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Abstract. We use tools from the algebraic theory of automata to inves-
tigate the class of languages recognized by two models of Quantum Finite
Automata (QFA): Brodsky and Pippenger’s end-decisive model, and a
new QFA model whose definition is motivated by implementations of
quantum computers using nucleo-magnetic resonance (NMR). In partic-
ular, we are interested in the new model since nucleo-magnetic resonance
was used to construct the most powerful physical quantum machine to
date. We give a complete characterization of the languages recognized by
the new model and by Boolean combinations of the Brodsky-Pippenger
model. Our results show a striking similarity in the class of languages
recognized by the end-decisive QFAs and the new model, even though
these machines are very different on the surface.

1 Introduction

In the classical theory of finite automata, it is unanimously recognized that the
algebraic point of view is an essential ingredient in understanding and classify-
ing computations that can be realized by finite state machines, i.e. the regular
languages. It is well known that to each regular language L can be associated a
canonical finite monoid (its syntactic monoid, M (L)) and unsurprisingly the al-
gebraic structure of M (L) strongly characterizes the combinatorial properties of
L. The theory of pseudo-varieties of Eilenberg (which in this paper will be called
M-varieties for short) provides an elegant abstract framework in which these
correspondences between monoids and languages can be uniformly discussed.
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Finite automata are a natural model for classical computing with finite mem-
ory, and likewise quantum finite automata (QFA) are a natural model for quan-
tum computers that use a finite dimensional state space as memory. Quantum
computing’s more general model of quantum circuits [19] gives us an upper bound
on the capability of quantum machines, but the fact that several years have
passed without the construction of such circuits (despite the efforts of many sci-
entists) suggests that the first quantum machines are not going to be this strong.
Thus it is not only interesting but practical to study simpler models alongside
of the more general quantum circuit model.

There are several models of QFA [17,15,8, 5,9, 7] which differ in what quan-
tum measurements are allowed. The most general model (independently [9] and
[7]) allows any sequence of unitary transformations and measurements. The class
of languages recognized by this model is all regular languages. In contrast, the
model of [17] allows unitary transformations but only one measurement at the
end of computation. The power of QFAs is then equal to that of permutation
automata [17,8] (i.e. they recognize exactly group languages). In intermediate
models [15,8,5], more than one measurement is allowed but the form of those
measurements is restricted. The power of those models is between [17] and [9,
7] but has not been characterized exactly, despite considerable effort [4,2]. The
most general model of QFAs describes what is achievable in principle according
to laws of quantum mechanics while some of the more restricted models cor-
respond to what is actually achieved by current implementations of quantum
computers.

In view of the enduring success of the algebraic approach to analyze classical
finite state devices, it is natural to ask if the framework can be used in the
quantum context as well. The work that we present here answers the question
in the affirmative. We will analyze two models of QFA: the model [8] and a
new model whose definition is motivated by the properties of nucleo-magnetic
resonance (NMR) quantum computing. Among various physical systems used to
implement quantum computing, liquid state NMR has been the most successful
so far, realizing quantum computers with up to 7 quantum bits [26]. Liquid
state NMR, imposes restrictions of what measurements can be performed, and
the definition of the new model reflects this. In both cases we are able to provide
an algebraic characterization for the languages that these models can recognize.
It turns out that the class of languages recognized by these two models coincide
almost exactly (that is, up to Boolean combinations), which is quite surprising
considering the differences between the two models (for example, the NMR model
allows mixed states while the [8] model does not). It is a pleasant fact that
the M-variety that turns up in analyzing these QFA is a natural one that has
been extensively studied by algebraists. Besides using algebra, our arguments
are also based on providing new constructions to enlarge the class of languages
previously known to be recognizable in these models, as well as proving new
impossibility results using subspace techniques (as developed in [4]), information
theory (as developed in [18]), and quantum Markov chains (as developed in [3]).
In particular, we show that the Brodsky-Pippenger model cannot recognize the



language aX* (it is already known [15] that X*a is not recognizable), and that
our new quantum model cannot recognize aX™* or X*a.

The paper is organized as follows. In Section 2 we give an introduction to the
algebraic theory of automata and we define the models. In the next two sections
we give our results on the two models we introduced, and in the last section we
outline some open problems.

