
Compositional Semantics:

Quantification and

Underspecification

COMP-550

Oct 31, 2017

Midterm
Thursday, Nov 9, in class, 80 min.

Closed book

Question types:

• M/C

• Short answer

• Problem solving

2

Expectations
You’ll be expected to know:

• Definitions (including formulas)

• How to run algorithms by hand

• Simple derivations

• Simple probability and calculus (up to, say, chain rule)

• Basic linguistic terminology and theory

• Lambda calculus

You won’t be expected to remember*:

• Lagrange multipliers

• What the derivative of, say, 𝑒𝑥 is.

• Specific lexical rules for translating items into FOL

3

*But could still be asked to apply or use, given relevant facts

How To Study
Review and redo the exercises we did in class

Learn the definitions of all the technical terms (most of
them are in bold or are the titles of slides)

Review your assignments

Do practice problems

Do the practice midterm

List of practice problems from the textbook are on the
course website. Note that they are not meant to be
comprehensive, but are supplementary.

4

Outline
Syntax-driven semantic composition

Quantifiers

Generalized quantifiers

Underspecification

5

Power of Lambda Calculus
They allow us to store partial computations of the MR,
as we are composing the meaning of the sentence
constituent by constituent.

Whiskers disdained catnip.

disdained 𝜆𝑥. 𝜆𝑦. 𝑑𝑖𝑠𝑑𝑎𝑖𝑛𝑒𝑑(𝑦, 𝑥)

disdained catnip 𝜆𝑥. 𝜆𝑦. 𝑑𝑖𝑠𝑑𝑎𝑖𝑛𝑒𝑑 𝑦, 𝑥 𝑐𝑎𝑡𝑛𝑖𝑝

= 𝜆𝑦. 𝑑𝑖𝑠𝑑𝑎𝑖𝑛𝑒𝑑 𝑦, 𝑐𝑎𝑡𝑛𝑖𝑝

Whiskers disdained catnip

𝜆𝑦. 𝑑𝑖𝑠𝑑𝑎𝑖𝑛𝑒𝑑 𝑦, 𝑐𝑎𝑡𝑛𝑖𝑝 𝑊ℎ𝑖𝑠𝑘𝑒𝑟𝑠

= 𝑑𝑖𝑠𝑑𝑎𝑖𝑛𝑒𝑑 𝑊ℎ𝑖𝑠𝑘𝑒𝑟𝑠, 𝑐𝑎𝑡𝑛𝑖𝑝

6

Exercises
What is the result of simplifying the following
expressions in lambda calculus through beta reduction?

𝜆𝑧. 𝑧 𝜆𝑦. 𝑦 𝑦 𝜆𝑥. 𝑥 𝑎

(((𝜆𝑥. 𝜆𝑦. (𝑥 𝑦))(𝜆𝑦. 𝑦)) 𝑤)

(𝜆𝑥. 𝑥 𝑥) (𝜆𝑦. 𝑦 𝑥) 𝑧

7

Syntax-Driven Semantic Composition
Augment CFG trees with lambda expressions

• Syntactic composition = function application

Semantic attachments:
𝐴 → 𝛼1 …𝛼𝑛 {𝑓 𝛼𝑗 . 𝑠𝑒𝑚,… , 𝛼𝑘 . 𝑠𝑒𝑚 }

syntactic composition semantic attachment

8

Proper Nouns
Proper nouns are FOL constants

𝑃𝑁 → 𝐶𝑂𝑀𝑃550 {𝐶𝑂𝑀𝑃550}

Actually, we will type-raise proper nouns
𝑃𝑁 → 𝐶𝑂𝑀𝑃550 {𝜆𝑥. 𝑥(𝐶𝑂𝑀𝑃550)}

• It is now a function rather than an argument.

• We will see why we do this.

NP rule:
𝑁𝑃 → 𝑃𝑁 {𝑃𝑁. 𝑠𝑒𝑚}

9

Common Nouns
Common nouns are predicates inside a lambda
expression of type 𝑒, 𝑡

• Takes an entity, tells you whether the entity is a member
of that class

𝑁 → 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 {𝜆𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥)}

Let’s talk more about common nouns next class when we
also talk about quantifiers.

10

Intransitive Verbs
We introduce an event variable 𝑒, and assert that there
exists a certain event associated with this verb, with
arguments.

