study-
ing. Since S(Ep;) > S(p;), Lemma 8 implies S(E'p;) > S(p;). Consider the
sequence of numbers s; = S(p;). This is an non-decreasing sequence and,
by Lemma 9, is bounded from above by log, d. Therefore, it converges to a
value sy, -

Moreover, po, p1, --- is a sequence in a closed subset of a finite dimen-
sional space (the set of all d x d density matrices). Therefore, it must have
a limit point p, i.e., p such that, for every € > 0, there exists ¢ satisfying
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[lp — pillt < e. It follows from the continuity of S that S(p) = spim. We will
show that the sequence converges to p.

To show that, it suffices to show Ep = p. If this is the case, then E'p = p.
Therefore,

lpivr — plle = IE'pi — E'plle < |lpi — pll¢-

This means that, if ||p; — pl|; < €, then ||p; —pl||; < € for all j > 4. Therefore,
p is the limit of p;.

It remains to show Ep = p. Assume that this is not true. Then, ||Ep —
plls = & > 0. Define p' = 3(p + Ep). Since trace distance describes distin-
guishability, Lemma 8 implies S(p') > S(p) +1— H (% + ). We now choose
€ > 0 so that elog, d — elog, € < H(% + ). Since p is a limit point, there
exists ¢ such that ||p — p;||: < € Then, ||p' — piz1ll: < €. By Lemma 10,
S(pix1) > S(p") — elog, d + €log, €. This implies S(pir1) > Siim-

However, this is not possible. Let § = S(p;yr1) — sum and pick € so
that elog, d — €log, € < & Then, there exists ¢ such that ||[p — p;|| < e. We
have S(p;) > S(p)—0d = sy, which contradicts S(p;) being a non-decreasing
sequence that converges to sy;,,. Therefore, it must be the case that Ep = p.
This completes the proof of the first part of Lemma 5.

To see the second part, notice that the limit of a sequence of linear maps
on d x d matrices is a linear map on d X d matrices. Furthermore, if each map
is trace-preserving and positive, the limit is trace preserving and positive.
Flnally, S(Elimp) = Slim 2> S(pz) o

Proof: [Lemma 6]
Proposition 1 For a mized state p, Ciimp = p if and only if Dyimp = p.

Proof Tt suffices to prove that Cjp = p implies Dy;p = p since both
directions are similar.

Ciimp = p implies Cp = p. Otherwise, by Lemma 8, S(C'p) > S(p)
and, since S((C")ip) > S(C'p) (Lemma 4), we have S(Crimp) > S(p) and
Climp # p-

We can rewrite Cp = p as Ay Biimp = p- Definition of By, implies
that By = BpmB'. Therefore, Ay BiimB'p = p. Similarly to previous
paragraph, this implies S(B'p) = S(p) and Bp = p. Therefore, B'p = p,
Biimp = p and Agimp = Atim Biimp = p-

This implies Dp = BiimAtimp = Biimp = p and Dyjrp = p. O

Proposition 2 Let A be an arbitrary CPSO. Assume that p is such that
Ap = p. Let H be the support of p (subspace spanned by pure states from
which p consists). Then A(H) C H.

Proof For a contradiction, assume that p' is a state in H which is not
mapped to H by A. We can represent p as a probabilistic combination
ep' + (1 —€)p" where p" is some other density matrix. This implies that p
is not mapped to H either and p # Ap. O
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We now use these two claims to show that, for any p, Ciimp = Diimp-

Let pair = Climp — Diimp- We would like to show that pgg = 0. Ciimp
is fixed by Cj;, and, by Proposition 1, by Dy, as well. Similarly, Dy, p is
fixed by both Dy;,, and Cj;,,,- Therefore, the difference of these two density
matrices is fixed by both C and D as well: Cismpaig = Diimpaigr = Pdiff -

We decompose pgip = p+ — p—, with py being the state formed by
eigenvectors of pg; with positive eigenvalues and p_ being the state formed
by eigenvectors with negative eigenvalues. Then, we must have Cjjp,p4 =
Diyimp+ = py- and Ciymp— = Dygmp— = p—.

Let Hy and H_ be the subspaces spanned by states forming p; and p_
respetively. By Proposition 2, Hy and H_ are fixed by Cj;y, and Dy, .