2 Preliminaries

2.1 Algebraic theory of automata

An M-variety is a class of finite monoids which is closed under taking sub-
monoids, surjective homomorphisms, and direct products. Given an M-variety
V, to each finite alphabet X we associate the class of regular languages V(X*) =
{L € X*: M(L) € V}. It can be shown that V(X*) is a Boolean alge-
bra closed under quotients (i.e. if L € V(X*) then for all w € X* we have
wlL={z:wre L} e€V(E*) and Lw~! = {z: zw € L} € V(X*)) and inverse
homomorphisms (i.e. if ¢ : ¥* — X£* is a homomorphism and L € V(X*), then
¢ Y(L) € V(X*)). Any class of languages satisfying these closure properties is
called a x-variety of languages. A theorem of Eilenberg [10] says that there is a
1-1 correspondence between M-varieties and *-varieties of languages: a driving
theme of the research in automata theory has been to find explicit instantiations
of this abstract correspondence.

The M-variety that plays the key role in our work is the so-called block
groups [20], classically denoted BG. This variety is ubiquitous: it appears in
topological analysis of languages [20], in questions arising in the study of non-
associative algebras [6] and in constraint satisfaction problems [14]. It can be
defined by the following algebraic condition: M is a block group iff for any
e=¢€2and f = f2in M, eM = fM or Me = M f implies e = f. For any
language L, M (L) is a block group iff L is a Boolean combination of languages
of the form LgajiL; ...axLy, where each a; € X and each L; is a language that
can be recognized by a finite group: this class of languages is the largest x-variety
that does not contain aX* or X*a for arbitrary alphabet satisfying |X| > 2 [20].

2.2 Models

We adopt the following conventions. Unless otherwise stated, for any machine
M where these symbols are defined, () is the set of classical states, X is the
input alphabet, go is the initial state, and Qacc C Q (Qre; C Q) are accepting
(rejecting) states. If Qqcc and Qye; are defined then we require Quec N Qrej = 0.
Also, each model in this paper uses distinct start and endmarkers, ¢ and $
respectively. On input w, M processes the characters of ¢w$ from left to right.

Let |@Q| = n. For all QFA in this paper, the state of the machine M is a
superposition of the n classical states. Superpositions can be expressed mathe-
matically as vectors in C". For each ¢ € Q we uniquely associate an element of



the canonical basis of C", and we denote this element |¢). Now the superposi-
tion can be written as the vector > €@ a;|g;). We say a; is the amplitude with
which we are in state g;. We now require each such vector to have an ls norm
of 1, where the Iy norm || > a;|g:)||2 of - a;lg:) is 4/ |a;|?. Superpositions are
also sometimes called pure states. There are also cases where the quantum state
of the machine is a random variable; in other words, the state is a ‘classical’
probability distribution of superpositions {(p;, ;) }, each ; with probability p;.
In this case we say the system is in a mized state. Mixed states can be expressed
in terms of density matrices [19], and these are usually denoted p.

A transformation of a superposition is a linear transformation with respect
to a unitary matrix. A € C**" is called unitary if A* = A~!, where A* is
the Hermitian conjugate of A and is obtained by taking the conjugate of every
element in AT. Unitary transformations are length preserving, and they are
closed under product. A set {4, } of transformations is defined for each machine,
with one transformation for each o € X U {¢, $}.

An outside observer cannot gain a priori information about the state of a
quantum mechanical system except through a measurement operation. A mea-
surement, of a superposition 1 probabilistically projects ¥ onto exactly one of
J prespecified disjoint subspaces E; @ --- @ E; spanning C*. The index of the
selected subspace is communicated to the outside observer. For all 4, let P; be
the projection operator for F;. Then the probability of projecting into F; while
measuring Ey @ --- ® Ej is ||Pi||3.

We will consider two modes of acceptance. For a probabilistic machine M,
we say M recognizes L with bounded (two-sided) error if M accepts any w € L
and rejects any w ¢ L with probability at least p, where p > % We say M
recognizes L with bounded positive one-sided error if any w € L is accepted with
probability p > 0 and any w ¢ L is rejected with probability 1.