𝑉 → 𝑟𝑢𝑙𝑒𝑠 {𝜆𝑥. ∃𝑒. 𝑅𝑢𝑙𝑒𝑠 𝑒 ∧ 𝑅𝑢𝑙𝑒𝑟 𝑒, 𝑥 }

Then, composition is
𝑆 → 𝑁𝑃 𝑉𝑃 {𝑁𝑃. 𝑠𝑒𝑚(𝑉𝑃. 𝑠𝑒𝑚)}

Let’s derive the representation of the sentence “COMP-550
rules”

11

Neo-Davidsonian Event Semantics
Notice that we have changed how we represent events

Method 1: multi-place predicate
𝑅𝑢𝑙𝑒𝑠(𝑥)

Method 2: Neo-Davidsonian version with event
variable

∃𝑒. 𝑅𝑢𝑙𝑒𝑠 𝑒 ∧ 𝑅𝑢𝑙𝑒𝑟 𝑒, 𝑥

Reifying the event variable makes things more flexible

• Optional elements such as location and time, passives

• Add information to the event variable about tense,
modality

12

Transitive Verbs
Transitive verbs

𝑉 → 𝑒𝑛𝑗𝑜𝑦𝑠
{𝜆𝑤. 𝜆𝑧. 𝑤(𝜆𝑥. ∃𝑒. 𝐸𝑛𝑗𝑜𝑦𝑠 𝑒 ∧ 𝐸𝑛𝑗𝑜𝑦𝑒𝑟 𝑒, 𝑧 ∧ 𝐸𝑛𝑗𝑜𝑦𝑒𝑒 𝑒, 𝑥)}

𝑉𝑃 → 𝑉 𝑁𝑃 {𝑉. 𝑠𝑒𝑚 𝑁𝑃. 𝑠𝑒𝑚 }
𝑆 → 𝑁𝑃 𝑉𝑃 {𝑁𝑃. 𝑠𝑒𝑚(𝑉𝑃. 𝑠𝑒𝑚)}

Exercise: verify that this works with the sentence “Jackie
enjoys COMP-550”

13

Quantifiers
Universal quantifiers

• all, every

All students like COMP-550.
∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → 𝐿𝑖𝑘𝑒(𝑥, COMP−550)

Existential quantifiers

• a, an, some

Some/A student likes COMP-550.
∃𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 ∧ 𝐿𝑖𝑘𝑒(𝑥, COMP−550)

14

Why → for the universal quantifier, but ∧ for the existential one?

Russell (1905)’s Definite Descriptions
How to express “the student” in FOL?

e.g., The student took COMP-599.

Need to enforce three properties:

1. There is an entity who is the student.

2. There is at most one thing being referred to who is a
student.

3. The student participates in some predicate, here, “took
COMP-550”.

15

The King of France is Bald
Property 1 is important. Consider “The King of France is
bald.”

Solution 1:

• Define a new constant for KING-OF-FRANCE, much like for
proper nouns.

FOL MR becomes 𝐵𝑎𝑙𝑑(KING−OF−FRANCE)

What is the problem with this solution?

16

Definite Articles
The student took COMP-550:

1. There is an entity who is the student.

2. There is at most one thing being referred to who is a
student.

3. The student participates in some predicate.

∃𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 ∧ ∀𝑦. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑦 → 𝑦 = 𝑥
∧ 𝑡𝑜𝑜𝑘(𝑥, COMP−550)

17

For simplicity, for now, assume took is a predicate,
rather than use event variables.

What is the range of this existential quantifier?

Incorporating into Syntax
Now, let’s incorporate this to see how lambda calculus
can deal with this compositionally.

Semantic attachment for lexical rule for every:

𝐷𝑒𝑡 → 𝑒𝑣𝑒𝑟𝑦 {𝜆𝑃. 𝜆𝑄. ∀𝑥. 𝑃 𝑥 → 𝑄 𝑥 }

What do 𝑃 and 𝑄 represent?

18

Every Student Likes COMP-550
𝐷𝑒𝑡 → 𝑒𝑣𝑒𝑟𝑦 {𝜆𝑃. 𝜆𝑄. ∀𝑥. 𝑃 𝑥 → 𝑄 𝑥 }

𝑁𝑃 → 𝐷𝑒𝑡 𝑁 {𝐷𝑒𝑡. 𝑠𝑒𝑚(𝑁. 𝑠𝑒𝑚)}

Let’s do the derivation of Every student likes COMP-599.

Recall:
𝑉𝑃 → 𝑉 𝑁𝑃 {𝑉. 𝑠𝑒𝑚 𝑁𝑃. 𝑠𝑒𝑚 }
𝑆 → 𝑁𝑃 𝑉𝑃 {𝑁𝑃. 𝑠𝑒𝑚(𝑉𝑃. 𝑠𝑒𝑚)}
𝑉 → 𝑙𝑖𝑘𝑒𝑠

{𝜆𝑤. 𝜆𝑧. 𝑤(𝜆𝑥. ∃𝑒. 𝐿𝑖𝑘𝑒𝑠 𝑒 ∧ 𝐿𝑖𝑘𝑒𝑟 𝑒, 𝑧 ∧ 𝐿𝑖𝑘𝑒𝑒 𝑒, 𝑥)}

19

Using explicit event variables again.

Questions and Exercise
What are the lexical rules with semantic attachments
for a? For the?

Come up with the derivation of COMP-550 likes every
student.

20

Adjectives
Can we figure out the pattern for adjectives?

student 𝜆𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥)

smart student 𝜆𝑥. 𝑆𝑚𝑎𝑟𝑡 𝑥 ∧ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥)

smart ?