We consider a measurement which measures a state p with respect to H.
and its complement. The probability of obtaining H is equal to TrPy_ _p
where Py, is a projection to Hy and T'r is the trace of a matrix.

Proposition 3 Let E be a CPSO such that S(Ep) > S(p). Let H be such
that E(H) C H. Then, for any p, TrPyp = TrPgEp.

Proof First, we show that E(H) C H implies E(H+) C H*. To see that,
let |11), ..., |¢k) be a basis for H and let [¢}), ..., [¢]) be a basis for H+.
Let p; be the mixed state that is |¢;) i € {1,...,k} with probability .
Let p2 be the mixed state that is [¢}) ¢ € {1,...,I} with probability ;
Let p = kLle + kLHpQ. Then, S(p1) = log, k and S(p) = log,(k + 1). By
Lemma 4, S(Ep;) > logy k and S(Ep) > logy(k + 1). By Lemma 9 and
the assumption, this means Ep; = p; and Ep = p. Therefore, E(p;) =
E(p — p1) = p— p1 = p2. By Proposition 2, this means that H is fixed by
E.

Next, we show TrPygp = TrPgEp for any p. It suffices to show this for
pure states p = 1) (4] We write [) = valgs) + vI—alts), r) € H,
|p2) € HL. Then, the density matrix of |¢) is

[9) (| = apr + (1 = )p2 + Va(l - a)ps,

p1 = Y1) (1l, p2 = |2)(¢2l,
p3 = Y1) {2 + [1h2) (Y],
Prp = a|1){(i1| and TrPgp = . Since H and H* are mapped to them-
selves by E, the states p; and p, are mapped to mixed states in H and H.

To complete the proof, it suffices to show that TrPgps = 0.
Let Ay, ..., A, be Kraus decomposition of E. Now consider the state

E(|¢1){¢1]). We have

m
E(n) i) = D Ailun) (e [4].
i=1
Remember that E maps H to itself. This is only possible if all A;|t;) are in
H. Similarly, A;|¢»2) € H. Therefore, Eps is a sum of |¢)(¢'|, with one of
|¢) and |¢') in H and the other in H'. For each such matrix, Tr Pr|¢){¢'| =
0. Therefore, TrPgp3 = 0. O
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By this proposition, TrPrg, Ciimp = TrPrg,p = TrPry, Dy, p. This
implies

Trpy =TrPru,pag = TrPra, (Ciimp — Diimp) = 0.
By definition, p; is the part of pg4;z with positive eigenvalues. Therefore,

Trpy = 0iff p; = 0. Similarly, p_ = 0 and we get pgig = 0 and Cjimp =
Diimp. O

Proof: [Lemma 7]

Proposition 4 A(Q,) € Q.; B(Qa) € Qa; A(Qs) C Qs; and B(Qs) C Qs.

Proof A maps pge t0 paze- Therefore, a probabilistic combination of states
Paz gets mapped to a probabilistic combination of states pozq and A(Q.) C
Q.- This implies A(Q.) C A(Q.) C Q.. Other inclusions are similar. O

Proposition 5 Ajim(Qa) € Qa; Aiim(Qb) € Qb; Biim(Qa) C Qa; and
Biim(Qs) C Qp;

Proof Since A(Q,) € @, and A’ is a probabilistic combination of A and
identitLA’(Qa) C Q.- T}Eefore,_(A’)i(Qa) C Qq- Ajim is the limit of (A')%.
Since @, is closed, Ajim(Qa) € Qo Again, other inclusions are similar. O

Proposition 6 Let p be the state of M after reading the left endmarker.
Then, pa = Aiimp € Qo and pp = Biimp € Q-

Proof Tt suffices to prove the first part. Let p; = (A’)ip. This state is a
probabilistic combination of 47p, for j € {0,...,i}. All of those, except for
A%p = p are in Q,. Therefore, (A')!p = %:p+ (1 — 57)pl, pi € Qa-

Let pa = lim; ;o p;. Then, pa = lim;_, p}. Since p; € @4, we have
pa€ Qe O

Furthermore, by Proposition 5, Cp = BiimAiimp = Biimpa € Qa. By
applying Proposition 5 repeatedly, we get C?p = (Biim Aiim)'p € Q4. The
closure of , gives us Climp € Qq. Similarly, from pg € Qj, we get Dp € Qp
and then Dyjp € Qp. O

Theorem 1 now follows from Theorems 2, 4, and by the upper bound
results of this section.