Liquid state NMR is the technique used to implement quantum computing
on 7 quantum bits [26]. NMR uses nuclei of atoms as quantum bits, and the
state of the machine is a molecule in which 7 different atoms can be individ-
ually adressed. One of features of NMR is that quantum transformations are
simultaneously applied to a liquid containing 10?! molecules. Thus, we have
the same quantum computation carried out by 10?! identical quantum comput-
ers. Applying a measurement is problematic, however. On different molecules,
the measurement can have a different result. We can determine the fraction of
molecules that produce each outcome, but we cannot separate the molecules by
the measurement outcome. Because of that, the operations performed cannot
be conditional on the outcome of a measurement. On the other hand, measure-
ments which do not affect the next transformation are allowed. This situation is
reflected in the definition of our new model, given below:

Latvian QFA (LQFA). A superset of this model has been studied in [18,5]. A
LQFA is a tuple M = (Q, X, {A,},{Ps}, 90, Qacc) such that {A,} are unitary
matrices, and {P,} are measurements (each P, is defined as a set {E1,..., E;}
of orthogonal subspaces). We define Qre; = Q\Qqcc and we require that Py



is a measurement w.r.t. Eooe ® Erej, where Egee = span{Qqcc} and E,.; =
span{Qre;}- Let ¢ be the current state. On input o, ' = A,¢ is computed
and then measured w.r.t. P,. After processing the §, the state of M will be
in either E,.. or E,.; and M accepts or rejects accordingly. The acceptance
mode for LQFA is bounded error. This model is introduced as QRA-M-C in the
classification of QFAs introduced in [12].

Also in [12], a probabilistic automata model related to LQFA was introduced,
which they called ‘1-way probabilistic reversible C-automata’ (we abbreviate
this to PRA). A PRA is a tuple M = (Q,X,{A4s},q0, Qacc), where each A,
is a doubly stochastic matrix. A matrix is doubly stochastic if the sum of the
elements in each row and column is 1. The acceptance mode for PRA is bounded
error. The two models are related in the following way: If M is a LQFA such
that each P, measures with respect to P, .o span{|q)} for every o € X, then
M can be simulated by a PRA. Conversely, a PRA can be simulated by a LQFA
if each A, of the PRA has a unitary prototype [12]. A matrix U = [u;;] is a
unitary prototype for S = [s;;] if for all é,5: |u; ;> = s;;. When S has a unitary
prototype it is called unitary stochastic [16]. This relationship between LQFA
and PRA is helpful in proving that certain languages are recognized by LQFA.

Brodsky-Pippenger QFA (BPQFA). The BPQFA model is a variation on
the model introduced by Kondacs and Watrous [15] (we will call this model
KWQFA). A KWQFA is defined by a tuple M = (Q,X,{As}, %0, Qace, Qrej)
where each A, is unitary. The state sets Qqcc and @Qre; will be halt/accept
and halt/reject states, respectively. We also define Qpnon = Q\(Qace U Qrej) to
be the the set of nonhalting states. Lastly, for u € {acc,rej,non} we define
E, = span{Q,}, and P, to be the projection onto E,. Let 1) be the current
state of M. On input o the state becomes ¢’ = A, and then ¢’ is measured
w.r.t. Egee ® Erej ® Epop. If after the measurement the state is in Eyc. or Epj,
M halts and accepts or rejects accordingly. Otherwise, 1)’ was projected into
E,on and M continues. We require that after reading $ the state is in E,,,,, with
probability 0. The acceptance mode for KWQFA is bounded error.

The BPQFA model is one of several variations introduced by Brodsky and
Pippenger in [8], which they called ‘end-decisive with positive one-sided error’.
A BPQFA M is a KWQFA where M is not permitted to halt in an accepting
state until § is read, and the acceptance mode is changed to bounded positive
one-sided error. Any BPQFA can be simulated by a KWQFA [8].

3 Latvian QFA
Our main result for this model is a complete characterization of the languages
recognized by LQFA:

Theorem 1. LQFA recognize exactly those languages whose syntactic monoid
is in BG.

Proof: We begin by showing that the languages recognized by LQFA forms a
x-variety of languages. It is straightforward to show:



Theorem 2. The class of languages recognized by LQFA is closed under union,
complement, inverse homomorphisms, and word quotient.

