Recognizers
A study in learning how to model temporally extended behaviors

Jordan Frank
jordan.frank@cs.mcgill.ca

Reasoning and Learning Lab
McGill University

Joint work with Doina Precup
Background and Motivation

• Want a flexible way to represent hierarchical knowledge. (*Options* [Sutton, Precup & Singh, 1999])

• Want an efficient way to learn about these hierarchies. (*Recognizers* [Precup et al. 2006])

• Concerned with off-policy learning in environments with continuous state and action spaces [Precup, Sutton & Dasgupta 2001].
Terminology

- **Option**: A tuple $\langle I, \beta, \pi \rangle$. I is a set of initiation states, β a termination condition, and π a policy.

- **Recognizer**: A filter on actions. A recognizer specifies a class of policies that we are interested in learning about.

- **Off-policy learning**: We are interested in learning about a target policy π by observing an agent whose behavior is governed by a different (possibly unknown) policy b.
Example Problem

- PuddleWorld [RL-Glue]
 - Continuous state space
 - Continuous action space
- Goal is to do off-policy learning. Behavior policy is unknown.
Example Problem

- PuddleWorld [RL-Glue]
 - **Continuous** state space
 - **Continuous** action space
- Goal is to do off-policy learning. Behavior policy is unknown.
Example Problem

• PuddleWorld [RL-Glue]
 - **Continuous** state space
 - **Continuous** action space

• Goal is to do *off-policy learning*. Behavior policy is *unknown*.
Example Problem

• PuddleWorld [RL-Glue]
 - **Continuous** state space
 - **Continuous** action space

• Goal is to do *off-policy learning*. Behavior policy is *unknown*.
Recognizers: Formally

- MDP is a tuple \(\langle S, A, P, R \rangle \). At time step \(t \), an agent receives a state \(s_t \in S \) and chooses an action \(a_t \in A \).
- Fixed (unknown) behavior policy \(b : S \times A \rightarrow [0, 1] \), used to generate actions.
- Recognizer is a function \(c : S \times A \rightarrow [0, 1] \), where \(c(s, a) \) indicates to what extent the recognizer allows action \(a \) in state \(s \).
- Target policy \(\pi \) generated by \(b \) and \(c \)

\[
\pi(s, a) = \frac{b(s, a)c(s, a)}{\sum_x b(s, x)c(s, x)} = \frac{b(s, a)c(s, a)}{\mu(s)},
\]

where \(\mu(s) \) is the recognition probability at \(s \).
Importance Sampling

• Based on the following observation:

\[E_\pi \{ x \} = \int x \pi(x) \, dx = \int x \frac{\pi(x)}{b(x)} b(x) \, dx = E_b \left\{ x \frac{\pi(x)}{b(x)} \right\} \]

• We are trying to learn about a target policy \(\pi \) using samples drawn from a behavior policy \(b \), and so we just need to calculate the appropriate weights.

• Weights (also called corrections) given by

\[\rho(s, a) = \frac{\pi(s, a)}{b(s, a)} = \frac{c(s, a)}{\mu(s)} \]

• Full details of the algorithm given in Precup et al. (2006).
Importance Sampling Correction

• $\mu(s)$ depends on b.

• If b is unknown, we can use a maximum likelihood estimate $\hat{\mu} : S \rightarrow [0, 1]$.

• For linear function approximation, we can use logistic regression with the same set of features in order to estimate μ.
Experiment 1: Puddle World [RL-Glue]

- Continuous state space, continuous actions. Movement is noisy.
- Positive reward for reaching goal (10), negative reward for entering puddle (-10 at middle).
- Start state chosen randomly in small square in lower left corner. Reaching goal moves agent back to start state.
Experiment 1: Setup

- Standard tile coding *function approximation* for state space.
- Behavior policy picks actions uniformly randomly, target policy is to pick actions that lead *directly* towards the goal state.
- Binary recognizer, recognizes actions in a 45° cone facing directly towards the goal state. Recognizer episode can be initiated everywhere, and terminates when either goal state or puddle are entered.
Experiment 1: Results

Learned Reward Model

- This matches our intuition that moving directly towards the goal is good unless you are below and to the left of the puddle.
Experiment 1: Results

- We observe that the recognition probability estimate converges to the correct value, and estimating this value as we do our learning does not bias our state value estimates.
Experiment 2: Ship Steering [RL-Glue]

- Stochastic environment. 3D Continuous state space, 2D continuous actions (throttle and rudder angle).
- Goal is to keep a ship on a desired heading with a high velocity.
Experiment 2: Setup

• Goal is to demonstrate that we can learn multiple recognizers from one stream of experience.

• Behavior policy picks a rudder orientation randomly to bring ship towards desired heading.

• 4 recognizers recognize different ranges of motion, from small, smooth adjustments to the rudder, to huge, sharp adjustments.
Experiment 2: Results

- We can see that policies that make smaller rudder adjustments outperform those that make large adjustments.
Conclusion and Future work

• Recognizers are useful for learning about options when we cannot control, or do not know the behavior policy.

• Convergence has been shown for state aggregation, still need to work on proofs for function approximation, but empirical results are promising.

• More experiments.
Questions?