Theorem 4 is proved by means of showing that probabilistic reversible
automata recognize any language in BG. On the other hand, in [10] it is
proved that any other regular language is not recognizable by PRA. Hence
an easy corollary is that LQFA and PRA recognize exactly the same class
of languages.



18 Ambainis et al.

4 Results for BPQFA

Our main result for BPQFA is given below:

Theorem 6 The language L has its syntactic monoid in BG iff it is a
Boolean combination of languages recognized by BPQFA.

Similar to the LQFA case, we first show that Boolean combinations of
languages recognized by BPQFA form a x-variety of languages, and then
we give tight upper and lower bounds for the languages contained in this
variety.

The fact that this class of languages forms a x-variety follows from this
theorem:

Theorem 7 [7] The class of languages recognized by BPQFA is closed un-
der inverse homomorphisms and word quotient.

For the remainder of the section, we will use a technique introduced

in [12] to analyze BPQFAs. Let ¢ be an unnormalized state vector of M.

Define A, = P,,,, Ay, and for any word w = wy ... wy, let Ay, = A; - A}, .

Ify = A’¢|q0), then the vector v,, = A! 1 completely describes the prob-

abilistic behaviour of M on input w, since M halts while reading w with
Yw

probability 1 — |[1),||3 and continues in state o With probability (|40 |3

4.1 BPQFA lower bounds

Theorem 8 Any language whose syntactic monoid is in BG is a Boolean
combination of languages recognized by BPQFA.

Proof A general construction for X*aq X*as ... apX* was given in [7]. We
augment this construction so that it recognizes L defined by w € L iff
w = WeaiwWi ...awWy, where for each i, woaiw; ...w; € L; for some pre-
specified group language L;. By the cancellative law of groups and the clo-
sure properties, this is sufficient to prove the theorem. We present their
construction here in full with minor modifications. As above, we adopt the
point of view that the state vector is unnormalized.

The key to their construction is what they call a trigger chain. A trigger
chain recognizing ai,...,a; is constructed out of interleaved 3-tuples of
states, one for each a; with ¢ > 2. A link in the chain is activated by the
following transition:

1 1 1

3 A2
T 0 -1
TSP

2 V2 2

Whenever the middle element is 0 in a three-element vector, T has the
following effect:

T(0,0,8)7 = (2 +5 AN
(Ot, 7ﬂ) _<_+§7___ §+_>
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Thus if o and § are positive reals, then T averages the amplitude between
the first and the third element, and places any excess amplitude into the
middle state. If @ = S, then the trigger will have no effect. In the con-
struction, the middle state will correspond to a rejecting state and so its
amplitude will always be 0 at the beginning of every transition. Also define
T; to be the matrix that acts as T on states 4, 1 + 1, and ¢ + 2, and as the
identity everywhere else.

Now a machine M = (Q, X, qo,{As}, Qace; @rej) is constructed to rec-
ognize X*a; X* ... X*apX* using 2k + 3 states as follows:

Q = {q0> B 7q2k+2}7
Qrej = {CIh g3, --y92k—3,92k+1, Q2k+2},

Qacc = {q2k—1 }

To simplify the construction of the transitions, we will define I,,, to be

the m x m identity matrix, and R = (1) (1] .
For each character o € X, we define A, = U,y ... Uy, where for each i,
R
ifi=0and a; = o,
U — JEYRE]
7 T21;4 if2§i§kanda1:0,
Dopys otherwise.

2k

We define the initial transition A¢ such that Ag|go) =Y i, ﬁ |g2i),

and finally we define Ag = F'T5; o, where:

Lix-1)®R
00001
01000
00010
00100
10000

Here is an outline of the proof of correctness given in [7]. Initially, after
reading ¢ the amplitude is distributed among the nonhalting states. When
ay is read, the amplitude of ¢y becomes 0 and M halts and rejects with small
probability. If as is now read then states g2 and g4 are averaged, causing a
bounded decrease in amplitude of g4. Inductively, there will be a bounded
amount of amplitude in the accepting state g1 if and only if aq, ..., ax
and the endmarker were read in sequence. The I5;_;) ® R submatrix serves
to channel all the unused amplitude into the rejecting states.