Next, to prove that LQFA cannot recognize any language whose syntactic monoid
is not in BG, we need to show that LQFA cannot recognize X*a or aX*. We
note that LQFA are a special case of Nayak’s EQFA model [18], and EQFAs
cannot recognize X*a. We sketch the proof that aX* is not recognizable below.

Theorem 3. LQFAs cannot recognize aX™*.
Finally, we prove the following theorem below:
Theorem 4. LQFAs recognize any language whose syntactic monoid is in BG.

This will compete the characterization. O

Proof of Theorem 3 (sketch) Suppose the LQFA M recognized aX*. Let p,,
be the state of M on reading w as a density matrix. Suppose ¢ and 7 are of the
form o = 3, cscaxs PuPus T = D yerchss PuPuw With 3°p, = 1. By linearity
we can distinguish between ¢ and 7 using Py with some fixed probability p > 1/2.
We show that a sequence 01,09, ... of ¢ matrices and a sequence 71, 72,... of T
matrices converge to the same limit, causing a contradiction.

We will need some notions from quantum information theory [19]. A com-
pletely positive superoperator is a linear operation that is a completely positive
map on the space of d x d (particularly, density) matrices. For any density matrix
p, the Von Neumann entropy S(p) of p is Y —\;log \;, where the )\;s are the
eigenvalues of p. It can be shown that any sequence of unitary transformations
and measurements forms a CPSO E satisfying S(Ep) > S(p) for any p.

For all CPSOs E, we define E' to be the (CPSO) operation that performs
the operation E with probability 1/2, and the identity otherwise.

Lemma 1. For any CPSO E such that S(Ep) > S(p) and any mized state p,
the sequence E'p, (E')?p. .. converges. Let Ejyy, be the map p — lim;_o0 (E')p.
Then, Eyipm, is a CPSO and S(Eymp) > S(p) for any density matriz p.

Lemma 2. Let A, B be two sequences of unitary transformations and measure-
ments. Let C = Ajjm Biim and D = By Atim . Then, Clim = Diim .

Let A, B, be the operations corresponding to reading a, b. We also consider
Atim, Biims C = AtimBlim, D = Blim Atim, Crim and Dy, Let Q4 (Qp) be the
set of density matrices corresponding to all probabilistic combinations of states
Paz (pbz)- Let Q, and Qp be the closures of @, and Q.

Lemma 3. Iﬁ p be the state after reading the start marker ¢. Then, Cyimp € Q.
and Dyimp € Q.

By Lemmas 2 and 3, there exists sequences corresponding to Cp;mp and
Dyim p, that are respectively probabilistic combinations of p,, and ps,, and they
converge to the same limit. O

The next theorem will assist in our proof of Theorem 4.



Theorem 5. LQFA can recognize languages of the form X*a; X* .. . apX*.

Proof: We start with construction of a PRA that recognizes X*a; X* ...ap 2"
with probability ("T'l)k, where n is any natural number. We construct our PRA
inductively on the length of the subword. For ¥ = 1 we construct M) =

(QW, o, £, {AL}, QL)) as follows. Let Q) = {gg,qn,...,qn}, AY = L1

(where 1 is a n X n matrix of all ones), Af,l) =TI for all ¢ # a1, and Q((Ilc)c =

QW\{qo}. It is easy to check that this machine accepts any w € X*a; X* with
probability (21) and rejects any w ¢ ¥*aX* with probability 1.

Assume we have a machine M1 = (QUV ¢, %, {A,(,i_l)},Q,(fc_cl)) recog-
nizing inputs containing the subword a; ...a;1 with probability (Z1)*!, we
construct M@ = (Q(i),qo,E,{A((,i)},Qgc)c) recognizing inputs containing the
subword a; . ..a; with probability ("T'l)z Our augmentation will proceed as fol-
lows. First let Q,(lic)c be a set of (n-1)’ new states all distinct from QU1 and let
QW = Q) U Q.. For each of the states ¢ € Q2 we uniquely associate n-1
states g2,...,qn € Q((fc)c. We leave ¢y unchanged.