Also need an augmented rule for N -> A N

21

Scopal Ambiguity: Multiple Quantifiers
What are the possible readings for the following?

Every student took a course.

This is known as scopal ambiguity.

22

Scopal Ambiguity
Every student took a course.

every > a
∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥
→ ∃𝑦. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑦 ∧ ∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑥 ∧ 𝑡𝑎𝑘𝑒𝑒(𝑒, 𝑦)

a > every
∃𝑦. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑦

∧ ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → ∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑥 ∧ 𝑡𝑎𝑘𝑒𝑒 𝑒, 𝑦

Would like a way to derive both of these readings from
the syntax. What would we get with our current
method?

23

Underspecification
Solution: Derive a representation that allows for both
readings

Underspecified representation – A meaning
representation that can embody all possible readings
without explicitly enumerating all of them.

Other cases where this is useful:

• We are genuinely missing some information (e.g., the
tense information), so we choose not to include it in the
meaning representation.

24

Cooper Storage (1983)
Associate a store with each FOL expression that allows
both readings to be recovered.

Every student took a course.
∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑠1 ∧ 𝑡𝑎𝑘𝑒𝑒(𝑒, 𝑠2)

(𝜆𝑄. ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → 𝑄 𝑥 , 1),

(𝜆𝑄. ∃𝑦. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑦 ∧ 𝑄 𝑦 , 2)

25

Recovering the Reading
Once we know which reading we want (e.g., by looking
at the context), recover the store:

1. Select order to incorporate quantifiers

2. For each quantifier:

• Introduce lambda abstraction over the appropriate index
variable

• Do beta-reduction

26

Example: 1, then 2
Every student took a course.

∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑠1 ∧ 𝑡𝑎𝑘𝑒𝑒(𝑒, 𝑠2)

(𝜆𝑄. ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → 𝑄 𝑥 , 1),

(𝜆𝑄. ∃𝑦. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑦 ∧ 𝑄 𝑦 , 2)

1 first:
𝜆𝑄. ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → 𝑄 𝑥

𝜆𝑠1. ∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑠1 ∧ 𝑡𝑎𝑘𝑒𝑒 𝑒, 𝑠2

= ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → ∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑥 ∧ 𝑡𝑎𝑘𝑒𝑒(𝑒, 𝑠2)

Then 2:
𝜆𝑄. ∃𝑦. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑦 ∧ 𝑄 𝑦

𝜆𝑠2. ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → ∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑥 ∧ 𝑡𝑎𝑘𝑒𝑒 𝑒, 𝑠2
= ∃𝑦. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑦 ∧ ∀𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑥 → ∃𝑒. 𝑡𝑜𝑜𝑘 𝑒 ∧ 𝑡𝑎𝑘𝑒𝑟 𝑒, 𝑥 ∧
𝑡𝑎𝑘𝑒𝑒 𝑒, 𝑦

27

Compositional Rules
We also need new rules with semantic attachments for
our quantifiers:

• Composing quantifier with N is now modifying the inside
part of a store

• An NP is now introduces a new index variable, which is
wrapped in a lambda expression

28

A Course

What is the semantic attachment for NP -> Det N? Use
.sem.store to access the store.

29

a course
Det N

NP

(𝜆𝑃. 𝜆𝑄. ∃𝑥. 𝑃 𝑥 ∧ 𝑄(𝑥)) (𝜆𝑥. 𝐶𝑜𝑢𝑟𝑠𝑒(𝑥))

𝜆𝑢. 𝑢 𝑠1 , (𝜆𝑄. ∃𝑥. 𝐶𝑜𝑢𝑟𝑠𝑒 𝑥 ∧ 𝑄 𝑥 , 1)

Exercise
Finish the derivation for the underspecified
representation of Every student took a course.

Recall:
𝑉𝑃 → 𝑉 𝑁𝑃 {𝑉. 𝑠𝑒𝑚 𝑁𝑃. 𝑠𝑒𝑚 }
𝑆 → 𝑁𝑃 𝑉𝑃 {𝑁𝑃. 𝑠𝑒𝑚(𝑉𝑃. 𝑠𝑒𝑚)}
𝑉 → 𝑡𝑜𝑜𝑘

{𝜆𝑤. 𝜆𝑧. 𝑤(𝜆𝑥. ∃𝑒. 𝑇𝑜𝑜𝑘 𝑒 ∧ 𝑇𝑎𝑘𝑒𝑟 𝑒, 𝑧 ∧ 𝑇𝑎𝑘𝑒𝑒 𝑒, 𝑥)}

𝐷𝑒𝑡 → 𝑒𝑣𝑒𝑟𝑦 {(𝜆𝑃. 𝜆𝑄. ∀𝑥. 𝑃 𝑥 → 𝑄(𝑥))}

𝑁 → 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 {𝜆𝑥. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥)}

30

Question
How would we disambiguate between the possible
readings?

31