Now given M we construct M' = (Q', X, ¢}, {As}, Qleer @Le;) tO TEC-

rej

ognize L. For all ¢ let G; = M(L;). Also let ¢; : ¥* — G; and F; be
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such that cp;l(Fi) = L;. We can compose these groups into a single group
G =Gy x -+ x G}, with identity 1 = (1,1,...,1) and |G| =m.

Let QL. = Qace X (G1 X -+ x Gp-1 x Fy,). For the endmarkers, define
Ay = (A¢ ® Iy) and Ay = (Ag ® Iy,). For each 0 € X, we define A, =
P,U.,,...,U},. Each U, is the matrix that acts as U,; on ) x { f} for each
fE€GLX - xGiaxF;uy xG; X --x Gy, and as the identity everywhere else.
Finally P, is a permutation matrix such that P,|q, g) = |g, go) for all |q, g).

The transition matrices are constructed so that, after reading any partial
input w, the state vector will be in the subspace E = span{|q, lw) : ¢ € Q}.

The construction contains k + 1 triggers. If a series of such triggers are
activated in sequence, then as the last trigger is applied there will be a
bounded amount of amplitude sent to the last trigger’s middle state. For
1 < ¢ < k the ith trigger is activated when a; is read at the same time
that the current group element is in the set F;-;. When the right endmarker
is read, the last trigger is activated. This places amplitude into (g2i—1,9)
(where g is the current group element) if and only if ay, . . ., ax are read in the
correct context in order. Finally, we accept only if the current group element
g is in Fj. M' rejects with probability 1 any word not in the language,
and accepts any word in the language with bounded probability, thus M’
recognizes L. 0O

4.2 BPQFA upper bounds

As discussed at the start of the section, we take the states of the BPQFA
to be unnormalized. The following lemma nicely characterizes the behavior
of the operation A = P,,,A,, and thus is very useful for showing upper

bounds on BPQFA:

Lemma 11 [3] Let {z,y} C X*. Then there are subspaces Ei, FEs s.t.
E,on = FE1 ® FE> and

—ifp € Ey, then AL (¢) € Ey, AY(¢) € Eq, and ||A3(¥)]l2 = [|4,()]|2 =
1]

—if ¢ € Es, then for any € > 0, and for any word t € {z,y}* there exists
a word t' € {z,y}* such that ||Aw (¥)||2 < €.

Theorem 9 The languages aX™* and X*a cannot be expressed as Boolean
combinations of languages recognized by BPQFA.

Proof We will begin with the aX* result. By closure under inverse homo-
morphisms, it is sufficient to show this for X' = {a, b}. Let M be a BPQFA
that recognizes L with probability p, and let 1) = A (|go)). The first step
is to show that for any two prefixes v,w € {a,b}" and any € > 0, there
exists v',w’ € {a,b}* such that [|A} ¢ — A} 9|2 < e. Thus if € < |/p,
it follows that M cannot distinguish between vv' and ww' with sufficiently
large probability. As in Lemma 11, separate E,,, into two subspaces E;
and E, with respect to the words x = a and y = b. Then we can rewrite v
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as ¢ = 11 + 1, where ¢; € E;. By the lemma, and since A, and A} act uni-
tarily on Ej, for any ¢’ there exists v’ and w' such that ||A!,, ¥ — 1|3 < &’
and ||A4},,,/% — 1|3 < €'. For any fixed ¢, we can find a sufficiently small &'
so that ”A;)v”ﬁ - AIww’¢||% <e.

Suppose L is a Boolean combination of m languages Ly, ..., L,,, with
each L; recognized by a BPQFA M;. As above, we can construct induc-
tively on the L; languages two words v = v1vs2...vy, € {a,b}* and w =
WiWs ... Wy, € {a,b}* such that av and bw are indistinguishable for every
M;. Thus we must have either {av,bw} C L or LN {av,bw} = B, and in
either case L # aX™*. For the construction, we first we choose v; and w; so
that, for all v' and w', av1v' and bwiw' are indistinguishable by M;. Given
that, for all v’ and w', av; ...v;-1v" and bw; ... w;-1w' are not distinguish-
able by any of My, ..., M;1; we construct v; and w; so that, for all v' and
w', avy ...v0" and bw; ... w;w' are indistinguishable by M;.