Finally, we construct each Affi) from Afri_l). Define AEJ‘” to be the transfor-
mation that acts as A5 on Q0D ¢ Q@ and as the identity elsewhere. We let
Af,i) = A((,i_l)B,(,i), where B((,i) is an additional transformation that will process
the a; character (note that the matrices are applied from right to left). For all
o # a; we define B,(,i) = I. For 0 = a; and we define B((,i) so that, independently
for each ¢ € foc_cl ), the transformation %1 is applied to {q,¢2,4s3,---,qn}. At the
end we have a machine M = M) that recognizes X*a; X*, ..., ap X*.

To simplify notation, we define Q(©) = ngc)c = {qgo} and Bgl) = A,(Tl) for all
o. The correctness of the construction follows from this lemma:

Lemma 4. Let w be any word. As we process w with M, for all 0 < i < k the
total probability of M being in one of the states of Q) is nonincreasing.

Proof of Lemma 4: Every nontrivial A, matrix can be decomposed into a
product of B((l? matrices operating on different parts of the state space. All of
these matrices operate on the machine state in such a way that for any {q,q'} C
Ef;’c, at any time there is an equal probability of being in state ¢ or ¢'. Thus
it is sufficient to keep track of the total probability of being in ngc)c. For any
S C @, denote by P(S) the sum probability of being in one of the states of S.
For all 0 < i < k the machine can only move from Q® to Q\Q) when

iji} ) is applied, and this matrix has the effect of averaging Qgic)c Qgictl). Since

|Q[(jctl)| = (n-1) |Q,(fc)c|, it follows that a Bffﬂ ) operation will not increase P(Q®)
unless P( ((::21)) > (n-1)P( 2’20) It can easily be shown by induction on the
sequence of B((L?) matrices forming the transitions of M that this condition is

never satisfied. Thus P(Q(?) is nonincreasing for all 4. O

First we show that any w ¢ L is rejected with certainty. The transitions
are constructed in such a way that M can only move from Q1 to Q upon



reading a;, and M cannot move from QU1 to QY in one step (even if a; =
a;y1)- Next we show that any w € L is accepted with probability ("T'l)k After

reading the first aq, P( E}Jc) > ("T'l) and by Lemma, 4 this remains satisfied until

as is read, at which point M will satisfy P(Q%) > (’%)2 Inductively after

reading subword a, M satisfies P(Qqcc) > ("T'l)k Thus M indeed recognizes
a1 X* . oap X,

All that remains is to show that we can simulate each A, using LQFA trans-
formations. Recall that each A, is a product of Bc(f,.)
ferent parts of the state space. If each B((l? has a unitary prototype, then each
A, could be simulated using the series of [ transformations and measurements.
We first show that we can collapse this operation into one transformation and
one measurement. Assume we have a sequence of | unitaries U; on a space E,
each of them followed by a measurement E;; @ --- @ Ej,. Define a new space
E' of dimension (dim E) - [], k;. It is spanned by states [¢)|51) ... [j), [¢) € E,
Ji € {0,...,(k;-1)}. Each U; can be viewed as a transformation on E' that
acts only on the [¢) part of the state. Replace the measurements by unitary
transformations V; defined by:

matrices operating on dif-

Vil)g) - - 1) - Lda) = [)gn) - - - [(di + 5) mod ki) ... |ji)

for |¢) € E;;. Consider a sequence of | unitaries and ! measurements on E.
Starting from |¢), it produces a mixed state {(p;,|1;))}, where each (p;, [1;))
corresponds to a specific sequence of measurement outcomes. Then, if we start
[¥)g1)---|41) and perform Uy, Vi, ..., Ui, Vi and then measure all of ji, ..., ji,
the final state is [¢;)|j1) ... |j;) for some j{, ..., j; with probability p;. Thus,
when we restrict to [¢)) part of the state, the two sequences of transformations
are effectively equivalent. Finally, composing the U; and V; transformations gives
one unitary U and we get one unitary followed by one measurement. It is now
sufficient to prove that each B,(f;.) has a unitary prototype.