A similar analysis can be used to show the X*a result. Consider a single
BPQFA M recognizing L with probability p. Let 1) = Ag|qo) be the initial
state. Let b € X\{a}, and let E; and E5 be as in Lemma 11 with £ = a and
y = b. We can uniquely split 9 into 11 + 2, where ¢; € Ey and ¢ € Es.

Suppose L is a Boolean combination of m languages L4, ..., L,, where
each L; is recognized by some BPQFA M; with probability p;. For any e,
we can construct a word w = wy . .. w,, such that, for all w’, the condition
|A!, . v—A. . Yill2 < €is met by each M;. If we choose e < \/min{p;}, then

ww’
there is an & such that for all 4, machine M; satisfies: [|A!  .—A, .ll2 <
p;- Thus we must have either {ww'ab®, ww'a} C L or {ww'ab®, ww'a}NL =

(0, and in either case L # X*a. O

Theorem 6 now follows from Theorems 7, 8, and 9.

Note that in our characterization we have to take ‘Boolean combinations’
because BPQFA are not closed under complement. This follows from the
theorem below:

Theorem 10 For any a # b and for any X satisfying {a,b} C ¥, BPQFA
cannot recognize X*bX*aX*.

By closure under inverse homomorphisms it is sufficient to prove the
result for X' = {a,b}. In this case, Y*bX*aX* = a*b*. Our proof will make
frequent use of the following corollary to Lemma 11:

Corollary 1 For any KWQFA (or BPQFA) M and word w we can de-
fine subspaces B ® EY¥ = Epopn such that ¢ € E¥ implies (A!) (1) =
(Aw)i (1) for all i, and 2 € EY implies lim;_, o, [|(A",)) 2|2 = 0.

Any ¢ € E,,, can be uniquely decomposed into ¢; + ¢ so that ¢; €
EY and ¢¥ € EY. The components ¢; and ¢, are called the ergodic and
transient parts of ¢, respectively.

We now establish a relationship between projection operations and idem-
potents. A projection is any linear operation P satisfying P? = P. Let us
define the following weaker class of operations:
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Definition 1 We say that any linear operator P is an E,,,-projection if
for all ¢ € Epon we have P2y = Py and Py € E,pp.

Thus if we restrict our attention to vectors in FE,,,, then P will behave
exactly as a projection operator. This is relevant to our situation since the
state 1 of M after reading some partial input must satisfy ¢ € E,op,-

Claim 2 Any E,,,,-projection P can be simulated by a unitary transforma-
tion U and the BPQFA measurement.

Proof Assume w.l.0.g that |Qre;| > |Q\Qre;| (if this is not the case, then
we can simply augment M with the required number of Q,.; states). Let
S = {Py : 1 € Epon}. Note that S is a subspace. Let S be the subspace
such that S ® S = E,.,. Now to simulate the E,,,-projection, we choose
U to be the operation that rotates S into E,.;. Any amplitude that was in
S will be removed when the BPQFA measurement is applied. O

Let L be a language recognized by a BPQFA M with probability p, and
let ¢ : ¥* — M(L) be the syntactic morphism. Clearly, if A is an Ey -
projection, then ((a) must be idempotent (i.e. p(a) = e = €%). We claim
that the following converse is also true:

Claim 3 Let L, M, p, and ¢ be as above, and let p(a) be an idempotent. Let
M' be the machine constructed by replacing each A!, with an Ey.n-projection
onto EL. Then M' also recognizes L with probability p.

Proof Suppose that M' does not recognize L with probability p. Thus, either
M'" accepts some word w € L with probability p,, < p, or M' accepts some
word w ¢ L with probability p,, > 0. We consider the former case, the latter
is similar.

Define ¢ so that \/p = \/Pw + €. Let k be the number of occurences of
a in w. Note that k& > 0, otherwise M and M’ would accept w with the
same probability. Let w = wpaw; . .. wg-1awy, with w; € (X\{a})*. Let U
be a unitary matrix such that U’ is the E,,,-projection onto El. We set j
to be such that ||(A},) ¢ — U'd|]2 = &' < £ for all ¢ € Enon (we know by
Corollary 1 that such a j exists). Now consider:

w =wodwy ... wi-10’ wy.