Observe that any block diagonal matrix such that all of the blocks have
unitary prototypes is itself a unitary prototype, and that unitary prototypes are
trivially closed under permutations. Each BL(,? can be written as a block diagonal
matrix, where each block is the 1 x 1 identity matrix or the %1 matrix, so it
remains to show that there is a unitary prototype for %1 matrices. Coincidentally
the quantum Fourier transform matrix [19], which is the basis for most efficient
quantum algorithms, is a unitary prototype for %1. This completes the proof
that A, can be simulated by an LQFA, and the proof of the theorem. O

Proof of Theorem 4: We give a PRA construction recognizing the language
L defined by w € L if and only if w = woayws ...axwy where for each 1,
woaiws ... w; € L; for some prespecified group languages Ly, ..., L;. By the
cancellative law of groups, this is sufficient to show that PRA recognize any lan-
guage of the form LgaiLs ...a L. We will see that each transition matrix has
a unitary prototype, thus there is an LQFA recognizing this language as well.



This along with the closure properties of LQFA is sufficient to prove that any
language whose syntactic monoid is in BG is recognized by an LQFA.

For all i let G; = M(L;). Also let ¢; : ¥* — G; and F; be such that
cpi_l(Fi) = L;. We compose these groups into a single group G = Gg X --- X Gy,
with identity 1 = (1,1,...,1).

Let M = (Q,q0, X, {As}, Qacc) be a PRA recognizing the subword a; ... ag
constructed as in Theorem 5. From M we construct M' = (Q', ¢, X, {AL}, @'0)
recognizing L. We set Q' = Q x G, ¢ = (90,1), Qboe = Qace X Fi, and Ag =
Ag = I. For each 0 € X' define A] as follows. Let P, be the permutation matrix
that maps (g, g) to (g,go) for each ¢ € Q and g € G. For each 1 < i < k let
Al be the matrix that, for each f € Fjq, acts as the transformation B on
QW x {f} and as the identity everywhere else. Finally, A’ = P, A’ ... A" .

The A! are constructed so that M’ keeps track of the current group element
at every step. If M is in state (g, g), then after applying A},..., A} it remains
in @ x {g} with probability 1. The P, matrix ‘translates’ all of the transition
probabilities from @ x {g} to @ x {go}. Initially M is in @ x {1}, so after reading
any partial input w, M will be in @ x {lw} with probability 1. In this way M
will always keep track of the current group element.

Each A! matrix refines A, from the X*aq X*as ... ar X* construction in such
a way that, on input o after reading w, we do not move from QY to Q) (the

action performed by B‘(f)) unless o = a; and w € F;-1. This is exactly what we
need to recognize L. The transition matrices can be simulated by LQFA by the
same argument as in Theorem 5.

Lemma 5. Let w be any word. As we process the characters of w in M, for
all 0 < i < k the total probability of being in one of the states of QY x G is
nondecreasing.

Proof: Same argument as in Lemma 4 holds.

Proof of correctness: It is easy to see that M will reject any word not in
L. We do not move out of Q® x G unless we read a; in the correct context.
Inductively, we do not move into @,.. unless we have read each subword letter on
the correct context and the current state corresponds to a group element f € Fj.
Now suppose w € L. Rewrite w as wogay - - - apwy. Clearly M does not move out
of Q©® x G while reading wo. The character a; is now read, and M moves
to (QMW x G)\(Q® x G) with probability . By the previous lemma, this
probability does not decrease while reading w;. So now after reading woa;w,
we will be in Q,(llc)c x G with probability ZL. If a, is read we move to Q®
with probability (Z1)2. By induction after reading woas ...wg—1ar we move
to (Q x G)\(Q*™V) x @) with total probability at least (“1)¥. Finally, after
reading wy, we move to Q). with total probability at least (1), and so we
accept any w € L with this probability. By choosing a suitable n we can recognize
L with arbitrarily high probability. O



4 Results for BPQFA

Our main result for BPQFA is given below:

Theorem 6. The language L has its syntactic monoid in BG iff it is a Boolean
combination of languages recognized by BPQFA.

Proof: Similar to the LQFA case, we first show that this class of languages forms
a x-variety. BPQFAs have been shown to be closed under inverse homomorphisms
and word quotient [8], and we get Boolean combinations by definition. Next, we
give the lower bounds. It is known that BPQFA cannot recognize X*a, since
KWQFA cannot recognize X*a [15] and any BPQFA can be simulated by a
KWQFA. This proof can be easily extended to Boolean combinations of BPQFA.
We prove the following theorem later in the section:

Theorem 7. The language aX™* is not a Boolean combination of languages rec-
ognized by BPQFA.

Thus L is a Boolean combination of languages recognized by BPQFA only if
M(L) is in BG. Finally, we prove the following upper bound, by extending a
construction of [8] in a manner similar to Theorem 4:

Theorem 8. Any language whose syntactic monoid is in BG is a Boolean com-
bination of languages recognized by BPQFA.

This completes the proof of the main result. |

Proof of Theorem 7: We use a technique introduced in [15] to analyze BPQ-
FAs. Let ¢ be an unnormalized state vector of M. Define A! = P,,, A,, and for
any word w = wy ... wy let Ay, = A --- A} . Then if ¢ is the start vector, the
vector 1, = Al 1 completely describes the probabilistic behaviour of M, since
M halts while reading w with probability 1 — |[1,]|3, and continues in state
IIQZﬁTsz with probability [|[),]|3. We also use the following lemma from [4]:

Lemma 6. [4] Let {x,y} C Xt. Then there are subspaces E1, Es s.t. Epop =
E\@E; and (1) if € Ey, then A7 (y) € Ey and A} (y) € Ey and || Az ()| = [[¢]]
and [|A, (D)l = |[¥ll; (2) if ¥ € Ea, then for any € > 0, and for any word
t € (z|y)* there exists a word t' € (z|y)* such that ||Aw (¥)|| < e.

We first show that, for any BPQFA M, any € > 0, and for any two prefixes
v,w € {a,b}*, there exists v',w' € {a,b}* such that |4} ) — Al |3 <e. In
other words, any input with prefix vv’ is indistinguishable from an input with
prefix ww' by M. Let ¢ = A((|go)), and let b be some letter in X'\{a}. As in
Lemma, 6, separate E,,, into two subspaces E; and F, with respect to the words
z = a and y = b. Then we can rewrite 1) as ¥ = 91 + 12, where ¢; € F;. By the
lemma, and since A/ and A} act unitarily on E, for any ¢’ there exists v' and
w' such that ||A! 4 — 1|3 <&’ and [|A!,, % — 1|3 < €. For sufficiently small
g’ we have ||A! ¢ — Al |3 < e.

v’



Suppose we have a language L that is a Boolean combination of m languages
Ly,..., Ly, recognized by BPQFA. As above, we can construct inductively on the
L; languages two words v = v1v2 - - - U, € {@,b}* and w = wywsa ... wy, € {a,b}*
such that av and bw are indistinguishable for every L;. Thus we must have
either {av,bw} C L or L N {av,bw} = ). Either way, the Boolean combination
of BPQFAs does not recognize aX™. |

Note that in our characterization we have to take ‘Boolean combinations’
because BPQFA are not closed under complement. This follows from the theorem
below, which we will prove in the full version:

Theorem 9. Over any X' s.t. {a,b} C X', BPQFA cannot recognize X*bX*aX*.

5 Conclusion

In this paper we have produced algebraic characterizations for the languages
that can be recognized by Brodsky-Pippenger Quantum Finite Automata and
by a new model which we called Latvian Quantum Finite Automata. A some-
what surprising consequence of our results is that the two models are equivalent
in power, up to Boolean combinations. It has been shown that a language L is
recognizable by an LQFA iff its syntactic monoid is a block group; hence mem-
bership in the class is decidable. The situation is more complicated for BPQFA
since the corresponding class of languages is not closed under complement. The
good news is that we have shown that the class forms what is known as a positive
x-variety and thus is amenable to algebraic description through the mechanism
of ordered monoids [22]. We know that this positive x-variety strictly contains
the regular languages that are open in the group topology and a precise charac-
terization seems to be within reach.

Another open problem is to characterize algebraically the Kondacs-Watrous
model. It is an easy consequence of our results on BPQFA that KWQFA can
recognize any language whose syntactic monoid is in BG. However, outside of
BG the question of language recognition is still unresolved.

The class of languages recognized by KWQFA is known not be closed under
union [4], hence does not form a x-variety. It is nevertheless meaningful to ask
for an algebraic description of the x-variety generated by those languages. We
conjecture that the right answer involves replacing block groups by a 1-sided
version V of this M-variety defined by the following condition: for any e = €2 and
f=f%in M, eM = fM imply e = f. The corresponding variety of languages
can be described as largest variety that does not contain X*a for || > 2.
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