We have w' € L since p(a) is idempotent. Let ¢ = |go) be the initial state
of M. Note that, for all ¢, A, A, ¢ = U, A}, & + £ for some & satisfying

a“two

[|€]]2 < €. So there exists a vector & such that ||&||2 < &' and:
A (ALY - AL (AT AL 0 = Ay (AL - A, (U ALY +E)
= A, (AL - AL U A b+ &

In general there exists vectors &;, 1 < ¢ < k, such that ||&||2 < &' for all 4,
and:

AL (AG) - Ay (A A = A, U - A, U A ¢+Z§z
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and so:

P[M accepts w'] = |

Pacc Al (A;,k U AL U AL b+ 52) ‘

< (I1Pacedty (44, 0"+ A, U AL 0) |, + D60l
< (VPw+e) =p.

The original M accepts w' with probability strictly less than p, a contra-
diction. O

Proof (Theorem 10) Now suppose M is a BPQFA machine that recognizes
a*b* with probability p. We will show that such an M cannot exist. By
Claim 3, we can assume without loss of generality that A! and Aj are
E,,n-projections.

For any M and w, we can define E, ,.; to be the set of all vectors
Y € Ep,p such that Al ¢ € E,.; (if M halts with certainty before w is
processed then A! ¢ = 0 € E,;). It is easy to show by linearity that E, r;
is a subspace. For shorthand, define:

E, = m Ewbzay&rej’ Ep = ﬂ Ema?l*ﬂ‘ej’ By = ﬂ Ey$’”j'
w,T,yeEX* z,YyEXL* yex:

Also define Eg be the subspace such that Eg & Eg = C". Note that
E, C Eg C E,, and the initial state 1) = Ag|go) is in E,. The subspaces
are defined so that ¢ € E, implies A} ¢ € Eg and ¢ € Egimplies AL ¢ € E,.

Let Al 1) = 1),. The vector 9, can be uniquely decomposed into 1, +¢5,
where o € E, N Eg and ¢3 € Eg . We claim that ¢)5 € E,. Let Py be the

projection operator onto Eg. Now:

Yo + s = A:z("vba + wﬁ) = Pﬁ(wa + ’lﬁﬁ) = PE(A;('L/}(I +¢ﬁ))
= tho = P_(AI %)
== ¢a = A "pa

and so:

Yo + 95 = Ay (Yo +¥p) <= Yo + Y5 = tha + Ap
= 5 = As.
From ¢3 € Eg it follows that ALz € E,, and thus ¢¥3 € E,. Now
consider ¥qp = A} (1o + ). Since A} (1o + ng) € Eg and A}z € Eg, we
must have Ay, € Eg. But ¢, L Eg and A} is an E,,,-projection, so we

must have A}y, = 0. Thus 9a = A}s + Ajg = Ajpg € E,,. Thus, ab is
rejected with certainty, a contradiction. 0O
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5 Conclusion

In this paper we have produced algebraic characterizations for the languages
that can be recognized by Brodsky-Pippenger Quantum Finite Automata
and by a new model which we called Latvian Quantum Finite Automata. A
somewhat surprising consequence of our results is that the two models are
equivalent in power, up to Boolean combinations. It has been shown that a
language L is recognizable by an LQFA iff its syntactic monoid is a block
group; hence membership in the class is decidable. The situation is more
complicated for BPQFA since the corresponding class of languages is not
closed under complement. The good news is that we have shown that the
class forms what is known as a positive *-variety and thus is amenable to
algebraic description through the mechanism of ordered monoids [19]. We
know that this positive *-variety strictly contains the regular languages that
are open in the group topology and a precise characterization seems to be
within reach.

Another open problem is to find an algebraic characterization of the
Kondacs-Watrous model. It is an easy consequence of our results on BPQFA
that KWQFA can recognize any language whose syntactic monoid is in
BG. However, outside of BG the question of language recognition is still
unresolved.

The class of languages recognized by KWQFA is known not be closed
under union [3], hence does not form a *-variety. It is nevertheless meaning-
ful to ask for an algebraic description of the x-variety generated by those
languages. We conjecture that the right answer involves replacing block
groups by a 1l-sided version V of this M-variety defined by the following
condition: for any e = €% and f = f? in M, eM = fM imply e = f. The
corresponding variety of languages can be described as largest variety that
does not contain X*q for |X| > 2.
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